R/DataProcess.R

Defines functions .countMultiRun .fit.quantification.run .runQuantification resultsAsLists dataProcess

Documented in dataProcess

#############################################
## dataProcess
#############################################
#' @export dataProcess
#' @import survival 
#' @import preprocessCore 
#' @import statmod
#' @importFrom reshape2 dcast melt
#' @importFrom stats medpolish aggregate t.test lm summary.lm fitted resid p.adjust
#' @importFrom stats C approx coef cor dist formula loess median na.omit
#' @importFrom stats predict pt qnorm qt quantile reshape rnorm runif sd var vcov xtabs
#' @importFrom utils head read.table sessionInfo setTxtProgressBar txtProgressBar write.csv write.table
#' @importFrom methods validObject
#' @importFrom doSNOW registerDoSNOW
#' @importFrom snow makeCluster
#' @importFrom foreach foreach %dopar%
#' @importFrom dplyr filter n
#' @importFrom tidyr gather

dataProcess  <-  function(raw,
                          logTrans=2,
                          normalization="equalizeMedians",
                          nameStandards=NULL,
                          address="",
                          fillIncompleteRows=TRUE,
                          featureSubset="all",
                          remove_uninformative_feature_outlier=FALSE,
                          n_top_feature=3,
                          summaryMethod="TMP",
                          equalFeatureVar=TRUE,
                          censoredInt="NA",
                          cutoffCensored="minFeature",
                          MBimpute=TRUE,
                          remove50missing=FALSE,
                          maxQuantileforCensored=0.999,
                          clusters=NULL) {
  
    ## save process output in each step
    allfiles <- list.files()
  
    num <- 0
	filenaming <- "msstats"
	finalfile <- "msstats.log"
  
	while(is.element(finalfile, allfiles)) {
		num <- num + 1
		finalfile <- paste0(paste(filenaming, num, sep="-"), ".log")
	}
  
	session <- sessionInfo()
	sink("sessionInfo.txt")
	print(session)
	sink()
  
	processout <- as.matrix(read.table("sessionInfo.txt", header=TRUE, sep="\t"))
	write.table(processout, file=finalfile, row.names=FALSE)
  
	processout <- rbind(processout, as.matrix(c(" "," ","MSstats - dataProcess function"," "), ncol=1))
  
	## make case-insensitive for function options
    ## ------------------------------------------
  
	normalization <- toupper(normalization)

	## Check correct option or input
	## check right column in input
  
	requiredinput <- c("ProteinName", "PeptideSequence", "PrecursorCharge", 
                     "FragmentIon", "ProductCharge", "IsotopeLabelType", 
                     "Condition", "BioReplicate", "Run", "Intensity")

	## [THT: disambiguation for PeptideSequence & PeptideModifiedSequence - begin]
	## PeptideModifiedSequence is also allowed.
	requiredInputUpper <- toupper(requiredinput)
	providedInputUpper <- toupper(colnames(raw))
	if (all(requiredInputUpper %in% providedInputUpper)) {
    	processout <- rbind(processout, c("The required input : provided - okay"))
    	write.table(processout, file = finalfile, row.names = FALSE)
	} else if (all(setdiff(requiredInputUpper, "PEPTIDESEQUENCE") %in% providedInputUpper) && "PEPTIDEMODIFIEDSEQUENCE" %in% providedInputUpper) {
		processout <- rbind(processout, c("The required input : provided - okay"))
    	write.table(processout, file = finalfile, row.names = FALSE)
    	# if PeptideModifiedSequence is provided instead of PeptideSequence, 
    	# change the column name as PeptideSequence
    	colnames(raw)[which(providedInputUpper == "PEPTIDEMODIFIEDSEQUENCE")]  <-  "PeptideSequence"
  	} else {
		missedInput <- which(!(requiredInputUpper %in% providedInputUpper))
		processout <- rbind(processout, c(paste("ERROR : The required input : ", 
                            paste(requiredinput[missedInput], collapse = ", "), 
                            " are not provided in input - stop")))
		write.table(processout, file = finalfile, row.names = FALSE)
    	stop("Please check the required input. The required input needs (ProteinName, PeptideSequence (or PeptideModifiedSequence), PrecursorCharge, FragmentIon, ProductCharge, IsotopeLabelType, Condition, BioReplicate, Run, Intensity)")
	}
	## [THT: disambiguation for PeptideSequence & PeptideModifiedSequence - end]
  
	
	## check logTrans is 2,10 or not
	if (logTrans!=2 & logTrans!=10) {
	    processout <- rbind(processout,c("ERROR : Logarithm transformation : log2 or log10 only - stop"))
	    write.table(processout, file=finalfile,row.names=FALSE)
	  
	    stop("Only log2 or log10 are posssible.\n")
	}
	
	## check no row for some feature : balanced structure or not  
	if (!(fillIncompleteRows==TRUE | fillIncompleteRows==FALSE) | !is.logical(fillIncompleteRows)) {
	    processout <- rbind(processout, c(paste("The required input - fillIncompleteRows : 'fillIncompleteRows' value is wrong. It should be either TRUE or FALSE. - stop")))
	    write.table(processout, file=finalfile, row.names=FALSE)
	  
	  stop("'fillIncompleteRows' must be one of TRUE or FALSE as a logical value.")
	}
	
	## check input for summaryMethod
	
	if (sum(summaryMethod == c("linear", "TMP")) == 0) {
	    processout <- rbind(processout,c("The required input - summaryMethod : 'summaryMethod' value is wrong. It should be one of 'TMP' or 'linear'. - stop"))
	    write.table(processout, file=finalfile, row.names=FALSE)
	  
	    stop("'summaryMethod' value is wrong. It should be one of 'TMP' or 'linear'.")
	} else {
	    processout <- rbind(processout, c(paste("summaryMethod : ", as.character(summaryMethod), sep="")))
	    write.table(processout, file=finalfile, row.names=FALSE)
	}
	
	## check input for cutoffCensored
	if (sum(cutoffCensored==c("minFeature","minRun","minFeatureNRun"))==0) {
	    processout <- rbind(processout,c("The required input - cutoffCensored : 'cutoffCensored' value is wrong. It should be one of 'minFeature','minRun','minFeatureNRun'. - stop"))
	    write.table(processout, file=finalfile, row.names=FALSE)
	  
	    stop("'cutoffCensored' value is wrong. It should be one of 'minFeature','minRun','minFeatureNRun'.")
	} else {
	    processout <- rbind(processout,c(paste("cutoffCensored : ",as.character(cutoffCensored), sep="")))
	    write.table(processout, file=finalfile, row.names=FALSE)
	}
	
	## check input for censoredInt
	if (sum(censoredInt == c("0", "NA")) == 0 & !is.null(censoredInt)) {
	    processout <- rbind(processout,c("The required input - censoredInt : 'censoredInt' value is wrong. 
	                                     It should be one of '0','NA', NULL. - stop"))
	    write.table(processout, file=finalfile, row.names=FALSE)
	    
	    stop("'censoredInt' value is wrong. It should be one of '0','NA',NULL.")
	} else {
	    processout <- rbind(processout, c(paste("censoredInt : ", as.character(censoredInt), sep="")))
	    write.table(processout, file=finalfile, row.names=FALSE)
	}
	
	## check input for censoredInt and MBimpute
	if ( summaryMethod == 'TMP' & MBimpute & is.null(censoredInt) ) {
	    processout <- rbind(processout, c("The rcombination of equired input - 
	                                      censoredInt and MBimpute : 'censoredInt=NULL' has no censored missing values. 
	                                      Imputation will not be performed.- stop"))
	    write.table(processout, file=finalfile, row.names=FALSE)
	    
	    stop("'censoredInt=NULL' means that dataset has no censored missing value and MSstats will not impute.
	         But, 'MBimpute=TRUE' is selected. Please replace by 'MBimpute=FALSE' or censoredInt='NA' or '0'")
	  
	} 
	
	## [THT: if (!all(normalization %in% c("NONE", "FALSE", "EQUALIZEMEDIANS", "QUANTILE", "GLOBALSTANDARDS")))]
	## [THT: send a warning message if the user mixes "NONE" with any of the last three choices]
	if (!(normalization=="NONE" | normalization=="FALSE" | 
	      normalization=="EQUALIZEMEDIANS" | normalization=="QUANTILE" | 
	      normalization=="GLOBALSTANDARDS")) {
	    processout <- rbind(processout,c(paste("The required input - normalization : 'normalization' value is wrong. - stop")))
	    write.table(processout, file=finalfile, row.names=FALSE)
	    
	    stop("'normalization' must be one of \"None\", \"FALSE\", \"equalizeMedians\", 
	         \"quantile\", or \"globalStandards\". Please assign 'normalization' again.")
	} 
	
	## need the names of global standards
	if (!is.element("NONE",normalization) & 
	    !is.element("FALSE",normalization) & 
	    is.element("GLOBALSTANDARDS",normalization) & 
	    is.null(nameStandards)) {
	    processout <- rbind(processout, c("ERROR : For normalization with global standards, 
	                                      the names of global standards are needed. Please add 'nameStandards' input."))
	    write.table(processout, file=finalfile,row.names=FALSE)
	    
	    stop ("For normalization with global standards, the names of global standards are needed. 
	          Please add 'nameStandards' input." )
	}
	
	## check whether class of intensity is factor or chaterer, if yes, neec to chage as numeric
	if (is.factor(raw$Intensity) | is.character(raw$Intensity)) {	
		suppressWarnings(raw$Intensity <- as.numeric(as.character(raw$Intensity)))
	}
  
	## check whether the intensity has 0 value or negative value
    #	if (length(which(raw$Intensity<=0))>0 & !skylineReport) {
  	
	#	if (is.null(censoredInt)) {
	#		processout <- rbind(processout,c("ERROR : There are some intensities which are zero or negative values. need to change them. - stop"))
	#		write.table(processout, file=finalfile,row.names=FALSE)
    
	#		stop("Intensity has 0 or negative values. Please check these intensities and change them. \n")
  		
	#	} else if (censoredInt=="NA") {
			
	#		processout <- rbind(processout,c("ERROR : There are some intensities which are zero or negative values. need to change them. - stop"))
	#		write.table(processout, file=finalfile,row.names=FALSE)
    
	#		stop("Intensity has 0 or negative values. Please check these intensities and change them. \n")
  			
  #		}
	#}
	

	## here, need to get standard protein name
	## column name : standardtype..
	## what value it has, normzalition, unique(proteinname)
	## if normalition== "standard" & no normalizaion selection, error message
  
	## annotation information : 
	if ( any(is.na(raw$Run)) ) {
	    processout <- rbind(processout, c("ERROR : There is missing information in 'Run' column. Please check 'Run' column."))
	    write.table(processout, file=finalfile, row.names=FALSE)
	    
	    stop ("There is missing information in 'Run' column. Please check 'Run' column." )
	}
	
	if ( any(is.na(raw$BioReplicate)) ) {
	    processout <- rbind(processout, c("ERROR : There is missing information in 'BioReplicate' column. 
	                                      Please check 'BioReplicate' column."))
	    write.table(processout, file=finalfile, row.names=FALSE)
	    
	    stop ("There is missing information in 'BioReplicate' column. Please check 'BioReplicate' column." )
	}
	
	if ( any(is.na(raw$Condition)) ) {
	    processout <- rbind(processout, c("ERROR : There is missing information in 'Condition' column. 
	                                      Please check 'Condition' column."))
	    write.table(processout, file=finalfile, row.names=FALSE)
	    
	    stop ("There is missing information in 'Condition' column. Please check 'Condition' column." )
	}
	
	## make letters case-insensitive
	colnames(raw) <- toupper(colnames(raw))
	
	if( any(is.element(colnames(raw), 'FRACTION')) ) {
	    fraction <- 'FRACTION'
	} else {
	    fraction <- NULL
	}
	
	if( any(is.element(colnames(raw), 'TECHREPLICATE')) ) {
	    tech.rep <- 'TECHREPLICATE'
	} else {
	    tech.rep <- NULL
	}
	
	require.col <- c("PROTEINNAME", "PEPTIDESEQUENCE", "PRECURSORCHARGE", 
	                 "FRAGMENTION", "PRODUCTCHARGE", "ISOTOPELABELTYPE", 
	                 "CONDITION", "BIOREPLICATE", "RUN", "INTENSITY", fraction, tech.rep)
	raw.temp <- raw[, require.col]
  
	## before remove, get PeptideSequence and combination of PeptideSequence and precursorcharge for global standard normalization
	tempPeptide <- unique(raw[, c("PEPTIDESEQUENCE", "PRECURSORCHARGE")])
	tempPeptide$PEPTIDE <- paste(tempPeptide$PEPTIDESEQUENCE, tempPeptide$PRECURSORCHARGE, sep="_")
  
	rm(raw)
  
	## assign peptide, transition
	raw.temp <- data.frame(raw.temp, 
	                       PEPTIDE=paste(raw.temp$PEPTIDESEQUENCE, raw.temp$PRECURSORCHARGE, sep="_"), 
	                       TRANSITION=paste(raw.temp$FRAGMENTION, raw.temp$PRODUCTCHARGE, sep="_"))
  
	if (length(unique(raw.temp$ISOTOPELABELTYPE)) > 2) {
    	processout <- rbind(processout, c("ERROR : There are more than two levels of labeling. 
    	                                  So far, only label-free or reference-labeled experiment are supported. - stop"))
    	write.table(processout, file=finalfile, row.names=FALSE)
    
    	stop("Statistical tools in MSstats are only proper for label-free or with reference peptide experiments.")
	}
  
	## change light, heavy -> L,H
	## [THT: should check if users really provide light/heavy, L/H, l/h, or something else ]
	## [THT: should also check if users provide only H (instead of L)]
	raw.temp$ISOTOPELABELTYPE <- factor(raw.temp$ISOTOPELABELTYPE)
	if (nlevels(raw.temp$ISOTOPELABELTYPE) == 2) {
    	levels(raw.temp$ISOTOPELABELTYPE) <- c("H", "L")
  	}
  	if (nlevels(raw.temp$ISOTOPELABELTYPE) == 1) {
		levels(raw.temp$ISOTOPELABELTYPE) <- c("L")
	}
  
	if( any(is.element(colnames(raw.temp), 'FRACTION')) ) {
	    fraction <- 'FRACTION'
	} else {
	    fraction <- NULL
	}
	
	if( any(is.element(colnames(raw.temp), 'TECHREPLICATE')) ) {
	    tech.rep <- 'TECHREPLICATE'
	} else {
	    tech.rep <- NULL
	}
	
	require.col <- c("PROTEINNAME", "PEPTIDE", "TRANSITION", "ISOTOPELABELTYPE", 
	                 "CONDITION", "BIOREPLICATE", "RUN",  "INTENSITY", 
	                 fraction, tech.rep)
	
	raw.temp <- raw.temp[, require.col]
  
	if( ncol(raw.temp) == 10 & 
	    any(is.element(colnames(raw.temp), 'FRACTION')) & 
	    any(is.element(colnames(raw.temp), 'TECHREPLICATE'))) {
	    colnames(raw.temp) <- c("Protein", "Peptide", "Transition", "Label", 
	                            "Condition", "Sample", "Run", "Intensity", 'Fraction', 'TechReplicate')
	} else if( ncol(raw.temp) == 9 &
	           any(is.element(colnames(raw.temp), 'FRACTION')) ) {
	    colnames(raw.temp) <- c("Protein", "Peptide", "Transition", "Label", 
	                            "Condition", "Sample", "Run", "Intensity", 'Fraction')
	} else {
	    colnames(raw.temp) <- c("Protein", "Peptide", "Transition", "Label", 
	                            "Condition", "Sample", "Run", "Intensity")
	}

  
	## create work data for quant analysis
	## -----------------------------------
	raw.temp <- raw.temp[!is.na(raw.temp$Protein), ]
	raw.temp <- raw.temp[raw.temp$Protein != '', ]
	
	work <- data.frame(PROTEIN=raw.temp$Protein, 
	                   PEPTIDE=raw.temp$Peptide, 
	                   TRANSITION=raw.temp$Transition, 
	                   FEATURE=paste(raw.temp$Peptide, raw.temp$Transition, sep="_"), 
	                   LABEL=raw.temp$Label, 
	                   GROUP_ORIGINAL=raw.temp$Condition, 
	                   SUBJECT_ORIGINAL=raw.temp$Sample, 
	                   RUN=raw.temp$Run, 
	                   GROUP=0,
	                   SUBJECT=0,
	                   INTENSITY=raw.temp$Intensity)
  
	work$GROUP_ORIGINAL <- factor(work$GROUP_ORIGINAL)
	work$SUBJECT_ORIGINAL <- factor(work$SUBJECT_ORIGINAL, levels=unique(work$SUBJECT_ORIGINAL))
	work$LABEL <- factor(work$LABEL, levels=levels(work$LABEL))

	work[work$LABEL=="L", "GROUP"] <- work[work$LABEL=="L", "GROUP_ORIGINAL"]
	work[work$LABEL=="L", "SUBJECT"] <- work[work$LABEL=="L", "SUBJECT_ORIGINAL"]
  
	work <- data.frame(work, SUBJECT_NESTED=paste(work$GROUP, work$SUBJECT, sep="."))
  
	if( any(is.element(colnames(raw.temp), 'Fraction')) ) {
	    work <- data.frame(work, FRACTION = raw.temp$Fraction)
	}
	
	if( any(is.element(colnames(raw.temp), 'TechReplicate')) ) {
	    work <- data.frame(work, TECHREPLICATE = raw.temp$TechReplicate)
	}
	
	processout <- rbind(processout, c("New input format : made new columns for analysis - okay"))
	write.table(processout, file=finalfile, row.names=FALSE)
	
  
	## 2016. 08.29 : replace <1 with zero for log2(intensity)
	if ( length(which(!is.na(work$INTENSITY) & work$INTENSITY < 1)) > 0 ) {
	  
	  processout <- rbind(processout, c(paste0("** There are ",  
	                                          length(which(!is.na(work$INTENSITY) & work$INTENSITY < 1)), 
	                                          " intensities which are zero. These intensities are replaced with 1.")))
	  write.table(processout, file=finalfile, row.names=FALSE)
	  
	  message(paste0("** There are ", length(which(!is.na(work$INTENSITY) & work$INTENSITY < 1)), 
	                " intensities which are zero or less than 1. These intensities are replaced with 1."))
	  
	  work[!is.na(work$INTENSITY) & work$INTENSITY < 1, 'INTENSITY'] <- 1
	}
	
	## log transformation
	work$ABUNDANCE <- work$INTENSITY
  
	## now, INTENSITY keeps original values.
    
	## NA means no observation. assume that spectral tools are not report if no observation. zero means detected but zero. 
	## considered intenseity <1 -> intensity = 1
	## work[!is.na(work$ABUNDANCE) & work$ABUNDANCE==0,"ABUNDANCE"] <- 1
    
	## based on logTrans option, assign log transformation
	## remove log2 or log10 intensity
	### [THT: add one more conidtion to have the program complain if a user 
	### provide unexpected value for logTrans]
	if (logTrans == 2) {
    	work$ABUNDANCE <- log2(work$ABUNDANCE)
	} else if (logTrans == 10) {
    	work$ABUNDANCE <- log10(work$ABUNDANCE)
	} 	
  
	processout <- rbind(processout, 
	                    c(paste0("Logarithm transformation: log", logTrans, 
	                            " transformation is done - okay")))
	write.table(processout, file=finalfile, row.names=FALSE)
   
	## Check multi-method or not : multiple run for a replicate
	work$RUN <- factor(work$RUN)
	
	checkMultirun <- .countMultiRun(work)
	
	if ( checkMultirun$is.risky ){
	    ## if can't matching fractionation, make warning and stop it.
	    stop('** MSstats suspects that there are fractionations and potentially technical replicates too. Please add Fraction column in the input.')
	    
	} else if ( checkMultirun$out ) {
	    if ( any(is.element(colnames(work), 'FRACTION')) ){
	        
	        processout <- rbind(processout, 
	                            c(paste("Multiple fractionations are existed : ", 
	                                    length(unique(work$FRACTION)), 
	                                    "fractionations per MS replicate.")))
	        write.table(processout, file=finalfile, row.names=FALSE)
	        
	    } else {
	        ## need to make new column 'Fraction'
	        ## each sample has no technical replicate, all runs are fractionated MS runs.
	        work$FRACTION <- NA
	        
	        info <- unique(work[, c('GROUP_ORIGINAL', 'SUBJECT_ORIGINAL', 'RUN')])
	        info$condition <- paste(info$GROUP_ORIGINAL, info$SUBJECT_ORIGINAL, sep="_")
	        
	        tmp <- work[!is.na(work$ABUNDANCE), ]
	        
	        ## get on one sample first
	        info.sample1 <- info[info$condition == unique(info$condition)[1], ]
	        
	        ## assign fraction info first
	        info.sample1$FRACTION <- seq(1, nrow(info.sample1))
	        
	        for(k in 1:length(unique(info.sample1$RUN))){
	            
	            ## then fine the same fraction for next sample
	            unique.feature <- unique( tmp[tmp$RUN %in% info.sample1$RUN[k], 'FEATURE'] )
	            
	            tmptmp <- tmp[which(tmp$FEATURE %in% unique.feature), ]
	            tmptmp$condition <- paste(tmptmp$GROUP_ORIGINAL, tmptmp$SUBJECT_ORIGINAL, sep="_")
	            
	            count.feature <- reshape2::dcast(RUN ~ GROUP_ORIGINAL + SUBJECT_ORIGINAL, 
	                                             data=tmptmp, fun.aggregate=length, value.var='ABUNDANCE')
                
	            ## !! get one run which has maximum overlapped feature by each sample
	            same.frac <- apply(count.feature[,-which(colnames(count.feature) %in% c('RUN'))], 2, 
	                               function(x) count.feature[which.max(x), 'RUN'])
	            
	            work[ which(work$RUN %in% same.frac), 'FRACTION'] <- info.sample1[ which(info.sample1$RUN %in% info.sample1$RUN[k]), 'FRACTION']
	        }
	        
	        rm(tmp)
	        
	        ## final check up
	        checkup <- sum( is.na(unique(work$FRACTION)) ) > 0
	        
	        if ( !checkup ){
	            processout <- rbind(processout, c(paste("Multiple fractions are existed : ", 
	                                                    length(unique(work$FRACTION)), "fractions per MS replicate.")))
	            write.table(processout, file=finalfile, row.names=FALSE)
	        } else {
	            
	            processout <- rbind(processout, c('** It is hard to find the same fractionation across sample, due to lots of overlapped features between fractionations.
	                 Please add Fraction column in input.'))
	            write.table(processout, file=finalfile, row.names=FALSE)
	            
	            stop("** It is hard to find the same fractionation across sample, due to lots of overlapped features between fractionations.
	                 Please add Fraction column in input.")
	        }

	    }
	    
	    ################################################
	    ## need additional step that remove overlapped features across several fraction
	    ################################################

	    if ( length(unique(work$FRACTION)) > 1 ){
	        
	        ## extra info for feature and fraction
	        work$tmp <- paste(work$FEATURE, work$FRACTION, sep="_")
	        
	        tmp <- work[!is.na(work$ABUNDANCE) & work$ABUNDANCE > 0, ]
	        count.feature <- reshape2::dcast(FEATURE ~ FRACTION, 
	                                         data=tmp, 
	                                         fun.aggregate=length, 
	                                         value.var='ABUNDANCE')
	        rm(tmp)
	        
	        ## 1. first, keep features which are measured in one fraction
	        count.fraction <- apply(count.feature[, -which(colnames(count.feature) %in% c('FEATURE'))], 
	                                1, 
	                                function(x) sum(x>0))
	        # keep.feature <- count.feature[count.fraction == 1, 'FEATURE']
	    
	        ## 2. second, if features are measured in multiple fractionations, 
	        ## use the fractionation with maximum number of measurements.
	        ## if there are multiple maximum number of measurements, remove features completely.
	        ## count.feature1 : features that are measured in multiple fractions
	        count.feature1 <- count.feature[count.fraction > 1, ]
	    
	        if( nrow(count.feature1) > 0 ){

	            ## how many fractions have maximum number of measurements?
	            count.fraction <- apply(count.feature1[, -which(colnames(count.feature1) %in% c('FEATURE'))], 
	                                    1, 
	                                    function(x) sum(x == max(x)))
	            
	            ## 2.1 count.fraction == 1 means that there is one fraction that have one maximum # measurements.
	            ## count.feature2 : features that measured in multiple fractions.
	            ## however, it has one fraction with max number of measurements across fractions.
	            count.feature2 <- count.feature1[count.fraction == 1, ] 
	            count.feature2$FEATURE <- as.character(count.feature2$FEATURE)
	            
	            if( nrow(count.feature2) > 0 ){
	                
	                #remove.fraction <- apply(count.feature2, 1, 
	                #                         function(x) paste(x[1], names(x[-1])[x[-1] != max(x[-1]) & x[-1] != 0], sep="_") )
	                #remove.fraction <- unlist(remove.fraction)
	                
	                remove.fraction <- gather(count.feature2, 'Fraction', 'ncount', 2:ncol(count.feature2))
	                remove.fraction <- remove.fraction %>% group_by(FEATURE) %>% filter(ncount != max(ncount))
	                remove.fraction <- remove.fraction %>% filter(ncount != 0)
	                remove.fraction$tmp <- paste(remove.fraction$FEATURE, remove.fraction$Fraction, sep="_")

	                work[work$tmp %in% remove.fraction$tmp, 'INTENSITY'] <- NA
	                work[work$tmp %in% remove.fraction$tmp, 'ABUNDANCE'] <- NA
	            }
	            
	            rm(count.feature2)
	            rm(remove.fraction)
	            
	            ## 2.2 count.fraction > 1 means that there are multiple fractions have the same # measurements.
	            ## Then check whether there are multiple maximum number of measurements across fractionation
	            count.feature3 <- count.feature1[count.fraction > 1, ]
	            
	            if( nrow(count.feature3) > 0 ){
	                
	                ## 2.2.1 : maximum number of measurement / fraction == 1, remove that feature
	                max.feature <- apply(count.feature3[, -which(colnames(count.feature3) %in% c('FEATURE'))], 
	                                     1, 
	                                     function(x) max(x))
	                max.feature.1 <- count.feature3[max.feature == 1, 'FEATURE'] 
	                
		            if (length(max.feature.1) > 0){
	                    work <- work[-which(work$FEATURE %in% max.feature.1), ]
	                    count.feature3 <- count.feature3[-which(count.feature3$FEATURE %in% max.feature.1), ]
	                }
	                if ( nrow(count.feature3) > 0 ) {
	                    
	                    ###############
	                    ## 2.2.2 : remove fractionations which have not maximum number of measurements
	                    remove.fraction <- gather(count.feature3, 'Fraction', 'ncount', 2:ncol(count.feature3))
	                    remove.fraction <- remove.fraction %>% group_by(FEATURE) %>% filter(ncount != max(ncount))
	                    remove.fraction <- remove.fraction %>% filter(ncount != 0)
	                    remove.fraction$tmp <- paste(remove.fraction$FEATURE, remove.fraction$Fraction, sep="_")
	                    
	                    work[work$tmp %in% remove.fraction$tmp, 'INTENSITY'] <- NA
	                    work[work$tmp %in% remove.fraction$tmp, 'ABUNDANCE'] <- NA
	                    
	                    rm(remove.fraction)
	                    
	                    ###############
	                    ## 2.2.3 : among fractionations, keep one fractionation which has maximum average
	                    tmptmp <- work[which(work$FEATURE %in% count.feature3$FEATURE), ]
	                    tmptmp <- tmptmp[!is.na(tmptmp$ABUNDANCE), ]
	                    
	                    mean.frac.feature <- tmptmp %>% group_by(FEATURE, tmp) %>% summarise(mean=mean(ABUNDANCE))
	                    remove.fraction <- mean.frac.feature %>% group_by(FEATURE) %>% filter(mean != max(mean))
	                    
	                    work[work$tmp %in% remove.fraction$tmp, 'INTENSITY'] <- NA
	                    work[work$tmp %in% remove.fraction$tmp, 'ABUNDANCE'] <- NA
	                    
	                    rm(remove.fraction)
	                    
	                    rm(tmptmp)
	                }
	            }
	        }
	        
	        work <- work[, -which(colnames(work) %in% c('tmp'))]
	    }
	    
	} else {  ## no fractionation
	    work$FRACTION <- 1
	}

	## check messingness for multirun 
  
	## check no value for some feature : balanced structure or not
	## need to separate label-free or label-based
  
	processout <- rbind(processout, c(paste("fillIncompleteRows = ", fillIncompleteRows,sep="")))
	write.table(processout, file=finalfile, row.names=FALSE)
  
	## [THT: better to write a function for single method, and call that function
	## here and for the case with multuple methods]
	## only 1 method
  
	if ( !checkMultirun$out | length(unique(work$FRACTION)) == 1 ) {
    
		## label-free experiments
    	if (nlevels(work$LABEL) == 1) {
      
      		## get feature by Run count of data
      		structure = tapply ( work$ABUNDANCE, list ( work$FEATURE, work$RUN ) , function ( x ) length ( x ) ) 
      
      		## structure value should be 1 for label-free, if not there are missingness. if more there are duplicates.
      
      		flagmissing = sum(is.na(structure)) > 0
      		flagduplicate = sum(structure[!is.na(structure)]>1) > 0
      
      		### if there is missing rows
      		if ( flagmissing ) {
        		processout <- rbind(processout, c("CAUTION: the input dataset has incomplete rows. 
        		                                  If missing peaks occur they should be included in the dataset as separate rows, 
        		                                  and the missing intensity values should be indicated with 'NA'. 
        		                                  The incomplete rows are listed below."))
        		write.table(processout, file=finalfile,row.names=FALSE)
        
        		message("CAUTION : the input dataset has incomplete rows. 
        		        If missing peaks occur they should be included in the dataset as separate rows, 
        		        and the missing intensity values should be indicated with 'NA'. 
        		        The incomplete rows are listed below.")
        
        		## first, which run has missing	
        		runstructure <- apply ( structure, 2, function ( x ) sum ( is.na ( x ) ) ) > 0
        
        		## get the name of Run
        		runID <- names(runstructure[runstructure==TRUE])
        
        		## for missign row, need to assign before looping
       			missingwork <- NULL
        
        		## then for each run, which features are missing,
				for(j in 1:length(runID)) {
          
				    ## get subject, group information for this run
					nameID <- unique(work[work$RUN==runID[j], c("SUBJECT_ORIGINAL","GROUP_ORIGINAL",
					                                                "GROUP","SUBJECT","SUBJECT_NESTED",
					                                                "RUN","FRACTION")])
          
					## get feature ID
					featureID <- structure[,colnames(structure)==runID[j]]
          
					## get feature ID which has no measuremnt.
					finalfeatureID <- featureID[is.na(featureID)]
          
					## print features ID	 	
					message(paste0("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]),
					                  ", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), 
					                  " has incomplete rows for some features (", 
					                  paste(names(finalfeatureID), collapse=", "), ")"))
          
					## save in process file.
					processout <- rbind(processout, c(paste0("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]),
					                                            ", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), 
					                                            " has incomplete rows for some features (", 
					                                            paste(names(featureID[is.na(featureID)]), collapse=", "), ")")))
					write.table(processout, file=finalfile, row.names=FALSE)
          
					## add missing rows if option is TRUE
					if (fillIncompleteRows) {
            
            	        tempTogetfeature <- work[which(work$FEATURE %in% names(finalfeatureID)), ]
            
            			## get PROTEIN and FEATURE infomation
            			tempfeatureID <- unique(tempTogetfeature[, c("PROTEIN", "PEPTIDE", "TRANSITION", "FEATURE")])
            
            			## merge feature info and run info as 'work' format
            			tempmissingwork <- data.frame(tempfeatureID, 
            			                              LABEL="L",
            			                              GROUP_ORIGINAL=nameID$GROUP_ORIGINAL, 
            			                              SUBJECT_ORIGINAL=nameID$SUBJECT_ORIGINAL, 
            			                              RUN=nameID$RUN, 
            			                              GROUP=nameID$GROUP, 
            			                              SUBJECT=nameID$SUBJECT, 
            			                              SUBJECT_NESTED=nameID$SUBJECT_NESTED, 
            			                              INTENSITY=NA, 
            			                              ABUNDANCE=NA, 
            			                              FRACTION=nameID$FRACTION)	
            
            			## merge with tempary space, missingwork
            			missingwork <- rbind(missingwork, tempmissingwork)
          			} # end fillIncompleteRows options
        		} # end loop for run ID
        
        		## [THT: this part can probably be merged into the above. 
        		## Also, it might be better to check fillIncompleteRows earlier
        		## and terminate the process when it's FALSE]
        		if (fillIncompleteRows) {
          
          			## merge with work
          			## in future, use rbindlist?? rbindlist(list(work, missingwork))
          			work <- rbind(work, missingwork)
          
          			## print message
          			message("\n DONE : Incomplete rows for missing peaks are added with intensity values=NA. \n")
          
          			## save in process file.
          			processout <- rbind(processout, "Incomplete rows for missing peaks are added with intensity values=NA. - done, Okay")
          			write.table(processout, file=finalfile, row.names=FALSE)
          
        		} else {
          
          			## save in process file.
          			processout <- rbind(processout,"Please check whether features in the list are generated from spectral processing tool. 
          			                    Or the option, fillIncompleteRows=TRUE, will add incomplete rows for missing peaks with intensity=NA.")
          			write.table(processout, file=finalfile,row.names=FALSE)
          
          			stop("Please check whether features in the list are generated from spectral processing tool or not. 
          			     Or the option, fillIncompleteRows=TRUE, will add incomplete rows for missing peaks with intensity=NA.")
          
        		}
      		} # end for flag missing
      		
			## if there are duplicates measurements
			if (flagduplicate) {
        
        		## first, which run has duplicates
        		runstructure <- apply ( structure, 2, function ( x ) sum (x[!is.na(x)] > 1 ) > 0 )
        
        		runID <- names(runstructure[runstructure==TRUE])
        
        		## then for each run, which features have duplicates,
        		for(j in 1:length(runID)) {
          
          			nameID <- unique(work[work$RUN == runID[j], c("SUBJECT_ORIGINAL", "GROUP_ORIGINAL", 
          			                                              "GROUP","SUBJECT", "SUBJECT_NESTED", 
          			                                              "RUN", "FRACTION")])
          
          			featureID <- structure[, colnames(structure)==runID[j]]
          			finalfeatureID <- featureID[!is.na(featureID) & featureID > 1]
          
          			message(paste0("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]),
          			              ", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), 
          			              " has multiple rows (duplicate rows) for some features (", 
          			              paste(names(finalfeatureID), collapse=", "), ")"))
          
          			## save in process file.
          			processout <- rbind(processout, c(paste0("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]), 
          			                                        ", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), 
          			                                        " has multiple rows (duplicate rows) for some features (", 
          			                                        paste(names(featureID[is.na(featureID)]), collapse=", "), ")")))
          			write.table(processout, file=finalfile, row.names=FALSE)
        		}
        
        		## save in process file.
        		processout <- rbind(processout,"Please remove duplicate rows in the list above. ")
        		write.table(processout, file=finalfile,row.names=FALSE)
        
        		stop("Please remove duplicate rows in the list above.\n")		
			} # end flag duplicate
      
		    	## no missing and no duplicates
      		if (!flagmissing & !flagduplicate) {
        		processout <- rbind(processout, c("Balanced data format with NA for missing feature intensities - okay"))
        		write.table(processout, file=finalfile, row.names=FALSE)
      		} 
      
      		## end label-free
    	} else { 
      
			## label-based experiment
      
      		## count the reference and endobenous separately
      		work.l <- work[work$LABEL == "L", ]
      		work.h <- work[work$LABEL == "H", ]
       
      		## get feature by Run count of data
      		structure.l <- tapply(work.l$ABUNDANCE, list(work.l$FEATURE, work.l$RUN), function (x) length (x) ) 
      		structure.h <- tapply(work.h$ABUNDANCE, list(work.h$FEATURE, work.h$RUN), function (x) length (x) ) 
           
			## first, check some features which completely missing across run
      		missingcomplete.l <- NULL	
      		missingcomplete.h <- NULL	
      
      		## 1. reference peptides
      		featurestructure.h <- apply(structure.h, 1, function (x) sum(is.na(x)))
      
      		## get feature ID of reference which are completely missing across run
      		featureID.h <- names(featurestructure.h[featurestructure.h == ncol(structure.h)])
      
      		if (length(featureID.h) > 0) {
        		## print message
        		message(paste0("CAUTION : some REFERENCE features have missing intensities in all the runs. 
        		              The completely missing REFERENCE features are ", paste(featureID.h, collapse=", "), 
        		              ". Please check whether features in the list are correctly generated from spectral processing tool. \n"))
        
				## save in process file.
				processout <- rbind(processout,c(paste("CAUTION : some REFERENCE features have missing intensities in all the runs. 
				                                       The completely missing REFERENCE features are ", paste(featureID.h, collapse=", "), 
				                                       ". Please check whether features in the list are correctly generated from spectral processing tool.", sep="")))
				write.table(processout, file=finalfile, row.names=FALSE)
        
        		## add missing rows if option is TRUE
        		if (fillIncompleteRows) {
          
          			## get unique Run information
          			nameID <- unique(work.h[, c("SUBJECT_ORIGINAL", "GROUP_ORIGINAL", "GROUP", "SUBJECT", "SUBJECT_NESTED", "RUN", "FRACTION")])
          
          			## get PROTEIN and FEATURE information
           			## here use whole work dataset
          			tempTogetfeature <- work[which(work$FEATURE %in% featureID.h), ]
          			tempfeatureID <- unique(tempTogetfeature[, c("PROTEIN", "PEPTIDE", "TRANSITION", "FEATURE")])
          
          			## then generate data.frame for missingness,
          			#for(j in 1:nrow(nameID)) {
            
           			#	## merge feature info and run info as 'work' format
            		#	tempmissingwork <- data.frame(tempfeatureID, LABEL="H",GROUP_ORIGINAL=nameID$GROUP_ORIGINAL[j], SUBJECT_ORIGINAL=nameID$SUBJECT_ORIGINAL[j], RUN=nameID$RUN[j], GROUP=nameID$GROUP[j], SUBJECT=nameID$SUBJECT[j], SUBJECT_NESTED=nameID$SUBJECT_NESTED[j], INTENSITY=NA, ABUNDANCE=NA, METHOD=nameID$METHOD[j])	
            
            		#	## merge with tempary space, missingwork
            		#	missingcomplete.h <- rbind(missingcomplete.h, tempmissingwork)
          			#}
                
          			# MC : 2016.04.21 : use merge for simplicity
          			tmp <- merge(nameID, tempfeatureID, by=NULL)
          			missingcomplete.h <- data.frame(PROTEIN=tmp$PROTEIN, 
          			                                PEPTIDE=tmp$PEPTIDE, 
          			                                TRANSITION=tmp$TRANSITION, 
          			                                FEATURE=tmp$FEATURE, 
          			                                LABEL="H", 
          			                                GROUP_ORIGINAL=tmp$GROUP_ORIGINAL, 
          			                                SUBJECT_ORIGINAL=tmp$SUBJECT_ORIGINAL, 
          			                                RUN=tmp$RUN, 
          			                                GROUP=tmp$GROUP, 
          			                                SUBJECT=tmp$SUBJECT, 
          			                                SUBJECT_NESTED=tmp$SUBJECT_NESTED, 
          			                                INTENSITY=NA, 
          			                                ABUNDANCE=NA, 
          			                                FRACTION=tmp$FRACTION)
          			rm(tmp)
                
        		}	# end fillIncompleteRows option     
      		} # end for reference peptides
      
      		## 2. endogenous peptides
      		featurestructure.l <- apply(structure.l, 1, function (x) sum(is.na(x)))
      
      		## get feature ID of reference which are completely missing across run
      		featureID.l <- names(featurestructure.l[featurestructure.l == ncol(structure.l)])
      
      		if (length(featureID.l) > 0) {
        		## print message
        		message(paste("CAUTION : some ENDOGENOUS features have missing intensities in all the runs. 
        		              The completely missing ENDOGENOUS features are ", paste(featureID.l, collapse=", "), 
        		              ". Please check whether features in the list are correctly generated from spectral processing tool. \n", sep=""))
        
        		## save in process file.
        		processout <- rbind(processout,c(paste("CAUTION : some ENDOGENOUS features have missing intensities in all the runs. 
        		                                       The completely missing ENDOGENOUS features are ", 
        		                                       paste(featureID.l, collapse=", "),
        		                                       ". Please check whether features in the list are correctly generated from spectral processing tool. \n", sep="")))
        		write.table(processout, file=finalfile, row.names=FALSE)
        
        		## add missing rows if option is TRUE
        		if (fillIncompleteRows) {
          
          			## get unique Run information
          			nameID <- unique(work.l[, c("SUBJECT_ORIGINAL", 
          			                            "GROUP_ORIGINAL", 
          			                            "GROUP", 
          			                            "SUBJECT", 
          			                            "SUBJECT_NESTED", 
          			                            "RUN", 
          			                            "FRACTION")])
          
          			## get PROTEIN and FEATURE information
          			## here use whole work dataset
          			tempTogetfeature <- work[which(work$FEATURE %in% featureID.l), ]
          			tempfeatureID <- unique(tempTogetfeature[, c("PROTEIN", "PEPTIDE", "TRANSITION", "FEATURE")])
          
          			## then generate data.frame for missingness,
          			#for (j in 1:nrow(nameID)) {
            
            		#	## merge feature info and run info as 'work' format
            		#	tempmissingwork <- data.frame(tempfeatureID, LABEL="L",GROUP_ORIGINAL=nameID$GROUP_ORIGINAL[j], SUBJECT_ORIGINAL=nameID$SUBJECT_ORIGINAL[j], RUN=nameID$RUN[j], GROUP=nameID$GROUP[j], SUBJECT=nameID$SUBJECT[j], SUBJECT_NESTED=nameID$SUBJECT_NESTED[j], INTENSITY=NA, ABUNDANCE=NA, METHOD=nameID$METHOD[j])	
            
            		#	## merge with tempary space, missingwork
            		#	missingcomplete.l <- rbind(missingcomplete.l, tempmissingwork)
          			#}
                
                    # MC : 2016.04.21 : use merge for simplicity
                    tmp <- merge(nameID, tempfeatureID, by=NULL)
          			missingcomplete.l <- data.frame(PROTEIN=tmp$PROTEIN, 
          			                                PEPTIDE=tmp$PEPTIDE, 
          			                                TRANSITION=tmp$TRANSITION, 
          			                                FEATURE=tmp$FEATURE, 
          			                                LABEL="L", 
          			                                GROUP_ORIGINAL=tmp$GROUP_ORIGINAL, 
          			                                SUBJECT_ORIGINAL=tmp$SUBJECT_ORIGINAL, 
          			                                RUN=tmp$RUN, 
          			                                GROUP=tmp$GROUP, 
          			                                SUBJECT=tmp$SUBJECT, 
          			                                SUBJECT_NESTED=tmp$SUBJECT_NESTED, 
          			                                INTENSITY=NA, 
          			                                ABUNDANCE=NA, 
          			                                FRACTION=tmp$FRACTION)
        		    rm(tmp)
                } # end fillIncompleteRows option
      		} # end endogenous peptides
          
			## second, check other some missingness
      
      		## for missign row, need to assign before looping. need to assign at the beginning because it need either cases, with missingness or not
      		missingwork.l <- NULL
      		missingwork.h <- NULL
      
     		## structure value should be 1 for reference and endogenous separately, if not there are missingness. if more there are duplicates.
      
      		## if count of NA is not zero and not number of run (excluding complete missingness across runs)
      
      		missing.l <- names(featurestructure.l[featurestructure.l != ncol(structure.l) & featurestructure.l != 0])
      		missing.h <- names(featurestructure.h[featurestructure.h != ncol(structure.h) & featurestructure.h != 0])
      
			flagmissing.l = length(missing.l) > 0
			flagmissing.h = length(missing.h) > 0
      
			## structure value is greater than 1, there are duplicates
			flagduplicate.l = sum(structure.l[!is.na(structure.l)] > 1) > 0
			flagduplicate.h = sum(structure.h[!is.na(structure.h)] > 1) > 0
      
      		## if there is missing rows for endogenous
      		if ( flagmissing.l | flagmissing.h ) {
        		processout <- rbind(processout,c("CAUTION: the input dataset has incomplete rows. If missing peaks occur they should be included in the dataset as separate rows, and the missing intensity values should be indicated with 'NA'. The incomplete rows are listed below."))
        		write.table(processout, file=finalfile, row.names=FALSE)
        
       			message("CAUTION : the input dataset has incomplete rows. If missing peaks occur they should be included in the dataset as separate rows, and the missing intensity values should be indicated with 'NA'. The incomplete rows are listed below.")
        
        		## endogenous intensities
        		if (flagmissing.l) {
          
                    if (length(missing.l) > 1){
          			    runstructure <- apply ( structure.l[which(rownames(structure.l) %in% missing.l), ], 2, function ( x ) sum ( is.na ( x ) ) ) > 0
          			} else if (length(missing.l) == 1) {
          			    runstructure <- is.na ( structure.l[which(rownames(structure.l) %in% missing.l), ]) > 0
          			}
          			
          			## get the name of Run
          			runID <- names(runstructure[runstructure==TRUE])
          
          			## then for each run, which features are missing,
          			for(j in 1:length(runID)) {
            
            			## get subject, group information for this run
            			nameID <- unique(work.l[work.l$RUN==runID[j], c("SUBJECT_ORIGINAL", 
            			                                                "GROUP_ORIGINAL", 
            			                                                "GROUP", 
            			                                                "SUBJECT", 
            			                                                "SUBJECT_NESTED", 
            			                                                "RUN", 
            			                                                "FRACTION")])
            
            			# MC : 2016/04/21. if there is one row, can't catch up data.frame
            			## get feature ID
            			if (length(missing.l) > 1){
            			    featureID <- structure.l[which(rownames(structure.l) %in% missing.l), colnames(structure.l) == runID[j]]
            			  
            			    ## get feature ID which has no measuremnt.
            			    finalfeatureID <- names(featureID[is.na(featureID)])
            			  
            			    ## print features ID	 	
            			    message(paste("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]) ,", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), " has incomplete rows for some ENDOGENOUS features (", paste(finalfeatureID, collapse=", "),")", sep="" ))
            			  
            			    ## save in process file.
            			    processout <- rbind(processout,c(paste("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]) ,", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), " has incomplete rows for some ENDOGENOUS features (", paste(finalfeatureID, collapse=", "),")", sep="" )))
            			    write.table(processout, file=finalfile,row.names=FALSE)
            			  
            			} else if (length(missing.l) == 1) {
            			  
            			    finalfeatureID <- missing.l
                    
            			    ## print features ID   	
            			    message(paste("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]) ,", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), " has incomplete rows for some ENDOGENOUS features (", finalfeatureID,")", sep="" ))
            			  
            			    ## save in process file.
            			    processout <- rbind(processout,c(paste("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]) ,", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), " has incomplete rows for some ENDOGENOUS features (", finalfeatureID,")", sep="" )))
            			    write.table(processout, file=finalfile,row.names=FALSE)
            			  
            			}	
            
            			## add missing rows if option is TRUE
            			if (fillIncompleteRows) {
              
              				tempTogetfeature <- work.l[which(work.l$FEATURE %in% finalfeatureID), ]
              
              				## get PROTEIN and FEATURE infomation
              				tempfeatureID <- unique(tempTogetfeature[, c("PROTEIN", "PEPTIDE", "TRANSITION", "FEATURE")])
              
              				## merge feature info and run info as 'work' format
              				tempmissingwork <- data.frame(tempfeatureID, 
              				                              LABEL="L",
              				                              GROUP_ORIGINAL=nameID$GROUP_ORIGINAL, 
              				                              SUBJECT_ORIGINAL=nameID$SUBJECT_ORIGINAL, 
              				                              RUN=nameID$RUN, 
              				                              GROUP=nameID$GROUP, 
              				                              SUBJECT=nameID$SUBJECT, 
              				                              SUBJECT_NESTED=nameID$SUBJECT_NESTED, 
              				                              INTENSITY=NA, 
              				                              ABUNDANCE=NA, 
              				                              FRACTION=nameID$FRACTION)	
              
              				## merge with tempary space, missingwork
              				missingwork.l <- rbind(missingwork.l,tempmissingwork)
            			} # end fillIncompleteRows options
          			} # end loop for run ID
        		} # end for endogenous
        
        		## reference intensities
        		if (flagmissing.h) {
          
          			## first, which run has missing	
                    if (length(missing.h) > 1){
          			    runstructure <- apply ( structure.h[which(rownames(structure.h) %in% missing.h), ], 2, 
          			                        function ( x ) sum ( is.na ( x ) ) ) > 0
                    } else if (length(missing.h) == 1) {
                        runstructure <- is.na ( structure.h[which(rownames(structure.h) %in% missing.h), ]) > 0
                    }
                
          		    ## get the name of Run
          		    runID <- names(runstructure[runstructure==TRUE])
          
          			## then for each run, which features are missing,
          			for(j in 1:length(runID)) {
            
            			## get subject, group information for this run
            			nameID <- unique(work.h[work.h$RUN==runID[j], c("SUBJECT_ORIGINAL", 
            			                                                "GROUP_ORIGINAL", 
            			                                                "GROUP", 
            			                                                "SUBJECT", 
            			                                                "SUBJECT_NESTED", 
            			                                                "RUN", 
            			                                                "FRACTION")])
            
            			# MC : 2016/04/21. if there is one row, can't catch up data.frame
            			## get feature ID
            			if (length(missing.h) > 1){
                            featureID <- structure.h[which(rownames(structure.h) %in% missing.h), colnames(structure.h) == runID[j] ]
                    
                            ## get feature ID which has no measuremnt.
                            finalfeatureID <- names(featureID[is.na(featureID)])
                    
                            ## print features ID	 	
                            message(paste("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]) ,", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), " has incomplete rows for some REFERENCE features (", paste(finalfeatureID, collapse=", "),")", sep="" ))
                    
                            ## save in process file.
                            processout <- rbind(processout,c(paste("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]) ,", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), " has incomplete rows for some REFERENCE features (", paste(finalfeatureID, collapse=", "),")", sep="" )))
                            write.table(processout, file=finalfile,row.names=FALSE)
                    
            			} else if (length(missing.h) == 1) {
            			 
            			    finalfeatureID <- missing.h
                    
            			    ## print features ID   	
            			    message(paste("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]) ,", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), " has incomplete rows for some REFERENCE features (", finalfeatureID,")", sep="" ))
            			  
            			    ## save in process file.
            			    processout <- rbind(processout,c(paste("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]) ,", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), " has incomplete rows for some REFERENCE features (", finalfeatureID,")", sep="" )))
            			    write.table(processout, file=finalfile,row.names=FALSE)
                    
            			}
            			           			                         	            
            			## add missing rows if option is TRUE
            			if (fillIncompleteRows) {
              
              				tempTogetfeature <- work.h[which(work.h$FEATURE %in% finalfeatureID), ]
              
              				## get PROTEIN and FEATURE infomation
              				tempfeatureID <- unique(tempTogetfeature[, c("PROTEIN", "PEPTIDE", "TRANSITION", "FEATURE")])
              
              				## merge feature info and run info as 'work' format
              				tempmissingwork <- data.frame(tempfeatureID, 
              				                              LABEL="H",
              				                              GROUP_ORIGINAL=nameID$GROUP_ORIGINAL, 
              				                              SUBJECT_ORIGINAL=nameID$SUBJECT_ORIGINAL, 
              				                              RUN=nameID$RUN, 
              				                              GROUP=nameID$GROUP, 
              				                              SUBJECT=nameID$SUBJECT, 
              				                              SUBJECT_NESTED=nameID$SUBJECT_NESTED, 
              				                              INTENSITY=NA, 
              				                              ABUNDANCE=NA, 
              				                              FRACTION=nameID$FRACTION)	
              
              				## merge with tempary space, missingwork
              				missingwork.h <- rbind(missingwork.h, tempmissingwork)
                                    				
            			} # end fillIncompleteRows options
          			} # end loop for run ID
        		} # end for endogenous  
      		} # end for flag missing
      
      		## merge missing rows if fillIncompleteRows=TRUE or message.
      		if (fillIncompleteRows) {
        
        		## merge with work
        		## in future, use rbindlist?? rbindlist(list(work, missingwork))
        		work <- rbind(work,missingcomplete.l, missingcomplete.h, missingwork.l, missingwork.h)
        
        		## print message
        		message("\n DONE : Incomplete rows for missing peaks are added with intensity values=NA. \n")
        
        		## save in process file.
        		processout <- rbind(processout, "Incomplete rows for missing peaks are added with intensity values=NA. - done, Okay")
        		write.table(processout, file=finalfile, row.names=FALSE)
        
      		} else if (!is.null(missingcomplete.l) | 
      		           !is.null(missingcomplete.h) | 
      		           !is.null(missingwork.l) | 
      		           !is.null(missingwork.l) ) {
        
        		## save in process file.
       	 		processout <- rbind(processout,
       	 		                    "Please check whether features in the list are generated from spectral processing tool. 
       	 		                    Or the option, fillIncompleteRows=TRUE, 
       	 		                    will add incomplete rows for missing peaks with intensity=NA.")
        		write.table(processout, file=finalfile, row.names=FALSE)
        
        		stop("Please check whether features in the list are generated from spectral processing tool or not. Or the option, fillIncompleteRows=TRUE, will add incomplete rows for missing peaks with intensity=NA.")
        
			}
      
			## if there are duplicates measurements
      		if (flagduplicate.h) {
        
        		## first, which run has duplicates
        		runstructure <- apply ( structure.h, 2, function ( x ) sum ( x[!is.na(x)] > 1 )>0 )
        
        		runID <- names(runstructure[runstructure==TRUE])
        
        		## then for each run, which features have duplicates,
        		for(j in 1:length(runID)) {
          
          			nameID <- unique(work[work$RUN==runID[j], c("SUBJECT_ORIGINAL", 
          			                                            "GROUP_ORIGINAL", 
          			                                            "GROUP", 
          			                                            "SUBJECT", 
          			                                            "SUBJECT_NESTED", 
          			                                            "RUN", 
          			                                            "FRACTION")])
          
          			featureID <- structure.h[, colnames(structure.h)==runID[j]]
          			finalfeatureID <- featureID[!is.na(featureID) & featureID > 1]
          
          			message(paste("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]) ,", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), " has multiple rows (duplicate rows) for some REFERENCE features (", paste(names(finalfeatureID), collapse=", "), ")", sep="" ))
          
          			## save in process file.
         	 		processout <- rbind(processout,c(paste("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]) ,", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), " has multiple rows (duplicate rows) for some REFERENCE features (", paste(names(featureID[is.na(featureID)]), collapse=", "),")", sep="" )))
         		 	write.table(processout, file=finalfile,row.names=FALSE)
        		}
        
        		## save in process file.
        		processout <- rbind(processout,"Please remove duplicate rows in the list above. ")
        		write.table(processout, file=finalfile, row.names=FALSE)
        
        		stop("Please remove duplicate rows in the list above.\n")		
			} # end flag duplicate for reference
      
			if (flagduplicate.l) {
        
        		## first, which run has duplicates
        		runstructure <- apply ( structure.l, 2, function ( x ) sum ( x[!is.na(x)] > 1 )>0 )
        
        		runID <- names(runstructure[runstructure == TRUE])
        
        		## then for each run, which features have duplicates,
        		for (j in 1:length(runID)) {
          
          			nameID <- unique(work[work$RUN==runID[j], c("SUBJECT_ORIGINAL", 
          			                                            "GROUP_ORIGINAL", 
          			                                            "GROUP", 
          			                                            "SUBJECT", 
          			                                            "SUBJECT_NESTED", 
          			                                            "RUN", 
          			                                            "FRACTION")])
          
          			featureID <- structure.l[, colnames(structure.l)==runID[j]]
          			finalfeatureID <- featureID[!is.na(featureID) & featureID > 1]
          
          			message(paste("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]) ,", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), " has multiple rows (duplicate rows) for some ENDOGENOUS features (", paste(names(finalfeatureID), collapse=", "),")", sep="" ))
          
          			## save in process file.
          			processout <- rbind(processout,c(paste("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]) ,", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), " has multiple rows (duplicate rows) for some ENDOGENOUS features (", paste(names(featureID[is.na(featureID)]), collapse=", "),")", sep="" )))
          			write.table(processout, file=finalfile,row.names=FALSE)
        		}
        
				## save in process file.
				processout <- rbind(processout,"ERROR : Please remove duplicate rows in the list above. ")
				write.table(processout, file=finalfile, row.names=FALSE)
        
				stop("ERROR : Please remove duplicate rows in the list above.\n")		
			} # end flag duplicate for endogenous
      
			## no missing and no duplicates
			if (!flagmissing.h & !flagmissing.l & !flagduplicate.h & !flagduplicate.l) {
        		processout <- rbind(processout, c("Balanced data format with NA for missing feature intensities - okay"))
        		write.table(processout, file=finalfile, row.names=FALSE)
			} 		 
		} # end 1 method
    
	} else { # multiple fractionations
    
    	allflagmissing <- NULL
		allflagduplicate <- NULL
    
    	## check each method
    	for (k in 1:length(unique(work$FRACTION))) {
    	    worktemp <- work[work$FRACTION == k, ]
			worktemp$RUN <- factor(worktemp$RUN)
			worktemp$FEATURE <- factor(worktemp$FEATURE)
      
			structure <- tapply ( worktemp$ABUNDANCE, list ( worktemp$FEATURE, worktemp$RUN ) , function ( x ) length ( x ) ) 
      
			## structure value should be 2 for labeled, 1 for label-free, if not there are missingness
			if (nlevels(worktemp$LABEL) == 2) { ## label-based
				flag = sum(is.na(structure)) > 0 | sum(structure[!is.na(structure)] < 2) > 0
			} else {  ## label-free
				flag = sum(is.na(structure)) > 0
			}
      
			allflagmissing <- c(allflagmissing,flag)
			
			## for duplicate
			if (nlevels(worktemp$LABEL) == 2) { # label-based
        	    worktemp.h <- worktemp[worktemp$LABEL == "H", ]
        		worktemp.l <- worktemp[worktemp$LABEL == "L", ]
        
        		structure.h <- tapply ( worktemp.h$ABUNDANCE, list ( worktemp.h$FEATURE, worktemp.h$RUN ) , function ( x ) length ( x ) ) 
        		structure.l <- tapply ( worktemp.l$ABUNDANCE, list ( worktemp.l$FEATURE, worktemp.l$RUN ) , function ( x ) length ( x ) ) 
        
        		flagduplicate <- sum(structure.h[!is.na(structure.h)] > 1) > 0 | sum(structure.l[!is.na(structure.l)] > 1) > 0
        
      		} else {  # label-free
        		flagduplicate <- sum(structure[!is.na(structure)]>1) > 0
      		}
      
      		allflagduplicate <- c(allflagduplicate, flag)
      
    	} # end to check any flag among methods
    
    	if ( sum(allflagmissing) != 0 ) {
			processout <- rbind(processout, c("CAUTION: the input dataset has incomplete rows. Missing feature intensities should be present in the dataset, and their intensities should be indicated with 'NA'. The incomplete rows are listed below."))
      	    write.table(processout, file=finalfile, row.names=FALSE)
      
			message("CAUTION : the input dataset has incomplete rows. Missing feature intensities should be present in the dataset, and their intensities should be indicated with 'NA'. The incomplete rows are listed below.")
      
			## for missign row, need to assign before looping
			missingwork <- NULL
      
			missingcomplete.h <- NULL
			missingcomplete.l <- NULL
			missingwork.h <- NULL
			missingwork.l <- NULL
      
		    for (k in 1:length(unique(work$FRACTION))) {
        
        	    ## see which method has missing rows
        		if (allflagmissing[k]) {
          		    worktemp <- work[work$FRACTION==k, ]
          			worktemp$RUN <- factor(worktemp$RUN)
          			worktemp$FEATURE <- factor(worktemp$FEATURE)
          
          			if (nlevels(worktemp$LABEL) == 1) { ## label-free
            
            			structure = tapply ( worktemp$ABUNDANCE, list ( worktemp$FEATURE, worktemp$RUN ) , function ( x ) length ( x ) ) 
            
            			## first, which run has missing	
            			runstructure <- apply ( structure, 2, function ( x ) sum ( is.na ( x ) ) ) > 0
            
            			## get the name of Run
            			runID <- names(runstructure[runstructure==TRUE])
            
            			## then for each run, which features are missing,
            			for (j in 1:length(runID)) {
              
              				nameID <- unique(worktemp[worktemp$RUN==runID[j], c("SUBJECT_ORIGINAL", 
              				                                                    "GROUP_ORIGINAL", 
              				                                                    "GROUP", 
              				                                                    "SUBJECT", 
              				                                                    "SUBJECT_NESTED", 
              				                                                    "RUN", 
              				                                                    "FRACTION")])
              
              				## get feature ID
              				featureID <- structure[, colnames(structure)==runID[j]]
              
              				## get feature ID which has no measuremnt.
              				finalfeatureID <- featureID[is.na(featureID)]
              
              				## print features ID	 	
              				message(paste("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]) ,", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), " has incomplete rows for some features (", paste(names(finalfeatureID), collapse=", "),")", sep="" ))
              
              				## save in process file.
              				processout <- rbind(processout,c(paste("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]) ,", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), " has incomplete rows for some features (", paste(names(featureID[is.na(featureID)]), collapse=", "),")", sep="" )))
              				write.table(processout, file=finalfile, row.names=FALSE)
              
              				## add missing rows if option is TRUE
              				if (fillIncompleteRows) {
                
                				tempTogetfeature <- work[which(work$FEATURE %in% names(finalfeatureID)), ]
                
                				## get PROTEIN and FEATURE infomation
                				tempfeatureID <- unique(tempTogetfeature[, c("PROTEIN", "PEPTIDE", "TRANSITION", "FEATURE")])
                
                				## merge feature info and run info as 'work' format
                				tempmissingwork <- data.frame(tempfeatureID, 
                				                              LABEL="L",
                				                              GROUP_ORIGINAL=nameID$GROUP_ORIGINAL, 
                				                              SUBJECT_ORIGINAL=nameID$SUBJECT_ORIGINAL, 
                				                              RUN=nameID$RUN, 
                				                              GROUP=nameID$GROUP, 
                				                              SUBJECT=nameID$SUBJECT, 
                				                              SUBJECT_NESTED=nameID$SUBJECT_NESTED, 
                				                              INTENSITY=NA, 
                				                              ABUNDANCE=NA, 
                				                              FRACTION=nameID$FRACTION)	
                
               			 		## merge with tempary space, missingwork
                				missingwork <- rbind(missingwork, tempmissingwork)
              				} # end fillIncompleteRows options
            			} # end loop for run
            
          			} else { # end label-free
            
            			## label-based
            			## count the reference and endobenous separately
            			work.l <- worktemp[worktemp$LABEL=="L", ]
            			work.h <- worktemp[worktemp$LABEL=="H", ]
            
            			## get feature by Run count of data
            			structure.l <- tapply ( work.l$ABUNDANCE, list(work.l$FEATURE, work.l$RUN), function (x) length (x) ) 
            			structure.h <- tapply ( work.h$ABUNDANCE, list(work.h$FEATURE, work.h$RUN), function (x) length (x) ) 
            
            			## 1. reference peptides
            			featurestructure.h <- apply(structure.h, 1, function (x) sum(is.na(x)))
            
            			## get feature ID of reference which are completely missing across run
            			featureID.h <- names(featurestructure.h[featurestructure.h==ncol(structure.h)])
            
            			if (length(featureID.h) > 0) {
              				## print message
              				message(paste("CAUTION : some REFERENCE features have missing intensities in all the runs. The completely missing REFERENCE features are ", paste(featureID.h, collapse=", "),". Please check whether features in the list are correctly generated from spectral processing tool. \n", sep=""))
              
              				## save in process file.
              				processout <- rbind(processout,c(paste("CAUTION : some REFERENCE features have missing intensities in all the runs. The completely missing REFERENCE features are ", paste(featureID.h, collapse=", "),". Please check whether features in the list are correctly generated from spectral processing tool.", sep="")))
              				write.table(processout, file=finalfile, row.names=FALSE)
              
              				## add missing rows if option is TRUE
              				if (fillIncompleteRows) {
              				    if( nrow(work.h) == 0 ){
              				        work.h <- work[work$LABEL=="H", ]
              				        ## get unique Run information
              				        nameID <- unique(work.h[, c("SUBJECT_ORIGINAL", 
              				                                    "GROUP_ORIGINAL", 
              				                                    "GROUP", 
              				                                    "SUBJECT", 
              				                                    "SUBJECT_NESTED", 
              				                                    "RUN", 
              				                                    "FRACTION")])
              				        nameID$FRACTION <- k
              				    } else {
              				        ## get unique Run information
              				        nameID <- unique(work.h[, c("SUBJECT_ORIGINAL", 
              				                                    "GROUP_ORIGINAL", 
              				                                    "GROUP", 
              				                                    "SUBJECT", 
              				                                    "SUBJECT_NESTED", 
              				                                    "RUN", 
              				                                    "FRACTION")])
              				    }
                				
                   			    ## get PROTEIN and FEATURE information
                				## here use whole worktemp dataset
                				tempTogetfeature <- worktemp[which(worktemp$FEATURE %in% featureID.h), ]
                				tempfeatureID <- unique(tempTogetfeature[, c("PROTEIN", "PEPTIDE", "TRANSITION", "FEATURE")])
                
                				## then generate data.frame for missingness,
                				for (j in 1:nrow(nameID)) {
                  
                  					## merge feature info and run info as 'work' format
                  					tempmissingwork <- data.frame(tempfeatureID, 
                  					                              LABEL="H",
                  					                              GROUP_ORIGINAL=nameID$GROUP_ORIGINAL[j], 
                  					                              SUBJECT_ORIGINAL=nameID$SUBJECT_ORIGINAL[j], 
                  					                              RUN=nameID$RUN[j], 
                  					                              GROUP=nameID$GROUP[j], 
                  					                              SUBJECT=nameID$SUBJECT[j], 
                  					                              SUBJECT_NESTED=nameID$SUBJECT_NESTED[j], 
                  					                              INTENSITY=NA, 
                  					                              ABUNDANCE=NA, 
                  					                              FRACTION=nameID$FRACTION[j])	
                  
                  					## merge with tempary space, missingwork
                  					missingcomplete.h <- rbind(missingcomplete.h, tempmissingwork)
                				}
              			    } # end fillIncompleteRows option
						} # end for reference peptides
            
            			## 2. endogenous peptides
            			featurestructure.l <- apply(structure.l, 1, function (x) sum(is.na(x)))
            
            			## get feature ID of reference which are completely missing across run
            			featureID.l <- names(featurestructure.l[featurestructure.l==ncol(structure.l)])
            
            			if (length(featureID.l) > 0) {
            			    ## print message
              				message(paste("CAUTION : some ENDOGENOUS features have missing intensities in all the runs. The completely missing ENDOGENOUS features are ", paste(featureID.l, collapse=", "), ". Please check whether features in the list are correctly generated from spectral processing tool. \n", sep=""))
              
              				## save in process file.
              				processout <- rbind(processout, c(paste("CAUTION : some ENDOGENOUS features have missing intensities in all the runs. The completely missing ENCOGENOUS features are ", paste(featureID.l, collapse=", "),". Please check whether features in the list are correctly generated from spectral processing tool. \n", sep="")))
              				write.table(processout, file=finalfile, row.names=FALSE)
              
              				## add missing rows if option is TRUE
              				if (fillIncompleteRows) {
                
                			    ## get unique Run information
                				nameID <- unique(work.l[, c("SUBJECT_ORIGINAL", 
                				                            "GROUP_ORIGINAL", 
                				                            "GROUP", 
                				                            "SUBJECT", 
                				                            "SUBJECT_NESTED", 
                				                            "RUN", 
                				                            "FRACTION")])
                
                				## get PROTEIN and FEATURE information
                				## here use whole worktemp dataset
                				tempTogetfeature <- worktemp[which(worktemp$FEATURE %in% featureID.l), ]
                				tempfeatureID <- unique(tempTogetfeature[, c("PROTEIN", "PEPTIDE", "TRANSITION", "FEATURE")])
                
                				## then generate data.frame for missingness,
                				for(j in 1:nrow(nameID)) {
                  
                  					## merge feature info and run info as 'work' format
                  					tempmissingwork <- data.frame(tempfeatureID, 
                  					                              LABEL="L",
                  					                              GROUP_ORIGINAL=nameID$GROUP_ORIGINAL[j], 
                  					                              SUBJECT_ORIGINAL=nameID$SUBJECT_ORIGINAL[j], 
                  					                              RUN=nameID$RUN[j], 
                  					                              GROUP=nameID$GROUP[j], 
                  					                              SUBJECT=nameID$SUBJECT[j], 
                  					                              SUBJECT_NESTED=nameID$SUBJECT_NESTED[j], 
                  					                              INTENSITY=NA, 
                  					                              ABUNDANCE=NA, 
                  					                              FRACTION=nameID$FRACTION[j])	
                  
                  					## merge with tempary space, missingwork
                  					missingcomplete.l <- rbind(missingcomplete.l, tempmissingwork)
                				}
              				} # end fillIncompleteRows option
            			} # end endogenous peptides
            
						## second, check other some missingness
            
            			## structure value should be 1 for reference and endogenous separately, if not there are missingness. if more there are duplicates.
            
            			## if count of NA is not zero and not number of run (excluding complete missingness across runs)
            			missing.l <- names(featurestructure.l[featurestructure.l!=ncol(structure.l) & featurestructure.l != 0])
            			missing.h <- names(featurestructure.h[featurestructure.h!=ncol(structure.h) & featurestructure.h != 0])
            
            			flagmissing.l <- length(missing.l) > 0
            			flagmissing.h <- length(missing.h) > 0
            
            			## structure value is greater than 1, there are duplicates
           	 			flagduplicate.l <- sum(structure.l[!is.na(structure.l)] > 1) > 0
            			flagduplicate.h <- sum(structure.h[!is.na(structure.h)] > 1) > 0
            
            			## if there is missing rows for endogenous
            			if (flagmissing.l | flagmissing.h) {
              				processout <- rbind(processout, c("CAUTION: the input dataset has incomplete rows. If missing peaks occur they should be included in the dataset as separate rows, and the missing intensity values should be indicated with 'NA'. The incomplete rows are listed below."))
              				write.table(processout, file=finalfile, row.names=FALSE)
              
              				message("CAUTION : the input dataset has incomplete rows. If missing peaks occur they should be included in the dataset as separate rows, and the missing intensity values should be indicated with 'NA'. The incomplete rows are listed below.")
              
             				## endogenous intensities
              				if (flagmissing.l) {
                
                				## first, which run has missing	
                				runstructure <- apply ( structure.l[-which(rownames(structure.l) %in% featureID.l),], 2, function ( x ) sum ( is.na ( x ) ) ) > 0
                
                				## get the name of Run
                				runID <- names(runstructure[runstructure==TRUE])
                
                				## then for each run, which features are missing,
                				for (j in 1:length(runID)) {
                  
                  					## get subject, group information for this run
                  					nameID <- unique(work.l[work.l$RUN==runID[j], c("SUBJECT_ORIGINAL", 
                  					                                                "GROUP_ORIGINAL", 
                  					                                                "GROUP", 
                  					                                                "SUBJECT", 
                  					                                                "SUBJECT_NESTED", 
                  					                                                "RUN", 
                  					                                                "FRACTION")])
                  
                  					## get feature ID
                  					featureID <- structure.l[-which(rownames(structure.l) %in% featureID.l), colnames(structure.l)==runID[j]]
                  
                  					## get feature ID which has no measuremnt.
                  					finalfeatureID <- featureID[is.na(featureID)]
                  
                  					## print features ID	 	
                  					message(paste("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]) ,", Condition : ", as.character(nameID[, "GROUP_ORIGINAL"]), " has incomplete rows for some ENDOGENOUS features (", paste(names(finalfeatureID), collapse=", "),")", sep="" ))
                  
                  					## save in process file.
                  					processout <- rbind(processout,c(paste("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]) ,", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), " has incomplete rows for some ENDOGENOUS features (", paste(names(featureID[is.na(featureID)]), collapse=", "),")", sep="" )))
                  					write.table(processout, file=finalfile, row.names=FALSE)
                  
                  					## add missing rows if option is TRUE
                  					if (fillIncompleteRows) {
                    
                    					tempTogetfeature <- work.l[which(work.l$FEATURE %in% names(finalfeatureID)), ]
                    
                    					## get PROTEIN and FEATURE infomation
                    					tempfeatureID <- unique(tempTogetfeature[, c("PROTEIN", "PEPTIDE", "TRANSITION", "FEATURE")])
                    
                    					## merge feature info and run info as 'work' format
                    					tempmissingwork <- data.frame(tempfeatureID, 
                    					                              LABEL="L",
                    					                              GROUP_ORIGINAL=nameID$GROUP_ORIGINAL, 
                    					                              SUBJECT_ORIGINAL=nameID$SUBJECT_ORIGINAL, 
                    					                              RUN=nameID$RUN, 
                    					                              GROUP=nameID$GROUP, 
                    					                              SUBJECT=nameID$SUBJECT, 
                    					                              SUBJECT_NESTED=nameID$SUBJECT_NESTED, 
                    					                              INTENSITY=NA, 
                    					                              ABUNDANCE=NA, 
                    					                              FRACTION=nameID$FRACTION)	
                    
                    					## merge with tempary space, missingwork
                    					missingwork.l <- rbind(missingwork.l, tempmissingwork)
                  					} # end fillIncompleteRows options
                				} # end loop for run ID
              				} # end for endogenous
              
              				## reference intensities
              				if (flagmissing.h) {
                
                				## first, which run has missing	
                				runstructure <- apply ( structure.h[-which(rownames(structure.h) %in% featureID.h),], 2, function ( x ) sum ( is.na ( x ) ) ) > 0
                
                				## get the name of Run
                				runID <- names(runstructure[runstructure==TRUE])
                
                				## then for each run, which features are missing,
                				for (j in 1:length(runID)) {
                  
                  					## get subject, group information for this run
                  					nameID <- unique(work.h[work.h$RUN==runID[j], c("SUBJECT_ORIGINAL",
                  					                                                "GROUP_ORIGINAL",
                  					                                                "GROUP",
                  					                                                "SUBJECT",
                  					                                                "SUBJECT_NESTED",
                  					                                                "RUN",
                  					                                                "FRACTION")])
                  
                  					## get feature ID
                  					featureID <- structure.h[-which(rownames(structure.h) %in% featureID.h), colnames(structure.h)==runID[j]]
                  
                  					## get feature ID which has no measuremnt.
                  					finalfeatureID <- featureID[is.na(featureID)]
                  
                  					## print features ID	 	
                  					message(paste("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]) ,", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), " has incomplete rows for some REFERENCE features (", paste(names(finalfeatureID), collapse=", "),")", sep="" ))
                  
                 					## save in process file.
                  					processout <- rbind(processout,c(paste("*** Subject : ", as.character(nameID[,"SUBJECT_ORIGINAL"]) ,", Condition : ", as.character(nameID[,"GROUP_ORIGINAL"]), " has incomplete rows for some REFERENCE features (", paste(names(featureID[is.na(featureID)]), collapse=", "),")", sep="" )))
                  					write.table(processout, file=finalfile,row.names=FALSE)
                  
                  					## add missing rows if option is TRUE
                  					if (fillIncompleteRows) {
                    
                    					tempTogetfeature <- work.h[which(work.h$FEATURE %in% names(finalfeatureID)), ]
                    
                    					## get PROTEIN and FEATURE infomation
                    					tempfeatureID <- unique(tempTogetfeature[, c("PROTEIN", "PEPTIDE", "TRANSITION", "FEATURE")])
                    
                    					## merge feature info and run info as 'work' format
                    					tempmissingwork <- data.frame(tempfeatureID, 
                    					                              LABEL="H",
                    					                              GROUP_ORIGINAL=nameID$GROUP_ORIGINAL, 
                    					                              SUBJECT_ORIGINAL=nameID$SUBJECT_ORIGINAL, 
                    					                              RUN=nameID$RUN, 
                    					                              GROUP=nameID$GROUP, 
                    					                              SUBJECT=nameID$SUBJECT, 
                    					                              SUBJECT_NESTED=nameID$SUBJECT_NESTED, 
                    					                              INTENSITY=NA, 
                    					                              ABUNDANCE=NA, 
                    					                              FRACTION=nameID$FRACTION)	
                    
                    					## merge with tempary space, missingwork
                    					missingwork.h <- rbind(missingwork.h, tempmissingwork)
                  					} # end fillIncompleteRows options
                				} # end loop for run ID
              				} # end for endogenous
            			} # end any missingness
					} # end label-based
        		} # if only any flag for method
      		} # end loop for methods
      
			if (fillIncompleteRows) {
        
        		## merge with work
        		## in future, use rbindlist?? rbindlist(list(work, missingwork))
        		if (nlevels(worktemp$LABEL) == 1) {
         			work <- rbind(work, missingwork)
        		} else {
          			work <- rbind(work, missingcomplete.l, missingcomplete.h, missingwork.l, missingwork.h)
        		}	
        
        		## print message
        		message("\n DONE : Incomplete rows for missing peaks are added with intensity values=NA. \n")
        
        		## save in process file.
        		processout <- rbind(processout, "Incomplete rows for missing peaks are added with intensity values=NA. - done, Okay")
        		write.table(processout, file=finalfile,row.names=FALSE)
        
      		} else if (!is.null(missingcomplete.l) | !is.null(missingcomplete.h) | !is.null(missingwork.l) | !is.null(missingwork.l) | !is.null(missingwork)) {
        
        		## save in process file.
        		processout <- rbind(processout, "Please check whether features in the list are generated from spectral processing tool. Or the option, fillIncompleteRows=TRUE, will add incomplete rows for missing peaks with intensity=NA.")
        		write.table(processout, file=finalfile, row.names=FALSE)
        
        		stop("Please check whether features in the list are generated from spectral processing tool. Or the option, fillIncompleteRows=TRUE, will add incomplete rows for missing peaks with intensity=NA.")
        
			}  
      
    	} else {
      		processout <- rbind(processout, c("Balanced data format with NA for missing feature intensities - okay"))
      		write.table(processout, file=finalfile, row.names=FALSE)
    	}
    
    ## for duplicate, in future
    
	} # end multiple method
  

	## factorize GROUP, SUBJECT, GROUP_ORIGINAL, SUBJECT_ORIGINAL, SUBJECT_ORIGINAL_NESTED, FEATURE, RUN
  	## -------------------------------------------------------------------------------------------------

	work$PROTEIN <- factor(work$PROTEIN)
	work$PEPTIDE <- factor(work$PEPTIDE)
	work$TRANSITION <- factor(work$TRANSITION)
  
	work <- work[with(work, order(LABEL, GROUP_ORIGINAL, SUBJECT_ORIGINAL, RUN, PROTEIN, PEPTIDE, TRANSITION)),]
  
	work$GROUP <- factor(work$GROUP)
	work$SUBJECT <- factor(work$SUBJECT)
	## SUBJECT_ORIGINAL_NESTED will sorted as GROUP_ORIGINAL, SUBJECT_ORIGINAL
  
	work$SUBJECT_NESTED <- factor(work$SUBJECT_NESTED, levels=unique(work$SUBJECT_NESTED))
  
	## FEATURE will sorted as PROTEIN, PEPTIDE, TRANSITION
	work$FEATURE <- factor(work$FEATURE, levels=unique(work$FEATURE))

	## RUN will sorted as GROUP_ORIGINAL, SUBJECT_ORIGINAL, RUN
	work$originalRUN <- work$RUN
	work$RUN <- factor(work$RUN, levels=unique(work$RUN), labels=seq(1, length(unique(work$RUN))))
  
	processout <- rbind(processout, c("Factorize in columns(GROUP, SUBJECT, GROUP_ORIGINAL, 
	                                  SUBJECT_ORIGINAL, SUBJECT_ORIGINAL_NESTED, FEATURE, RUN) - okay"))
	write.table(processout, file=finalfile, row.names=FALSE)
  
  
	## Normalization ##
	## ------------- ##
	   
	## Normalization : option 0. none
	if (is.element("NONE",normalization) | is.element("FALSE",normalization)) { # after 'toupper', FALSE becomes character.
		processout <- rbind(processout, c("Normalization : no normalization - okay"))
		write.table(processout, file=finalfile, row.names=FALSE)
	}
  

	## Normalization : option 1. constant normalization , equalize medians ##
	## -------------------------------------------------------------------
	if (!is.element("NONE", normalization) & 
	    !is.element("FALSE", normalization) & 
	    is.element("EQUALIZEMEDIANS", normalization)) {
    
		if (nlevels(work$LABEL) == 1) {
			## Constant normalization by endogenous per method
      
			## [MC : use median of medians]
			median.run.method  <-  aggregate(ABUNDANCE ~ RUN + FRACTION, data = work, median, na.rm = TRUE)
			median.method  <-  tapply(median.run.method$ABUNDANCE, median.run.method$FRACTION, median, na.rm = TRUE)
      
			nmethod <- unique(work$FRACTION)
      
			for(j in 1:length(nmethod)) {
				namerun <- unique(work[work$FRACTION == nmethod[j], "RUN"])
        
				for (i in 1:length(namerun)) {
					## ABUNDANCE is normalized
				  namerun.idx <- which(work$RUN == namerun[i])
				  work[namerun.idx, "ABUNDANCE"] <- work[namerun.idx, "ABUNDANCE"] - median.run.method[median.run.method$RUN == namerun[i], "ABUNDANCE"] + median.method[j]
				}
			}
		}
    
    
		if (nlevels(work$LABEL) == 2 ) {
      
			## Constant normalization by heavy standard per method
			h <- work[work$LABEL == "H", ]
      		      		
      		## [MC : use median of medians]
			median.run.method  <-  aggregate(ABUNDANCE ~ RUN + FRACTION, data = h, median, na.rm = TRUE)
			median.method  <-  tapply(median.run.method$ABUNDANCE, median.run.method$FRACTION, median, na.rm = TRUE)
      
      		nmethod <- unique(work$FRACTION)
      
      		for(j in 1:length(nmethod)) {
        		namerun <- unique(work[work$FRACTION==nmethod[j],"RUN"])
        
        		for (i in 1:length(namerun)) {
          			## ABUNDANCE is normalized
        		  namerun.idx <- which(work$RUN == namerun[i])
          			work[namerun.idx, "ABUNDANCE"] <- work[namerun.idx, "ABUNDANCE"] - median.run.method[median.run.method$RUN == namerun[i], "ABUNDANCE"] + median.method[j]
        		}
      		} # end loop method		
    	} # for labe-based 
    
	    if(length(nmethod) == 1) {
		    processout <- rbind(processout, c("Normalization : Constant normalization (equalize medians) - okay"))
	    } else if (length(nmethod) >1) {
	        ## if there are fractions, report addition information.
	        processout <- rbind(processout, c("Normalization : Constant normalization (equalize medians) per fraction - okay"))
	    }
    	write.table(processout, file=finalfile, row.names=FALSE)
  	} ## end equaliemedian normalization	
  
	## Normalization : option 2. quantile normalization ##
	## ------------------------------------------------ ##
	if (!is.element("NONE", normalization) & 
	    !is.element("FALSE", normalization) & 
	    is.element("QUANTILE", normalization)) {
    
		if (nlevels(work$LABEL) == 1) {
      
			## for label-free, just use endogenous
      
      		nmethod <- unique(work$FRACTION)
      		quantileall <- NULL
      		
      		## ABUNDANCE=0 replace with 1, in order to distinguish later.
      		work[!is.na(work$ABUNDANCE) & work$ABUNDANCE == 0, 'ABUNDANCE'] <- 1
      
      		for (j in 1:length(nmethod)) {
         		namerun <- unique(work[work$FRACTION == nmethod[j],"RUN"])
        
        		worktemp <- work[which(work$RUN %in% namerun & !is.na(work$INTENSITY)),]
       	 		worktemp$RUN <- factor(worktemp$RUN)
        		worktemp$FEATURE <- factor(worktemp$FEATURE)
        
        		quantiletemp <- as.matrix(xtabs(ABUNDANCE~FEATURE+RUN, data=worktemp))
        
        		## need to put NA for missing value in endogenous
        		quantiletemp[quantiletemp == 0] <- NA
        
        		## using preprocessCore library
        		quantiledone <- normalize.quantiles(quantiletemp)
        		rownames(quantiledone) <- rownames(quantiletemp)
        		colnames(quantiledone) <- colnames(quantiletemp)
        		
        		## get quantiled to long format for apply difference endogenous
        		quantilelong <- melt(quantiledone, id=rownames(quantiledone))
        		colnames(quantilelong) <- c("FEATURE", "RUN", "ABUNDANCE_quantile")
        		rm(quantiledone)
        
        		## quantileall <- rbindlist(list(quantileall,quantilelong))
        		quantileall <- rbind(quantileall, quantilelong)
        
        		rm(quantilelong)
      		}
      
      		work <- merge(work, quantileall, by=c("FEATURE", "RUN"))
      		rm(quantileall)
      
      		## reorder
      		work <- data.frame("PROTEIN"=work$PROTEIN, 
      		                   "PEPTIDE"=work$PEPTIDE, 
      		                   "TRANSITION"=work$TRANSITION, 
      		                   "FEATURE"=work$FEATURE, 
      		                   "LABEL"=work$LABEL, 
      		                   "GROUP_ORIGINAL"=work$GROUP_ORIGINAL, 
      		                   "SUBJECT_ORIGINAL"=work$SUBJECT_ORIGINAL, 
      		                   "RUN"=work$RUN, 
      		                   "GROUP"=work$GROUP, 
      		                   "SUBJECT"=work$SUBJECT, 
      		                   "SUBJECT_NESTED"=work$SUBJECT_NESTED, 
      		                   "INTENSITY"=work$INTENSITY, 
      		                   "ABUNDANCE"=work$ABUNDANCE_quantile, 
      		                   "FRACTION"=work$FRACTION,
      		                   "originalRUN"=work$originalRUN)
      
      		work <- work[with(work, order(LABEL, GROUP_ORIGINAL, SUBJECT_ORIGINAL, RUN, PROTEIN, PEPTIDE, TRANSITION)), ]
          
      		## for skyline case, separate 1 and zero
      		work[!is.na(work$INTENSITY) & work$INTENSITY == 1, 'ABUNDANCE'] <- 0
    	}
    
    	if (nlevels(work$LABEL) == 2) {
      
      		nmethod <- unique(work$FRACTION)
      		quantileall <- NULL
      
      		for (j in 1:length(nmethod)) {
        		namerun <- unique(work[work$FRACTION == nmethod[j], "RUN"])
        
        		## for label-based, make quantile normalization for reference
        		##worktemp <- work[which(work$RUN %in% namerun & work$LABEL=="H" & !is.na(work$INTENSITY)),] ## because for sparse of reference
        		worktemp <- work[which(work$RUN %in% namerun & work$LABEL == "H"),]
        		worktemp$RUN <- factor(worktemp$RUN)
        		worktemp$FEATURE <- factor(worktemp$FEATURE)
        
        		quantiletemp <- as.matrix(xtabs(ABUNDANCE~FEATURE+RUN, data=worktemp))
        		rm(worktemp)
        
        		## need to put NA for missing value in endogenous
        		quantiletemp[quantiletemp==0] <- NA
        
       			## using preprocessCore library
        		quantiledone <- normalize.quantiles(quantiletemp)
        		rownames(quantiledone) <- rownames(quantiletemp)
        		colnames(quantiledone) <- colnames(quantiletemp)
        
        		## get quantiled to long format for apply difference endogenous
       			quantilelong.h <- melt(quantiledone, id=rownames(quantiledone))
        		colnames(quantilelong.h) <- c("FEATURE","RUN","ABUNDANCE_quantile")
        		quantilelong.h <- data.frame(quantilelong.h, LABEL="H")
        
        		## endogenous, in order to applying
        		##worktemp.l <- work[which(work$RUN %in% namerun & work$LABEL=="L" & !is.na(work$INTENSITY)),] ## because for sparse of reference
        		worktemp.l <- work[which(work$RUN %in% namerun & work$LABEL=="L"),]
        		worktemp.l$RUN <- factor(worktemp.l$RUN)
        		worktemp.l$FEATURE <- factor(worktemp.l$FEATURE)
        
        		quantiletemp.l <- as.matrix(xtabs(ABUNDANCE~FEATURE+RUN, data=worktemp.l))
        		rm(worktemp.l)
        
        		## need to put NA for missing value in endogenous
        		quantiletemp.l[quantiletemp.l==0] <- NA
        
        		## apply the difference from reference
        		quantiledone.l <- quantiletemp.l-(quantiletemp-quantiledone)
        
        		## get quantiled to long format for apply difference endogenous
        		quantilelong.l <- melt(quantiledone.l, id=rownames(quantiledone.l))
        		colnames(quantilelong.l) <- c("FEATURE", "RUN", "ABUNDANCE_quantile")
        		quantilelong.l <- data.frame(quantilelong.l, LABEL="L")
        
        		rm(quantiletemp)
        		rm(quantiledone)
        		rm(quantiletemp.l)
        		rm(quantiledone.l)
        
        		# quantileall <- rbindlist(list(quantileall,quantilelong.h, quantilelong.l))
        		quantileall <- rbind(quantileall,quantilelong.h, quantilelong.l)
        
      		}
      
			## merge with original data
     		work <- merge(work,quantileall, by=c("FEATURE","RUN","LABEL"))
      
      		## reorder
      		work <- data.frame("PROTEIN"=work$PROTEIN, 
      		                   "PEPTIDE"=work$PEPTIDE, 
      		                   "TRANSITION"=work$TRANSITION, 
      		                   "FEATURE"=work$FEATURE, 
      		                   "LABEL"=work$LABEL, 
      		                   "GROUP_ORIGINAL"=work$GROUP_ORIGINAL, 
      		                   "SUBJECT_ORIGINAL"=work$SUBJECT_ORIGINAL, 
      		                   "RUN"=work$RUN, 
      		                   "GROUP"=work$GROUP, 
      		                   "SUBJECT"=work$SUBJECT, 
      		                   "SUBJECT_NESTED"=work$SUBJECT_NESTED, 
      		                   "INTENSITY"=work$INTENSITY, 
      		                   "ABUNDANCE"=work$ABUNDANCE_quantile,
      		                   "FRACTION"=work$FRACTION,
      		                   "originalRUN" = work$originalRUN)
      
      		work <- work[with(work,order(LABEL,GROUP_ORIGINAL,SUBJECT_ORIGINAL,RUN,PROTEIN,PEPTIDE,TRANSITION)),]
      
    	}
    
    	if(length(nmethod) == 1) {
    	    processout <- rbind(processout, c("Normalization : Quantile normalization - okay"))
    	} else if (length(nmethod) >1) {
    	    ## if there are fractions, report addition information.
    	    processout <- rbind(processout, c("Normalization : Quantile normalization per fraction - okay"))
    	}
    	write.table(processout, file=finalfile, row.names=FALSE)
  	}
  
  
	## Normalization : option 3. global standards - for endogenous ##
	## ----------------------------------------------------------- ##
	if (!is.element("NONE", normalization) & 
	    !is.element("FALSE", normalization) & 
	    is.element("GLOBALSTANDARDS", normalization)) {
    
		work$RUN <- factor(work$RUN)
		combine <- data.frame(RUN=levels(work$RUN))
		allPeptide <- unique(work$PEPTIDE)
		allProtein <- unique(work$PROTEIN)
    
		for (i in 1:length(nameStandards)) {
      
			## if Peptides
			## namePeptide <- allPeptide[grep(nameStandards[i],allPeptide)] ## cannot grep for modified peptide sequence, [,],+ sign
      		namePeptide <- tempPeptide[tempPeptide$PEPTIDESEQUENCE == nameStandards[i], "PEPTIDE"]
      
			if (length(namePeptide)!=0) {
				tempStandard <- work[work$PEPTIDE == namePeptide,]
			} else {
        
        		## if Proteins
        		nameProtein <- allProtein[allProtein == nameStandards[i]] # if we use 'grep', can' find the proteins name with some symbol, such as 'sp|P30153|2AAA_HUMAN'
        
        		if (length(nameProtein)!=0) {
          			tempStandard <- work[work$PROTEIN==nameProtein,]
        		} else {
             		processout <- rbind(processout,c(paste("global standard peptides or proteins, ",nameStandards[i] ,", is not in dataset. Please check whether 'nameStandards' input is correct or not.")))
          			write.table(processout, file=finalfile,row.names=FALSE)
          
          			stop(paste("global standard peptides or proteins, ",nameStandards[i] ,", is not in dataset. Please check whether 'nameStandards' input is correct or not."))
        		}	
      		}
      
      		## here, by RUN, but need to check !!!
      		tempStandard <- tempStandard[tempStandard$GROUP!="0",]
      		tempStandard$RUN <- factor(tempStandard$RUN)
      
      		tempStandard <- tempStandard[!is.na(tempStandard$ABUNDANCE),]
      		meanStandard <- tapply(tempStandard$ABUNDANCE, tempStandard$RUN, function(x) mean(x, na.rm=TRUE))
      
      		meanStandard <- data.frame(RUN=names(meanStandard),meanStandard)
      		combine <- merge(combine, meanStandard, by="RUN", all=TRUE)
      		colnames(combine)[i+1] <- paste("meanStandard",i,sep="")
    	}
    
    	rownames(combine) <- combine$RUN
    	combine <- subset(combine, select=-c(RUN))
    
    	## get mean among global standards
    	allmean <- apply(combine,1, function(x) mean(x, na.rm=TRUE))
    	## allmean[is.na(allmean)] <- 0
    
    	allmeantemp <- data.frame(RUN=names(allmean),allmean)
    	allrun <- unique(work[,c("RUN","FRACTION")])
    
    	allmeantemp <- merge(allmeantemp, allrun,by="RUN")
    	median.all <- tapply(allmeantemp$allmean, allmeantemp$FRACTION, function(x) median(x,na.rm=TRUE))
    
    	## adjust
    	nmethod <- unique(work$FRACTION)
    
    	for(j in 1:length(nmethod)) {
      		namerun <- unique(work[work$FRACTION==nmethod[j], "RUN"])
      
      		for (i in 1:length(namerun)) {
        		## ABUNDANCE is normalized			
        		if (!is.na(allmean[names(allmean)==namerun[i]])) work[work$RUN==namerun[i] & work$LABEL=="L","ABUNDANCE"] <- work[work$RUN==namerun[i] & work$LABEL=="L","ABUNDANCE"]-allmean[names(allmean)==namerun[i]]+median.all[j]
      		}
   		} # end loop method
    
   	 	if(length(nmethod) == 1) {
   	 	    processout <- rbind(processout, c("Normalization : normalization with global standards protein - okay"))
   	 	} else if (length(nmethod) >1) {
   	 	    ## if there are fractions, report addition information.
   	 	    processout <- rbind(processout, c("Normalization : normalization with global standards protein - okay"))
   	 	}
    	write.table(processout, file=finalfile, row.names=FALSE)
    
	}
	
	## ----------------------------------------------------------- ##
	## after normalization, zero intensity could be negative
	
	## if abundance became less than zero, after normalization
	work[!is.na(work$ABUNDANCE) & work$ABUNDANCE < 0, "ABUNDANCE"] <- 0
	
	## if abundance become greater than zero, after normalization. 
	## hard to know how much higher, so, use intensity value, which is not used for noramlization
	work[!is.na(work$INTENSITY) & work$INTENSITY == 1, "ABUNDANCE"] <- 0
	
	## ----------------------------------------------------------- ##
	## if there are multiple method, need to merge after normalization + before feature selection ##
	if ( length(unique(work$FRACTION)) > 1 ){
	    ## check any features measured across all runs.
	    
	    ## use the subset of data without missing values
	    ## here 'INTENSITY' is used, instead of 'ABUNDANCE'
	    tmp <- work[!is.na(work$ABUNDANCE) & work$ABUNDANCE > 0, ]
	    
	    check.multiple.run <- xtabs(~ FEATURE + FRACTION, tmp)
	    check.multiple.run.TF <- check.multiple.run != 0
        check.multiple.run.feature <- apply(check.multiple.run.TF, 1, sum)
    
        ## each feature should be measured only in one method
        overlap.feature <- names(check.multiple.run.feature[check.multiple.run.feature > 1 ])
        
        ## It should be zero overlap.feature.
        ## however, this is for double-check. 
        ## If there are overlapped feature, it means something not works well above filtering.
	  
        if( length(overlap.feature) > 0 ){
      
            message(paste0("** Please check the listed featurues (", 
                          paste(overlap.feature, collapse=", "), 
                          ") \n Those features are measured across all fractionations."))
              
            processout <- rbind(processout,
                                c( paste0("** Please check the listed featurues (", 
                                         paste(overlap.feature, collapse=", "), 
                                         ") Those features are measured across all fractionations.
                                         Please keep only one intensity of listed features among fractionations from one sample.")))
            write.table(processout, file=finalfile, row.names=FALSE)
      
            stop("Please keep only one intensity of listed features among fractinations from one sample. \n")
        }
        
        ## ----------------------------------------------------------- ##
	    ## merge ##
        ## get which Run id should be merged
        ## decide which two runs should be merged
        if( any(is.element(colnames(work), 'TECHREPLICATE')) ) {
            
            runid.multiple <- unique(work[, c('GROUP_ORIGINAL', 
                                              'SUBJECT_ORIGINAL', 
                                              'RUN', 
                                              'originalRUN', 
                                              'FRACTION',
                                              'TECHREPLICATE')])
            
            ## if there are technical replicates from the same group and subject, can't match.
            run.match <- try(reshape2::dcast(GROUP_ORIGINAL + SUBJECT_ORIGINAL + TECHREPLICATE ~ FRACTION, 
                                   data=runid.multiple, value.var = 'originalRUN'), silent=TRUE)
            
            if (class(run.match) == "try-error") {
                
                processout <- rbind(processout,c( "*** error : can't figure out which multiple runs come from the same sample."))
                write.table(processout, file=finalfile, row.names=FALSE)
                
                stop("*** error : can't figure out which multiple runs come from the same sample.")
                
            } else {
                
                work$newRun <- NA
                
                run.match$GROUP_ORIGINAL <- as.character(run.match$GROUP_ORIGINAL)
                run.match$SUBJECT_ORIGINAL <- as.character(run.match$SUBJECT_ORIGINAL)
                
                for(k in 1:nrow(run.match)){
                    work[which(work$originalRUN %in% 
                                   run.match[k, 4:ncol(run.match)]), 'newRun'] <- paste(paste(run.match[k, 1:4], collapse = "_"), 'merged', sep="_")
                }
                
                ## remove extra run NAs
                tmp <- work[!is.na(work$ABUNDANCE) & work$ABUNDANCE > 0, ]
                
                na.count <- reshape2::dcast(FEATURE ~ FRACTION, data=tmp, fun.aggregate=length, value.var='ABUNDANCE')
                na.count.long <- melt(na.count, id.vars=c('FEATURE'))
                na.count.long <- na.count.long[na.count.long$value == length(unique(work$newRun)), ]
                na.count.long$tmp <- paste(na.count.long$FEATURE, na.count.long$variable, sep="_")
                
                work$tmp <- paste(work$FEATURE, work$FRACTION, sep="_")
                
                work <- work[-which(work$tmp %in% na.count.long$tmp), ]
                ##
                
                work$originalRUN <- work$newRun
                
                ## update RUN based on new originalRUN
                work$RUN <- work$originalRUN
                work$RUN <- factor(work$RUN, levels=unique(work$RUN), labels=seq(1, length(unique(work$RUN))))
                
                work <- work[, -which(colnames(work) %in% c('tmp','newRun'))]
                
            }
        } else { ## Fraction, but no tech replicate
            runid.multiple <- unique(work[, c('GROUP_ORIGINAL', 
                                              'SUBJECT_ORIGINAL', 
                                              'RUN', 
                                              'originalRUN', 
                                              'FRACTION')])
            
            ## if there are technical replicates from the same group and subject, can't match.
            run.match <- try(reshape2::dcast(GROUP_ORIGINAL + SUBJECT_ORIGINAL ~ FRACTION, 
                                             data=runid.multiple, value.var = 'originalRUN'), silent=TRUE)
            
            if (class(run.match) == "try-error") {
                
                processout <- rbind(processout,
                                    c( "*** error : can't figure out which multiple runs come from the same sample."))
                write.table(processout, file=finalfile, row.names=FALSE)
                
                stop("*** error : can't figure out which multiple runs come from the same sample.")
                
            } else {
                
                work$newRun <- NA
                
                run.match$GROUP_ORIGINAL <- as.character(run.match$GROUP_ORIGINAL)
                run.match$SUBJECT_ORIGINAL <- as.character(run.match$SUBJECT_ORIGINAL)
                
                for(k in 1:nrow(run.match)){
                    work[which(work$originalRUN %in% 
                                   run.match[k, 3:ncol(run.match)]), 'newRun'] <- paste(paste(run.match[k, 1:3], 
                                                                                              collapse = "_"), 'merged', sep="_")
                }
                
                ## remove extra run NAs or less than zero 
                ## because the goal is to find the one fraction should be used for each feature.
                tmp <- work[!is.na(work$ABUNDANCE) & work$ABUNDANCE > 0, ]
                
                ## find which fraction should be used for each feature
                select.fraction <- tmp %>% group_by(FEATURE, FRACTION) %>% summarise(ncount = n())
                ## check : test <- select.fraction %>% group_by(FEATURE) %>% summarise(nfeature = n())
                ## it can be less than # of runs, if there are any missing
                ## just in case that there are zero runs, let's check and remove.
                select.fraction <- select.fraction %>% filter(ncount != 0)
                select.fraction$tmp <- paste(select.fraction$FEATURE, select.fraction$FRACTION, sep="_")
                
                ## then keep one fraction for each feature
                work$tmp <- paste(work$FEATURE, work$FRACTION, sep="_")
                
                work <- work[which(work$tmp %in% select.fraction$tmp), ]
                
                ## new run has merged run id
                ## original run id can be different by fraction
                ## now fraction information from run will be removed.
                work$originalRUN <- work$newRun
                
                ## update RUN based on new originalRUN
                work$RUN <- work$originalRUN
                work$RUN <- factor(work$RUN, levels=unique(work$RUN), labels=seq(1, length(unique(work$RUN))))
                
                work <- work[, -which(colnames(work) %in% c('tmp','newRun'))]
                
            }
        }
    
	}
  
  	#Below two lines were merely for in-house testing and comparisons when needed
	#work.NoImpute <- work
	#AbundanceAfterImpute <- .Imputation(work, cutoffCensored, censoredInt, remove50missing, MBimpute, original_scale)
	
	## ------------- ##	
	## how to decide censored or not
	## ------------- ##
	
	### If imputation=TRUE and there is any value for maxQuantileforCensored, apply cutoff for censored missing
	if ( summaryMethod == "TMP" & MBimpute ) {
	  
	    work$LABEL <- factor(work$LABEL)
	    label <- nlevels(work$LABEL)==2
	  
	    work$censored <- FALSE
	    
	    ## if intensity = 1, but abundance > cutoff after normalization, it also should be censored.
	    
	    if( !is.null(maxQuantileforCensored) ) {
	        ### label-free
	        if( !label ){

	            ### calculate outlier cutoff
	            ## only consider intensity > 1
	            tmp <- work[!is.na(work$INTENSITY) & work$INTENSITY > 1, 'ABUNDANCE']
	            ## or
	            #tmp <- work[!is.na(work$INTENSITY), 'ABUNDANCE']
	    
	            log2int.prime.quant <- quantile(tmp, prob=c(0.01, 0.25, 0.5, 0.75, maxQuantileforCensored), na.rm = TRUE)
	            iqr <- log2int.prime.quant[4] - log2int.prime.quant[2]
	    
	            ### need to decide the multiplier from high intensities
	            multiplier <- (log2int.prime.quant[5] - log2int.prime.quant[4])/iqr
	    
	            cutoff.lower <- (log2int.prime.quant[2] - multiplier * iqr) 
	    
	            work[!is.na(work$INTENSITY) & 
	                     work$ABUNDANCE < cutoff.lower, 'censored'] <- TRUE
	            
	            message(paste('** Log2 intensities under cutoff =', 
	                          format(cutoff.lower, digits=5), 
	                          ' were considered as censored missing values.'))
	            
	            processout <- rbind(processout, 
	                                c(paste('** Log2 intensities under cutoff =', 
	                                        format(cutoff.lower, digits=5), 
	                                        ' were considered as censored missing values.')))
	            write.table(processout, file=finalfile, row.names=FALSE)
	            
	            ## if censoredInt == '0, and cutoff is negative, still zero should becensored
	            if ( cutoff.lower <= 0 & !is.null(censoredInt) & censoredInt == "0" ) {
	                
	                work[!is.na(work$INTENSITY) & work$INTENSITY == 1, 'censored'] <- TRUE
	                work[!is.na(work$ABUNDANCE) & work$ABUNDANCE <= 0, 'censored'] <- TRUE
	                
	                message(paste('** Log2 intensities = 0 were considered as censored missing values.'))
	                
	                processout <- rbind(processout, 
	                                    c(paste('** Log2 intensities = 0 were considered as censored missing values.')))
	                write.table(processout, file=finalfile, row.names=FALSE)
	                
	            }
	            
	            ## if censoredInt == NA, original NA also shoule be 'censored'
	            if (!is.null(censoredInt) & censoredInt == "NA") {
	      
	                work[is.na(work$INTENSITY), 'censored'] <- TRUE
	                
	                message(paste('** Log2 intensities = NA were considered as censored missing values.'))
	                
	                processout <- rbind(processout, c('** Log2 intensities = NA were considered as censored missing values.'))
	                write.table(processout, file=finalfile, row.names=FALSE)
	      
	            }
	    
	        }
	  
	        ### labeled : only consider light. Assume that missing in heavy is random.
	        if( label ){
	    
	            work.tmp <- work[which(work$LABEL %in% 'L'), ]
	    
	            ### calculate outlier cutoff
	            ## only consider intensity > 1
	            tmp <- work.tmp[!is.na(work.tmp$INTENSITY) & work.tmp$INTENSITY > 1, 'ABUNDANCE']
	    
	            log2int.prime.quant <- quantile(tmp, prob=c(0.01, 0.25, 0.5, 0.75, maxQuantileforCensored), na.rm = TRUE)
	            iqr <- log2int.prime.quant[4] - log2int.prime.quant[2]
	    
	            ### need to decide the multiplier from high intensities
	            multiplier <- (log2int.prime.quant[5] - log2int.prime.quant[4])/iqr
	    
	            cutoff.lower <- (log2int.prime.quant[2] - multiplier * iqr) 
	    
	            #work$censored <- FALSE
	            work[work$LABEL == 'L' & 
	                     !is.na(work$INTENSITY) & 
	                     work$ABUNDANCE < cutoff.lower, 'censored'] <- TRUE
	    
	            message(paste('** Log2 endogenous intensities under cutoff =', 
	                          format(cutoff.lower, digits=5), 
	                          ' were considered as censored missing values.'))
	            
	            processout <- rbind(processout, 
	                                c(paste('** Log2 endogenous intensities under cutoff =', 
	                                        format(cutoff.lower, digits=5), 
	                                        ' were considered as censored missing values.')))
	            write.table(processout, file=finalfile, row.names=FALSE)
	            
	            
	            ## if censoredInt == '0, and cutoff is negative, still zero should becensored
	            if ( cutoff.lower <= 0 & !is.null(censoredInt) & censoredInt == "0" ) {
	                
	                work[work$LABEL == 'L' &
	                         !is.na(work$INTENSITY) & work$INTENSITY == 1, 'censored'] <- TRUE
	                work[work$LABEL == 'L' &
	                         !is.na(work$ABUNDANCE) & work$ABUNDANCE <= 0, 'censored'] <- TRUE
	                
	                message(paste('** Log2 endogenous intensities = 0 were considered as censored missing values.'))
	                
	                processout <- rbind(processout, 
	                                    c(paste('** Log2 endogenous intensities = 0 were considered as censored missing values.')))
	                write.table(processout, file=finalfile, row.names=FALSE)
	                
	            }
	            
	            ## if censoredInt == NA, original NA also shoule be 'censored'
	            if (!is.null(censoredInt) & censoredInt == "NA") {
	                
	                work[work$LABEL == 'L' &
	                         is.na(work$INTENSITY), 'censored'] <- TRUE
	                
	                message(paste('** Log2 endogenous intensities = NA were considered as censored missing values.'))
	                
	                processout <- rbind(processout, 
	                                    c(paste('** Log2 endogenous intensities = NA were considered as censored missing values.')))
	                write.table(processout, file=finalfile, row.names=FALSE)
	                
	            }
	    
	        }
	        
	    } else { ## will MBimpute, but not apply algorithm for cutoff
	    
	        if(censoredInt == '0'){
	            work[work$LABEL == 'L' & !is.na(work$INTENSITY) & work$INTENSITY == 1, 'censored'] <- TRUE
	            work[work$LABEL == 'L' & !is.na(work$ABUNDANCE) & work$ABUNDANCE <= 0, 'censored'] <- TRUE
	        }
	        if(censoredInt == 'NA'){
	            work[work$LABEL == 'L' & is.na(work$ABUNDANCE), 'censored'] <- TRUE
	        }
	    
	    }
	  
	}
	

	## ------------- ##	
	## featureSubset ##
	## ------------- ##
  	##  !! need to decide how to present : keep original all data and make new column to mark, or just present selected subset    
  
	if (featureSubset == "all") {
 	 	message("** Use all features that the dataset origianally has.")
 	 
 	 	processout <- rbind(processout, c("** Use all features that the dataset origianally has."))
     	write.table(processout, file=finalfile, row.names=FALSE)
  	} 

    if (featureSubset == "highQuality") {
	    
        ### v3.15.2 (2019/04/28) : by Tsung-Heng
        message("** Flag uninformative feature and outliers by feature selection algorithm.")
        processout <- rbind(processout, c("** Flag uninformative feature and outliers by feature selection algorithm."))
        write.table(processout, file=finalfile, row.names=FALSE)
        
        work <- flag_noninf_data_nbftr(work)
        # work <- flag_noninf_data(work)
        
        #if(remove_uninformative_feature_outlier){
            
            ### for heavy outlier, always need to replace with NA
            # work[work$feature_quality == 'Noninformative' & work$LABEL == 'H', 'ABUNDANCE'] <- NA
            # work[work$is_outlier & work$LABEL == 'H', 'ABUNDANCE'] <- NA
            
            ### replace with censored missing
            #if (!is.null(censoredInt) & censoredInt == "0") {
                
                ### [TEST] ###
                # work[work$feature_quality == 'Noninformative' & work$LABEL == 'L', 'ABUNDANCE'] <- NA
                # work[work$is_outlier & work$LABEL == 'L', 'ABUNDANCE'] <- 0
                # work[work$is_outlier & work$LABEL == 'L', 'censored'] <- TRUE
                # work[work$is_outlier & work$LABEL == 'L', 'ABUNDANCE'] <- NA
                
                # work[work$feature_quality == 'Noninformative' & work$LABEL == 'L', 'ABUNDANCE'] <- 0
                # work[work$is_outlier & work$LABEL == 'L', 'ABUNDANCE'] <- 0
                ### [TEST] ###
                
            #} else { ## if censoredInt= NA or null, replace with NA
                
                ### [TEST] ###
                # work[work$feature_quality == 'Noninformative' & work$LABEL == 'L', 'ABUNDANCE'] <- NA
                # work[work$is_outlier & work$LABEL == 'L', 'ABUNDANCE'] <- NA
                # work[work$is_outlier & work$LABEL == 'L', 'censored'] <- TRUE
                # work[work$is_outlier & work$LABEL == 'L', 'ABUNDANCE'] <- NA
                
                # work[work$feature_quality == 'Noninformative' & work$LABEL == 'L', 'ABUNDANCE'] <- NA
                # work[work$is_outlier & work$LABEL == 'L', 'ABUNDANCE'] <- NA
                ### [TEST] ###
            #}
            
            # message("** Filtered out noninformative feature and outliers.")
            # processout <- rbind(processout, c("** Filtered out noninformative feature and outliers."))
            # write.table(processout, file=finalfile, row.names=FALSE)
        #}
        
        ### end : v3.15.2 (2019/04/28) : by Tsung-Heng
	}
  
	if (featureSubset == "top3") {
  		message("** Use top3 features that have highest average of log2(intensity) across runs.")
  		
  		processout <- rbind(processout, c("** Use top3 features that have highest average of log2(intensity) across runs."))
        write.table(processout, file=finalfile, row.names=FALSE)
	 
  	 	## INTENSITY vs ABUNDANCE? [THT: make more sense to use ABUNDANCE]
  		## how to decide top3 for DIA?
        work$remove <- FALSE
	
        worktemp <- work[!is.na(work$ABUNDANCE) & work$ABUNDANCE != 0, ]
        
        ## updated on 2019.08.09, due to big memory consumption for lapply and unlist
		#temp1 <- aggregate(INTENSITY~PROTEIN+FEATURE, data=work, function(x) mean(x, na.rm=TRUE))
        
        #temp2 <- split(temp1, temp1$PROTEIN)

		#temp3 <- lapply(tmp2, function(x) { 
		#	x <- x[order(x$INTENSITY, decreasing=TRUE), ]
		#	x <- x$FEATURE[1:3]
		#	})
	
		#selectfeature <- unlist(temp3, use.names=FALSE)
		
		temp1 <- worktemp %>% group_by(PROTEIN, FEATURE) %>%
		    summarize(mean = mean(INTENSITY, na.rm = TRUE)) %>%
		    group_by(PROTEIN) %>%
		    filter(row_number(desc(mean)) <= 3)  ## updated on 2019.08.15, in order to get first row if there are ties.
		    #top_n(3)
		
		selectfeature <- temp1$FEATURE
		selectfeature <- selectfeature[!is.na(selectfeature)]
		## end 2019.08.09
		
		## get subset
		work[-which(work$FEATURE %in% selectfeature), 'remove']	<- TRUE

  	}
  
	if (featureSubset == "topN") {
    
        ## check whether there is the input for 'N'
    
	    message(paste0("** Use top", n_top_feature, " features that have highest average of log2(intensity) across runs."))
	  
	    processout <- rbind(processout, c(paste0("** Use top", n_top_feature, 
	                                            " features that have highest average of log2(intensity) across runs.")))
	    write.table(processout, file=finalfile, row.names=FALSE)
	  
	    ## INTENSITY vs ABUNDANCE? [THT: make more sense to use ABUNDANCE]
	    ## how to decide top3 for DIA?
	  
	    work$remove <- FALSE
	  
        worktemp <- work[!is.na(work$ABUNDANCE) & work$ABUNDANCE != 0, ]
        
        ## updated on 2019.08.09, due to big memory consumption for lapply and unlist
	    #temp1 <- aggregate(INTENSITY ~ PROTEIN+FEATURE, data=worktemp, function(x) mean(x, na.rm=TRUE))
	  
	    #temp2 <- split(temp1, temp1$PROTEIN)
	  
	    #temp3 <- lapply(temp2, function(x) { 
	    #    x <- x[order(x$INTENSITY, decreasing=TRUE), ]
	    #    x <- x$FEATURE[1:n_top_feature]
	    #})
	  
	    #selectfeature <- unlist(temp3, use.names=FALSE)

	    temp1 <- worktemp %>% group_by(PROTEIN, FEATURE) %>%
	        summarize(mean = mean(INTENSITY, na.rm = TRUE)) %>%
	        group_by(PROTEIN) %>%
	        filter(row_number(desc(mean)) <= n_top_feature) ## updated on 2019.08.15, in order to get first row if there are ties.
	    #top_n(n_top_feature)
	    
	    selectfeature <- temp1$FEATURE
	    selectfeature <- selectfeature[!is.na(selectfeature)]
	    ## end 2019.08.09
	  
	    ## get subset
	    work[-which(work$FEATURE %in% selectfeature), 'remove']	<- TRUE
	  
	}
  
	## check missingness 
	## transitions are completely missing in at least one of the condition : missingness ##
	if (nlevels(work$LABEL) == 1) {
        #Use the data frame before imputation to summarize the missingness
        all.work <- work	
        test <- tapply(is.na(work[, "ABUNDANCE"]), work[, c("GROUP_ORIGINAL", "FEATURE")], function(x) sum(x, na.rm=TRUE))
        numObs <- tapply(work[, "ABUNDANCE"], work[, c("GROUP_ORIGINAL", "FEATURE")], function(x) length(x))
        test1 <- test == numObs
        test2 <- apply(test1, 2, function(x) sum(x, na.rm=TRUE))
        filterList <- names(test2)[test2 > 0]
        final.decision <- ifelse(test2>0, 1, 0)
	}	
  
	if (nlevels(work$LABEL) == 2) {
		
		#Use the data frame before imputation to summarize the missingness
        ## first, remove NA
        all.work <- work   # with all NA observations
        work.miss <- na.omit(work)
    
		## draw table
		light <- subset(work.miss, LABEL == "L")
		heavy <- subset(work.miss, LABEL == "H")
    
		## use FEATURE because the name of transition can be used in other peptide
		count.light <- xtabs(~FEATURE+GROUP_ORIGINAL, light)
		count.heavy <- xtabs(~FEATURE+GROUP_ORIGINAL, heavy)
    
		count.light <- count.light==0
		count.heavy <- count.heavy==0
    
		count.light <- as.data.frame(count.light)
		count.heavy <- as.data.frame(count.heavy)
    
		## summary of missingness
		decision <- count.light
		decision[] <- 0
    
		for (i in 1:ncol(decision)) {
			for (j in 1:nrow(decision)) {
        
				## either light or heavy has no obs -> subject to filter
        		if (count.light[j,i]==TRUE || count.heavy[j,i]==TRUE) { 
        			decision[j,i] <- 1 
        		}
      		}
    	}
    
    	final.decision <- apply(decision, 1, sum)
    
    	## assign "subject to filter" column
    	work <- data.frame(work, "SuggestToFilter"=0)
    
    	for(i in 1:length(final.decision)) {
      		## assign subject_to_filter=1 for entire transition
      		if (final.decision[i] != 0) {
      			work[work$FEATURE == names(final.decision[i]), "SuggestToFilter"] <- 1
      		} 
		}	
	}
  
	## output : summary ##
	## ---------------- ##

	## output for label
    processout <- rbind(processout, c(paste0(length(unique(work$LABEL)), 
                                            " level of Isotope type labeling in this experiment")))
	write.table(processout, file=finalfile, row.names=FALSE)
  
	temp <- data.frame("Summary of Features :")
	colnames(temp) <- " "
	rownames(temp) <- " "
	print(temp)
  
	summary.f <- matrix(NA,nrow=3)
	summary.f[1] <- nlevels(work$PROTEIN)
  
	temp <- unique(work[, c("PROTEIN", "PEPTIDE")])
	temp1 <- xtabs(~PROTEIN, data=temp)
	temp2 <- summary(as.numeric(temp1))
	summary.f[2] <- paste(temp2["Min."], temp2["Max."], sep="-")
  
	temp <- unique(work[, c("PEPTIDE", "FEATURE")])
	temp1 <- xtabs(~PEPTIDE, data=temp)
	temp2 <- summary(as.numeric(temp1))
	summary.f[3] <- paste(temp2["Min."], temp2["Max."], sep="-")
  
	colnames(summary.f) <- "count"
	rownames(summary.f) <- c("# of Protein", "# of Peptides/Protein", "# of Transitions/Peptide")
  
	print(as.data.frame(summary.f))
  
	## output for process
	processout <- rbind(processout, c("Summary of Features :"))
	processout <- rbind(processout, c(paste(rownames(summary.f)[1]," : ", summary.f[1], sep="")))
	processout <- rbind(processout, c(paste(rownames(summary.f)[2]," : ", summary.f[2], sep="")))
	processout <- rbind(processout, c(paste(rownames(summary.f)[3]," : ", summary.f[3], sep="")))
  
	write.table(processout, file=finalfile, row.names=FALSE)
  
	## protein list with 1 feature
	temp <- unique(work[, c("PROTEIN", "FEATURE")])
	temp1 <- xtabs(~PROTEIN, data=temp)
	temp2 <- as.data.frame(temp1[temp1 == 1])

	if (nrow(temp2) > 0) {
	    if(nrow(temp2) > 1){
	        npro <- min(c(nrow(temp2), 10)) 
	        message("\n","** " , nrow(temp2), 
	                " Proteins have only single transition : Consider excluding this protein from the dataset. (", 
	                paste(temp2$PROTEIN[1:npro], collapse = ", "), " ...) \n")  
	    } else {
	        message("\n","** " , nrow(temp2), 
	                " Proteins have only single transition : Consider excluding this protein from the dataset. (", 
	                rownames(temp2), ") \n")  
	    }
	   
	}
  
	temp <- data.frame("Summary of Samples :")
	colnames(temp) <- " "
	rownames(temp) <- " "
	print(temp)
  
	summary.s <- matrix(NA,ncol=nlevels(work$GROUP_ORIGINAL), nrow=3)
  
	## # of MS runs
	temp <- unique(work[, c("GROUP_ORIGINAL", "RUN")])
	temp1 <- xtabs(~GROUP_ORIGINAL, data=temp)
	summary.s[1,] <- temp1
  
	## # of biological replicates
	temp <- unique(work[, c("GROUP_ORIGINAL", "SUBJECT_ORIGINAL")])
	temp1 <- xtabs(~GROUP_ORIGINAL, data=temp)
	summary.s[2,] <- temp1
  
	## # of technical replicates
	c.tech <- round(summary.s[1,] / (summary.s[2,] * length(unique(work$FRACTION))))
	##summary.s[3,] <- ifelse(c.tech==1,0,c.tech)
	summary.s[3,] <- c.tech
  
	colnames(summary.s) <- unique(work$GROUP_ORIGINAL)
	rownames(summary.s) <- c("# of MS runs","# of Biological Replicates", "# of Technical Replicates")
  
	print(summary.s)
  
	message("\n Summary of Missingness :\n" )
	message("  # transitions are completely missing in at least one of the conditions : ", sum(final.decision!=0), "\n")
	if (sum(final.decision!=0)!=0) {
	    tmp.final <- final.decision[final.decision != 0]
	    if( length(tmp.final) > 5 ){
	        message("    -> ", paste(names(tmp.final[1:5]),collapse = ", "), " ...")
	    } else {
	        message("    -> ", paste(names(tmp.final),collapse = ", "), " ...")
	    }
	    rm(tmp.final)
	}
  
	without <- xtabs(~RUN, work)
	withall <- xtabs(~RUN, all.work)
	run.missing <- without / withall
	message("\n  # run with 75% missing observations: ", sum(run.missing<0.25), "\n")
	if (sum(run.missing<0.25)!=0) {
		message("    -> ", paste("RUN", names(without[run.missing<0.25]), sep=" "))
	}
  
	## output process
	processout <- rbind(processout, c("Summary of Missingness :"))
	processout <- rbind(processout, c(paste0("  # transitions are completely missing in at least one of the conditions : ", 
	                                        sum(final.decision!=0))))
	if (sum(final.decision!=0)!=0){
		
		tmp.final <- final.decision[final.decision != 0]
		if( length(tmp.final) > 5 ){
		    processout <- rbind(processout,"    -> ", paste(names(tmp.final[1:5]), collapse = ", "), " ...")
		    
		} else {
		    processout <- rbind(processout,"    -> ", paste(names(tmp.final), collapse = ", "), " ...")
		}
		rm(tmp.final)
		
	} 
  
	processout <- rbind(processout, c(paste0("  # run with 75% missing observations: ", sum(run.missing < 0.25))))
	if (sum(run.missing < 0.25) != 0) {
		processout <- rbind(processout, "    -> ", paste("RUN", names(without[run.missing < 0.25]), sep=" "))
  	}
  	write.table(processout, file=finalfile, row.names=FALSE)
  
	## check any protein has only light for labeled-experiment
	if (nlevels(work$LABEL) == 2) {
    	temp <- unique(work[, c("PROTEIN", "LABEL")])
    	temp1 <- xtabs(~PROTEIN, data=temp)
    
    	if (any(temp1 != 2)) {
      		## check that is L or H
      		namepro <- names(temp1[temp1!=2])
      		
      		for(j in 1:length(namepro)) {
      			
        		if (unique(work[work$PROTEIN == namepro[j], "LABEL"]) == "L") {
          			message("\n *** ", namepro[j], 
          			        " has only endogeneous intensities in label-based experiment. Please check this protein or remove it.")
          		}
        
        		if (unique(work[work$PROTEIN == namepro[j], "LABEL"]) == "H") {
          			message("\n *** ", namepro[j], 
          			        " has only reference intensities in label-based experiment. Please check this protein or remove it.")
         		}
      		}
    	}	
	}
  
	processout <- rbind(processout, c("Processing data for analysis is done. - okay"))
	write.table(processout, file=finalfile, row.names=FALSE)
  

 	## get the summarization per subplot (per RUN)   
	## -------------------------------------------
	
	message("\n == Start the summarization per subplot...")

	rqresult <- try(.runQuantification(work, summaryMethod, equalFeatureVar, 
	                                   cutoffCensored, censoredInt, remove50missing, MBimpute, 
	                                   original_scale=FALSE, logsum=FALSE, featureSubset,
	                                   remove_uninformative_feature_outlier,
	                                   message.show=FALSE, clusters=clusters), silent=TRUE)

	if (class(rqresult) == "try-error") {
		message("*** error : can't summarize per subplot with ", summaryMethod, ".")
     
      	processout <- rbind(processout, c(paste0("error : can't summarize per subplot with ", summaryMethod, ".")))
      	write.table(processout, file=finalfile, row.names=FALSE)
	
	  	rqall <- NULL
	  	rqmodelqc <- NULL
	  	workpred <- NULL
	  
	} else {
      
		label <- nlevels(work$LABEL) == 2
	
		if (sum(is.element(colnames(rqresult$rqdata), "RUN")) == 0) {
			## logsum is summarization per subject
			lab <- unique(work[, c("GROUP", "GROUP_ORIGINAL", "SUBJECT_ORIGINAL", "SUBJECT_NESTED", "SUBJECT")])
	
			if (label) {
			    lab <- lab[lab$GROUP != 0, ]
			}

			rqall <- merge(rqresult$rqdata, lab, by="SUBJECT_ORIGINAL")
			
		} else {
			lab <- unique(work[, c("RUN", "originalRUN", "GROUP", "GROUP_ORIGINAL", 
			                       "SUBJECT_ORIGINAL", "SUBJECT_NESTED", "SUBJECT")])
	
			if (label) {
			    lab <- lab[lab$GROUP != 0, ]
			}

			rqall <- merge(rqresult$rqdata, lab, by="RUN")
		}
		
		rqall$GROUP <- factor(rqall$GROUP)
		rqall$Protein <- factor(rqall$Protein)
		
		rqmodelqc <- rqresult$ModelQC
		
		#MC : can't use this predicted value.
		#workpred <- rqresult$PredictedBySurvival
		workpred <- NULL
		
		message("\n == the summarization per subplot is done.")
		
		processout <- rbind(processout, c(paste0("the summarization per subplot is done.- okay : ", summaryMethod)))
		write.table(processout, file=finalfile, row.names=FALSE)

	}
	 
  	## return work data.frame	and run quantification
	
	#Align the run quantification data
	if (any(is.element(colnames(rqall), "RUN"))) {
	    rqall <- rqall[order(rqall$Protein, as.numeric(as.character(rqall$RUN))), ]
        rownames(rqall) <- NULL
	}
	
	#Mike: Below is for in-house verification occasionally
	#processedquant <- list(ProcessedData=work.NoImpute, RunlevelData=rqall, SummaryMethod=summaryMethod, ModelQC=rqmodelqc, PredictBySurvival=workpred, ImputedData=AbundanceAfterImpute)
	processedquant <- list(ProcessedData=work, 
	                       RunlevelData=rqall, 
	                       SummaryMethod=summaryMethod, 
	                       ModelQC=rqmodelqc, 
	                       PredictBySurvival=workpred)
	
    return(processedquant)
  
}

########################################################
# Manual function allowing foreach to return a list of multiple variables
resultsAsLists <- function(x, ...) {
  lapply(seq_along(x),
         function(i) c(x[[i]], lapply(list(...), function(y) y[[i]])))
}


########################################################
.runQuantification <- function(data, summaryMethod, 
                               equalFeatureVar, 
                               cutoffCensored, censoredInt, 
                               remove50missing, MBimpute, 
                               original_scale, logsum, 
                               featureSubset,
                               remove_uninformative_feature_outlier,
                               message.show, clusters) {
	
  ##Since the imputation has been done before feature selection, delete the columns of censoring indicator to avoid imputing the same intensity again	
  #if(featureSubset == "highQuality") {
  #	data$cen <- NULL; data$pred <- NULL; data$INTENSITY <- 2^data$ABUNDANCE
  #} 
    
  ##If we want to impute again after the feature selection
  #if(featureSubset == "highQuality" & ImputeAgain==TRUE) {
  #	data$ABUNDANCE <- data$ABUNDANCE.O	
  #}

    data$LABEL <- factor(data$LABEL)
    label <- nlevels(data$LABEL) == 2
    
    # set ref which is distinguish reference and endogenous. any reference=0. endogenous is the same as RUN
	if ( label ) {
		data$ref <- 0
		data$ref[data$LABEL != "H"] <- data$RUN[data$LABEL != "H"]
		data$ref <- factor(data$ref)
	}
    
    ## if there is 'remove' column (for topN or top3), remove TRUE
    ## v3.16.1 had error : no remove for remove column
    ## v3.16.2 fixes this but
    if( any(is.element(colnames(data), 'remove')) ) {
        data <- data[!data$remove, ]
    }
	      
    ### v3.15.2 (2019/04/29) by Meena 
    if( remove_uninformative_feature_outlier & any(is.element(colnames(data), 'feature_quality')) ) {
        ### v3.15.2 (2019/04/28) by Tsung-Heng
        data[data$feature_quality == 'Uninformative', 'ABUNDANCE'] <- NA
        data[data$is_outlier, 'ABUNDANCE'] <- NA
        #data <- data[!(data$is_outlier | data$feature_quality == 'Noninformative'), ]
        ### end : v3.15.2 (2019/04/28) by Tsung-Heng
    
        message("** Filtered out uninformative feature and outliers.")
    }
    ### end : v3.15.2 (2019/04/29) by Meena 
    
	# for saving predicting value for impute option
	predAbundance <- NULL
	
	###################################
	## method 1 : model based summarization
	if (summaryMethod == "linear"  & is.null(censoredInt)) {
		
		data <- data[!is.na(data$ABUNDANCE),]
        data$PROTEIN <- factor(data$PROTEIN)
        data$RUN <- factor(data$RUN)
    
		result <- NULL
	    dataafterfit <- NULL
	    
		for(i in 1: nlevels(data$PROTEIN)) {
        
            sub <- data[data$PROTEIN==levels(data$PROTEIN)[i],]

     	    sub$SUBJECT_NESTED <- factor(sub$SUBJECT_NESTED)
            sub$FEATURE <- factor(sub$FEATURE)	
            sub$RUN <- factor(sub$RUN)	        
      
            if (!label) {
      	        temp <- data.frame(xtabs(~RUN, data=sub))
	
      	        sub.result <- data.frame(Protein=rep(unique(sub$PROTEIN),
      	                                     each=nlevels(sub$RUN)),
      	                                 RUN=rep(c(levels(sub$RUN)),1),
      	                                 LogIntensities=NA, 
      	                                 NumFeature=length(unique(sub$FEATURE)),
      	                                 NumPeaks=temp$Freq)
      	
            } else {
      	
      	        sub$ref <- factor(sub$ref)			

      	        temp <- data.frame(xtabs(~ref, data=sub))

      	        sub.result <- data.frame(Protein=rep(levels(data$PROTEIN)[i],each=nlevels(sub$ref)),RUN=rep(c(levels(sub$ref)[-1],"Ref"),1),LogIntensities=NA, NumFeature=length(unique(sub$FEATURE)),NumPeaks=c(temp[-1,"Freq"],temp[1,"Freq"]))
      	
            }
      
      	    singleFeature <- .checkSingleFeature(sub)
      	    singleSubject <- .checkSingleSubject(sub)
      	    TechReplicate <- .checkTechReplicate(sub) ## use for label-free model
        
      	    ##### fit the model
      	    #if (message.show) {
      		    message(paste("Getting the summarization per subplot for protein ",unique(sub$PROTEIN), "(",i," of ",length(unique(data$PROTEIN)),")"))
      	    #}
      		
      	    fit <- try(.fit.quantification.run(sub, singleFeature, singleSubject, TechReplicate, labeled=label, equalFeatureVar), silent=TRUE)
             
      	    if (class(fit)=="try-error") {
        	    message("*** error : can't fit the model for ", levels(data$PROTEIN)[i])
          
        	    result <- rbind(result, sub.result)
          
         	    if (nrow(sub)!=0) {
        		    sub$residuals <- NA
        		    sub$fitted <- NA
      		    }
          
      	    } else {
          
       		    if (class(fit)=="lm") {
          	        cf  <-  summary(fit)$coefficients
       	 	    }else{
         		    cf  <-  fixef(fit)
         	    }
          
        	    # calculate sample quantification for all levels of sample
        	    a=1	
          
        	    for(j in 1:nlevels(sub$RUN)) {
        	  
         		    contrast.matrix <- rep(0, nlevels(sub$RUN))
          	        contrast.matrix[j] <- 1
            
          	        contrast <- .make.contrast.run.quantification(fit,contrast.matrix,sub, labeled=label)
            
         		    if (class(fit)=="lm") {
           		        sub.result[a,3] <- .estimableFixedQuantification(cf,contrast)
          	        } else {
            	        sub.result[a,3] <- .estimableRandomQuantification(cf,contrast)
          	        }
          
          	        a=a+1
        	    }
          
                ## for label-based case, need reference quantification
        	    if (label) {
        		    contrast <- .make.contrast.run.quantification.reference(fit,contrast.matrix,sub)
        		
        		    if (class(fit)=="lm") {
                        sub.result[a, 3] <- .estimableFixedQuantification(cf,contrast)
          	        }else{
                        sub.result[a, 3] <- .estimableRandomQuantification(cf,contrast)
          	        }
        	    }
          
        	    result <- rbind(result, sub.result)

 				if (class(fit)=="lm") {  ### lm model
 				    sub$residuals <- fit$residuals
      			    sub$fitted <- fit$fitted.values
  				} else {   ### lmer model
    				sub$residuals <- resid(fit)
    				sub$fitted <- fitted(fit)
  				}
  			
     			dataafterfit <- rbind(dataafterfit,sub)

            }
        
        } ## end-loop for each protein	
	} ## for linear model summary
	
	###################################
	## Method 2 : Tukey Median Polish	
	if (summaryMethod == "TMP") {
		
		#data <- data[!is.na(data$ABUNDANCE),]
   	    data$PROTEIN <- factor(data$PROTEIN)
        data$RUN <- factor(data$RUN)
    
		result <- NULL
	  
		## if cluster available,
		if(!is.null(clusters)){
		    
    		## create cluster for paralleled workflow
    		message(paste0("Cluster Size: ", clusters,"\n"))
    		registerDoSNOW(makeCluster(clusters, type = "SOCK"))
    		
    		# for(i in 1: nlevels(data$PROTEIN)) {
    		pb <- txtProgressBar(max = nlevels(data$PROTEIN), style = 3)
    		progress <- function(n) setTxtProgressBar(pb, n)
    		opts <- list(progress = progress)
    		MS_results <- foreach(i=1: nlevels(data$PROTEIN), 
    		                      .combine='resultsAsLists', 
    		                      .options.snow = opts, 
    		                      .multicombine=TRUE, 
    		                      .init=list(list(), list())) %dopar% {
    		  
         		sub <- data[data$PROTEIN==levels(data$PROTEIN)[i], ]
         		sub.pro.id <- levels(data$PROTEIN)[i]
         		
         		if (message.show) {
         		    message(paste("Getting the summarization by Tukey's median polish per subplot for protein ",
         		                  sub.pro.id, "(", i," of ", length(unique(data$PROTEIN)), ")"))
         		}
         		
          	    sub$FEATURE <- factor(sub$FEATURE)	
        		sub$feature.label <- paste(sub$FEATURE, sub$LABEL, sep="_")
          	    sub$run.label <- paste(sub$RUN, sub$LABEL, sep="_")
          	
          	    ##### how to decide censored or not
          	    if ( MBimpute ) {
          	        if (!is.null(censoredInt)) {
          	            ## 1. censored 
          	            if (censoredInt == "0") {
          	    
          	                sub[sub$censored == TRUE, 'ABUNDANCE'] <- 0
          	                sub$cen <- ifelse(sub$censored, 0, 1)
          	    
          	            }
          	  
          	            ### 2. all censored missing
          	            if (censoredInt == "NA") {
          	    
          	                sub[sub$censored == TRUE, 'ABUNDANCE'] <- NA
          	                sub$cen <- ifelse(sub$censored, 0, 1)
          	    
          	            }
          	        }
          	    }
          		
          	    ## if all measurements are NA,
          	    if ( nrow(sub) == (sum(is.na(sub$ABUNDANCE)) + sum(!is.na(sub$ABUNDANCE) & sub$ABUNDANCE == 0)) ) {
           		    message(paste("Can't summarize for ", sub.pro.id, 
           		                  "(", i, " of ", length(unique(data$PROTEIN)),
           		                  ") because all measurements are NAs."))
            	    # next()
          	        return(NULL)
          	    }
          		
          	    ## remove features which are completely NAs
          	    if ( MBimpute ) {
          	        if (!is.null(censoredInt)) {
            	        ## 1. censored 
          	            if (censoredInt == "0") {
            	            subtemp <- sub[sub$LABEL == "L" & !is.na(sub$ABUNDANCE) & sub$ABUNDANCE != 0, ]
          	      
                        }
          	    
          	            ### 2. all censored missing
          	            if (censoredInt == "NA") {
          	      
          	                subtemp <- sub[sub$LABEL == "L" & !is.na(sub$ABUNDANCE), ]
          	 
          	            }  
          	  
          	        } 
          	    } else {
          	        subtemp <- sub[sub$LABEL == "L" & !is.na(sub$ABUNDANCE) & sub$ABUNDANCE != 0, ]
          	    }
          	
    		  	countfeature <- xtabs(~FEATURE, subtemp)
    			namefeature <- names(countfeature)[countfeature == 0]
    				
    			if (length(namefeature) != 0) {
    			    sub <- sub[-which(sub$FEATURE %in% namefeature), ]
    				
    			  	if (nrow(sub) == 0) {
    				    message(paste("Can't summarize for ", sub.pro.id, 
    				                  "(", i, " of ", length(unique(data$PROTEIN)), 
    				                  ") because all measurements are NAs."))
            		    # next()
    			  	    return(NULL)
            		
    				} else {
    				    sub$FEATURE <- factor(sub$FEATURE)
    				}
    			}
    			
    			## remove features which have only 1 measurement.
    			namefeature1 <- names(countfeature)[countfeature == 1]
    				
    			if (length(namefeature1) != 0) {
    				sub <- sub[-which(sub$FEATURE %in% namefeature1), ]
    				 
    				if (nrow(sub) == 0) {
    					message(paste("Can't summarize for ", sub.pro.id, 
    					              "(", i, " of ", length(unique(data$PROTEIN)), 
    					              ") because features have only one measurement across MS runs."))
            			# next()
    				    return(NULL)
            		
    				} else {
    					sub$FEATURE <- factor(sub$FEATURE)
    				}
    			}
    			
    			## check one more time
    			## if all measurements are NA,
    			if ( nrow(sub) == (sum(is.na(sub$ABUNDANCE)) + sum(!is.na(sub$ABUNDANCE) & sub$ABUNDANCE ==0)) ) {
    			    message(paste("After removing features which has only 1 measurement, Can't summarize for ",
    			                  sub.pro.id, "(", i," of ", length(unique(data$PROTEIN)), 
    			                  ") because all measurements are NAs."))
    			    # next()
    			    return(NULL)
    			}
          		
                ## remove run which has no measurement at all 
    			## remove features which are completely NAs
    			if ( MBimpute ) {
    			    if (!is.null(censoredInt)) {
    			        ## 1. censored 
    			        if (censoredInt == "0") {
    			            subtemp <- sub[sub$LABEL == "L" & !is.na(sub$ABUNDANCE) & sub$ABUNDANCE != 0, ]
    			      
    			        }
    			    
    			        ### 2. all censored missing
    			        if (censoredInt == "NA") {
    			      
    			            subtemp <- sub[sub$LABEL == "L" & !is.na(sub$ABUNDANCE), ]
    			      
    			        }  
    			    
    			    } 
    			} else {
    			    subtemp <- sub[sub$LABEL == "L" & !is.na(sub$ABUNDANCE) & sub$ABUNDANCE != 0, ]
    			}
    			
    			count <- aggregate(ABUNDANCE ~ RUN, data=subtemp, length)
    			norun <- setdiff(unique(data$RUN), count$RUN)
    				
    			if (length(norun) != 0 & length(intersect(norun, as.character(unique(sub$RUN))))) { 
    			    # removed NA rows already, if there is no overlapped run, error
    				sub <- sub[-which(sub$RUN %in% norun), ]
    				sub$RUN <- factor(sub$RUN)
    			}
    
    			
    			if (remove50missing) {
    				# count # feature per run
                    if (!is.null(censoredInt)) {
    					if (censoredInt == "NA") {
    						subtemp <- sub[sub$LABEL == "L" & !is.na(sub$INTENSITY), ]
    					}
    					
    					if (censoredInt == "0") {
    						subtemp <- sub[sub$LABEL == "L" & !is.na(sub$INTENSITY) & sub$INTENSITY != 0, ]
    					}
    				}
    					
    					numFea <- xtabs(~RUN, subtemp) ## RUN or run.label?
    					numFea <- numFea/length(unique(subtemp$FEATURE))
    					numFea <- numFea <= 0.5
    					removerunid <- names(numFea)[numFea]
    					
    					## if all measurements are NA,
          				if (length(removerunid)==length(numFea)) {
           					message(paste("Can't summarize for ", sub.pro.id, 
           					              "(", i, " of ", length(unique(data$PROTEIN)),
           					              ") because all runs have more than 50% NAs and are removed with the option, remove50missing=TRUE."))
            				# next()
          				    return(NULL)
          				}
    
    			}
    				
    			### check whether we need to impute or not.
    			if (sum(sub$cen == 0) > 0) {
    			
    				## 2. put minimum in feature level to NA
    				if (cutoffCensored == "minFeature") {
    					if (censoredInt == "NA") {
    						cut <- aggregate(ABUNDANCE ~ feature.label, data=sub, function(x) min(x, na.rm=TRUE))
    						## cutoff for each feature is little less than minimum abundance in a run.
    						cut$ABUNDANCE <- 0.99*cut$ABUNDANCE
    						
    						## remove runs which has more than 50% missing values
    						if (remove50missing) {
    							if (length(removerunid) != 0) {
    								sub <- sub[-which(sub$RUN %in% removerunid), ]
    								sub$RUN <- factor(sub$RUN)
    							}
    						}
    
    						for(j in 1:length(unique(cut$feature.label))) {
    							sub[is.na(sub$ABUNDANCE) & sub$censored &
    							        sub$feature.label == cut$feature.label[j], "ABUNDANCE"] <- cut$ABUNDANCE[j]
    						}
    					}
    					
    					if (censoredInt == "0") {
    						subtemptemp <- sub[!is.na(sub$ABUNDANCE) & sub$ABUNDANCE != 0, ]
    						cut <- aggregate(ABUNDANCE ~ feature.label, data=subtemptemp, FUN=min)
    						## cutoff for each feature is little less than minimum abundance in a run.
    						cut$ABUNDANCE <- 0.99*cut$ABUNDANCE
    						
    						## remove runs which has more than 50% missing values
    						if (remove50missing) {
    							if (length(removerunid) != 0) {
    								sub <- sub[-which(sub$RUN %in% removerunid), ]
    								sub$RUN <- factor(sub$RUN)
    							}
    						}
    						
    						for(j in 1:length(unique(cut$feature.label))) {
    							sub[!is.na(sub$ABUNDANCE) & sub$ABUNDANCE == 0  & 
    							        sub$feature.label == cut$feature.label[j], "ABUNDANCE"] <- cut$ABUNDANCE[j]
    						}
    					}
    				}
    				
    				## 3. put minimum in RUN to NA
    				if (cutoffCensored == "minRun") {
    				
    					## remove runs which has more than 50% missing values
    					if (remove50missing) {
    						if (length(removerunid) != 0) {
    							sub <- sub[-which(sub$RUN %in% removerunid), ]
    							sub$RUN <- factor(sub$RUN)
    						}
    					}
    						
    					if (censoredInt == "NA") {
    						cut <- aggregate(ABUNDANCE ~ run.label, data=sub, function(x) min(x, na.rm=TRUE))
    						## cutoff for each Run is little less than minimum abundance in a run.
    						cut$ABUNDANCE <- 0.99*cut$ABUNDANCE
    
    						for(j in 1:length(unique(cut$run.label))) {
    							sub[is.na(sub$ABUNDANCE) & sub$censored &
    							        sub$run.label == cut$run.label[j], "ABUNDANCE"] <- cut$ABUNDANCE[j]
    						}
    					}
    					
    					if (censoredInt == "0") {
    						subtemptemp <- sub[!is.na(sub$ABUNDANCE) & sub$ABUNDANCE != 0, ]
    						cut <- aggregate(ABUNDANCE ~ run.label, data=subtemptemp, FUN=min)
    						cut$ABUNDANCE <- 0.99*cut$ABUNDANCE
    
    						for(j in 1:length(unique(cut$run.label))) {
    							sub[!is.na(sub$ABUNDANCE) & 
    							        sub$ABUNDANCE == 0 & 
    							        sub$run.label == cut$run.label[j], "ABUNDANCE"] <- cut$ABUNDANCE[j]
    						}
    					}
    				}
    				
    				## 20150829 : 4. put minimum RUN and FEATURE
    				if (cutoffCensored == "minFeatureNRun") {
    					if (censoredInt == "NA") {
    						
    						## cutoff for each feature is little less than minimum abundance in a run.
    
    						cut.fea <- aggregate(ABUNDANCE ~ feature.label, data=sub, function(x) min(x, na.rm=TRUE))
    						cut.fea$ABUNDANCE <- 0.99*cut.fea$ABUNDANCE
    						
    						## remove runs which has more than 50% missing values
    						## before removing, need to contribute min feature calculation
    						if (remove50missing) {
    							if (length(removerunid) != 0) {
    								sub <- sub[-which(sub$RUN %in% removerunid), ]
    								sub$RUN <- factor(sub$RUN)
    							}
    						}
    						
    						## cutoff for each Run is little less than minimum abundance in a run.
    
    						cut.run <- aggregate(ABUNDANCE ~ run.label, data=sub, function(x) min(x, na.rm=TRUE))
    						cut.run$ABUNDANCE <- 0.99*cut.run$ABUNDANCE
    						
    						if (length(unique(cut.fea$feature.label)) > 1) {
    							for(j in 1:length(unique(cut.fea$feature.label))) {
    								for(k in 1:length(unique(cut.run$run.label))) {
    									# get smaller value for min Run and min Feature
    									finalcut <- min(cut.fea$ABUNDANCE[j],cut.run$ABUNDANCE[k])
    								
    									sub[is.na(sub$ABUNDANCE) & sub$censored &
    									        sub$feature.label == cut.fea$feature.label[j] & 
    									        sub$run.label == cut.run$run.label[k], "ABUNDANCE"] <- finalcut
    								}
    							}
    						}
    						# if single feature, not impute
    					}
    					
    					if (censoredInt == "0") {
    						subtemptemp <- sub[!is.na(sub$ABUNDANCE) & sub$ABUNDANCE != 0,]
    
    						cut.fea <- aggregate(ABUNDANCE ~ feature.label, data=subtemptemp, FUN=min)
    						cut.fea$ABUNDANCE <- 0.99*cut.fea$ABUNDANCE
    												
    						## remove runs which has more than 50% missing values
    						## before removing, need to contribute min feature calculation
    						if (remove50missing) {
    							if (length(removerunid) != 0) {
    								sub <- sub[-which(sub$RUN %in% removerunid), ]
    								sub$RUN <- factor(sub$RUN)
    							}
    						}
    
    						cut.run <- aggregate(ABUNDANCE~run.label, data=subtemptemp, FUN=min)
    						cut.run$ABUNDANCE <- 0.99*cut.run$ABUNDANCE
    	
    						if (length(unique(cut.fea$feature.label)) > 1) {
    							for(j in 1:length(unique(cut.fea$feature.label))) {
    								for(k in 1:length(unique(cut.run$run.label))) {
    									# get smaller value for min Run and min Feature
    									finalcut <- min(cut.fea$ABUNDANCE[j], cut.run$ABUNDANCE[k])
    								
    									sub[!is.na(sub$ABUNDANCE) & 
    									        sub$ABUNDANCE == 0 & 
    									        sub$feature.label == cut.fea$feature.label[j] & 
    									        sub$run.label == cut.run$run.label[k], "ABUNDANCE"] <- finalcut
    								}
    							}
    						} else { # single feature
    					
    							sub[!is.na(sub$ABUNDANCE) & sub$ABUNDANCE == 0, "ABUNDANCE"] <- cut.fea$ABUNDANCE
    							
    						}
    					}
    				}
    				
    				if (MBimpute) {
    					
    				    if(!label){ ## label-free
    					    if (nrow(sub[sub$cen == 0, ]) > 0) {
    						    ## impute by survival model
    						    subtemp <- sub[!is.na(sub$ABUNDANCE),]
    						    countdf <- nrow(subtemp) < (length(unique(subtemp$FEATURE))+length(unique(subtemp$RUN))-1)
    				
    						    set.seed(100)
    						    ### fit the model
    						    if (length(unique(sub$FEATURE)) == 1) {
    							    fittest <- survival::survreg(survival::Surv(ABUNDANCE, cen, type='left') ~ RUN, 
    							                                 data=sub, dist='gaussian')
    						    }else{
    							    if (countdf) {
    								    fittest <- survival::survreg(survival::Surv(ABUNDANCE, cen, type='left') ~ RUN, 
    								                                 data=sub, dist='gaussian')
    							    }else{
    								    fittest <- survival::survreg(survival::Surv(ABUNDANCE, cen, type='left') ~ FEATURE+RUN, 
    								                                 data=sub, dist='gaussian')
    							    }
    						    }
    					
    						    # get predicted value from survival
    						    predicted <- predict(fittest, newdata=sub, type="response")
    						    sub <- data.frame(sub, pred=ifelse(sub$censored & sub$LABEL == "L", predicted, NA))
    						    # the replace censored value with predicted value
    						    sub[sub$cen == 0, "ABUNDANCE"] <- sub[sub$cen == 0, "pred"]	
    					
    						    # save predicted value
    						    # predAbundance <- c(predAbundance,predict(fittest, newdata=sub, type="response"))
    						    #predAbundance <- c(predict(fittest, newdata=sub, type="response"))
    					    }
    				    } else { ## label-based
    				        # only endogenous will be imputed
    				        sub.h <- sub[sub$LABEL == 'H', ]
    				        sub.l <- sub[sub$LABEL == 'L', ]
    				        
    				        if (nrow(sub.l[sub.l$cen == 0, ]) > 0) {
    				            ## impute by survival model
    				            subtemp <- sub.l[!is.na(sub.l$ABUNDANCE),]
    				            countdf <- nrow(subtemp)<(length(unique(subtemp$FEATURE))+length(unique(subtemp$RUN))-1)
    				            
    				            set.seed(100)
    				            ### fit the model
    				            if (length(unique(sub.l$FEATURE))==1) {
    				                fittest <- survival::survreg(survival::Surv(ABUNDANCE, cen, type='left') ~ RUN,
    				                                             data=sub.l, dist='gaussian')
    				            }else{
    				                if (countdf) {
    				                    fittest <- survival::survreg(survival::Surv(ABUNDANCE, cen, type='left') ~ RUN, 
    				                                                 data=sub.l, dist='gaussian')
    				                }else{
    				                    fittest <- survival::survreg(survival::Surv(ABUNDANCE, cen, type='left') ~ FEATURE+RUN, 
    				                                                 data=sub.l, dist='gaussian')
    				                }
    				            }
    				            
    				            # get predicted value from survival
    				            # sub.l <- data.frame(sub.l, pred=predict(fittest, newdata=sub.l, type="response"))
    				            predicted <- predict(fittest, newdata=sub.l, type="response")
    				            sub.l <- data.frame(sub.l, pred=ifelse(sub.l$censored & sub.l$LABEL == "L", predicted, NA))
    				            
    				            # predAbundance <- c(predAbundance,predict(fittest, newdata=sub, type="response"))
    				            #predAbundance <- c(predict(fittest, newdata=sub.l, type="response"))
    				            
    				            # the replace censored value with predicted value
    				            sub.l[sub.l$cen == 0, "ABUNDANCE"] <- sub.l[sub.l$cen == 0, "pred"]	
    				            
    				            sub.h$pred <- NA
    				            
    				            ## for label-based, need to merge again
    				            sub <- rbind(sub.h, sub.l)
    				            
    				        }
    				        
    				    }
    				}	
    			}
    			
    			## then, finally remove NA in abundance
    			sub <- sub[!is.na(sub$ABUNDANCE), ]
    					        
                if (nlevels(sub$FEATURE) > 1) { ## for more than 1 features
                    if (!label) { ## label-free
          			
          		        data_w <- reshape2::dcast(RUN ~ FEATURE, data=sub, value.var='ABUNDANCE', keep=TRUE)
      				    rownames(data_w) <- data_w$RUN
      				    data_w <- data_w[, -1]
      				    data_w[data_w == 1] <- NA
      					
      				    if (!original_scale) {
      						
      					    meddata  <-  medpolish(data_w,na.rm=TRUE, trace.iter = FALSE)
    						tmpresult <- meddata$overall + meddata$row
    						
    						## if fractionated sample, need to get per sample run
    						## ?? if there are technical replicates, how to match sample and MS run for different fractionation??
    						
    						#if( length(unique(sub$METHOD)) > 1 ) {
    						#  runinfo <- unique(sub[, c("GROUP_ORIGINAL", "SUBJECT_ORIGINAL", "RUN", "METHOD")])
    						#  runinfo$uniquesub <- paste(runinfo$GROUP_ORIGINAL, runinfo$SUBJECT_ORIGINAL, sep="_")
    						#}
    						
      				    } else { # original_scale
      					    data_w <- 2^(data_w)
      						
      						meddata  <-  medpolish(data_w,na.rm=TRUE, trace.iter = FALSE)
    						tmpresult <- meddata$overall + meddata$row
    						
      					    tmpresult <- log2(tmpresult)
      				    }
      					
    					# count # feature per run
    					if (!is.null(censoredInt)) {
    						if (censoredInt == "NA") {
    							subtemp <- sub[!is.na(sub$INTENSITY), ]
    							subtempimpute <- sub[is.na(sub$INTENSITY), ]
    							subtempimpute <- subtempimpute[!is.na(subtempimpute$ABUNDANCE), ]
    						}
    					
    						if (censoredInt == "0") {
    							subtemp <- sub[!is.na(sub$INTENSITY) & sub$INTENSITY > 1, ] ## change at 2019. 10. 25
    							subtemp <- subtemp[!is.na(subtemp$ABUNDANCE) & subtemp$ABUNDANCE > 0, ] ## change at 2019. 10. 25
    							
    							subtempimpute <- sub[!is.na(sub$INTENSITY) & sub$censored, ] ## change at 2019. 10. 25
    						}
    						
    					    subtemp$RUN <- factor(subtemp$RUN, levels = rownames(data_w))
    						numFea <- xtabs(~RUN, subtemp)
    						numFeaPercentage <- 1 - numFea / length(unique(subtemp$FEATURE))
    						numFeaTF <- numFeaPercentage >= 0.5
    					
    						subtempimpute$RUN <- factor(subtempimpute$RUN, levels = rownames(data_w))
    						numimpute <- xtabs(~RUN, subtempimpute)
    					
    						sub.result <- data.frame(Protein = unique(sub$PROTEIN), 
    						                         LogIntensities = tmpresult, 
    						                         RUN = names(tmpresult), 
    						                         NumMeasuredFeature = as.vector(numFea), 
    						                         MissingPercentage = as.vector(numFeaPercentage), 
    						                         more50missing = numFeaTF, 
    						                         NumImputedFeature = as.vector(numimpute))
    					
    					} else {
    						subtemp <- sub[!is.na(sub$INTENSITY), ]
    						
    						subtemp$RUN <- factor(subtemp$RUN, levels =rownames(data_w))
    						numFea <- xtabs(~RUN, subtemp)
    						numFeaPercentage <- 1 - numFea / length(unique(subtemp$FEATURE))
    						numFeaTF <- numFeaPercentage >= 0.5
    										
    						sub.result <- data.frame(Protein=unique(sub$PROTEIN), 
    						                         LogIntensities=tmpresult, 
    						                         RUN=names(tmpresult), 
    						                         NumMeasuredFeature = as.vector(numFea), 
    						                         MissingPercentage=as.vector(numFeaPercentage), 
    						                         more50missing=numFeaTF)
    						
    					}
    								
          		        # result <- rbind(result, sub.result)
          			
          	        } else { ## labeled
    					
    					data_w = reshape2::dcast(run.label ~ FEATURE, data=sub, value.var='ABUNDANCE', keep=TRUE)
      				    rownames(data_w) <- data_w$run.label
      				    data_w <- data_w[, -1]
      				    #data_w[data_w==1] <- NA
      					
      				    meddata  <-  medpolish(data_w, na.rm=TRUE, trace.iter = FALSE)
    					tmpresult <- meddata$overall + meddata$row
    					
    					reformresult <- data.frame(tmpresult)
    					end <- nchar(rownames(reformresult))
    					reformresult$LABEL <- substr(rownames(reformresult), end, end)
    					reformresult$RUN <- substr(rownames(reformresult), 1, end-2)
    					colnames(reformresult)[1] <- "ABUNDANCE"
    					
    					## now single feature, adjust reference feature difference
          		        h <- reformresult[reformresult$LABEL == "H", ]
     					allmed <- median(h$ABUNDANCE, na.rm=TRUE)
    
            	        for (k in 1:length(unique(h$RUN))) {
              	            ## ABUNDANCE is normalized
            	            reformresult.logical <- reformresult$RUN == unique(h$RUN)[k]
            	            reformresult.idx <- which(reformresult.logical)
            	            reformresult[reformresult.idx, "ABUNDANCE"] <- reformresult[reformresult.idx, "ABUNDANCE"]-reformresult[reformresult.logical & reformresult$LABEL=="H","ABUNDANCE"]+allmed
            	        }
            			
            	        reformresult <- reformresult[reformresult$LABEL == "L", ]
            			
            	        subtemp <- reformresult[!is.na(reformresult$ABUNDANCE), ]
            			
            	        # count # feature per run
            	        if (!is.null(censoredInt)) {
    						if (censoredInt == "NA") {
    							subtemp <- sub[sub$LABEL == "L" & !is.na(sub$INTENSITY), ]
    							subtempimpute <- sub[sub$LABEL == "L" & is.na(sub$INTENSITY), ]
    							subtempimpute <- subtempimpute[!is.na(subtempimpute$ABUNDANCE), ]
    						}
    					
    						if (censoredInt == "0") {
    							subtemp <- sub[sub$LABEL == "L" & !is.na(sub$INTENSITY) & sub$INTENSITY > 1, ] ## change at 2019. 10. 25
    							subtemp <- subtemp[subtemp$LABEL == "L" & !is.na(subtemp$ABUNDANCE) & subtemp$ABUNDANCE > 0, ] ## change at 2019. 10. 25
    							
    							subtempimpute <- sub[sub$LABEL == "L" & !is.na(sub$INTENSITY) & sub$censored, ] ## change at 2019. 10. 25
    						}
    						
          			        numFea <- xtabs(~RUN, subtemp)
    						numFeaPercentage <- 1 - numFea / length(unique(subtemp$FEATURE))
    						numFeaTF <- numFeaPercentage >= 0.5
    					
    						numimpute <- xtabs(~RUN, subtempimpute)
    					
    						sub.result <- data.frame(Protein = unique(sub$PROTEIN), 
    						                         LogIntensities = reformresult$ABUNDANCE, 
    						                         RUN = reformresult$RUN, 
    						                         NumMeasuredFeature = as.vector(numFea), 
    						                         MissingPercentage = as.vector(numFeaPercentage), 
    						                         more50missing = numFeaTF, 
    						                         NumImputedFeature = as.vector(numimpute))
    
    					} else {
    						subtemp <- sub[sub$LABEL == "L" & !is.na(sub$INTENSITY), ]
    						
    						numFea <- xtabs(~RUN, subtemp)
    						numFeaPercentage <- 1 - numFea / length(unique(subtemp$FEATURE))
    						numFeaTF <- numFeaPercentage >= 0.5
    					
    						sub.result <- data.frame(Protein = unique(sub$PROTEIN),
    						                         LogIntensities = reformresult$ABUNDANCE, 
    						                         RUN = reformresult$RUN, 
    						                         NumMeasuredFeature = as.vector(numFea), 
    						                         MissingPercentage = as.vector(numFeaPercentage), 
    						                         more50missing = numFeaTF)
    
    					}
          				
          		        # result <- rbind(result, sub.result)
          	        }
          		
                } else { ## single feature
                    if (label) { ## label-based
          		
                        ## single feature, adjust reference feature difference
          		        h <- sub[sub$LABEL == "H", ]
     					allmed <- median(h$ABUNDANCE, na.rm=TRUE)
    
            	        for (k in 1:length(unique(h$RUN))) {
                            ## ABUNDANCE is normalized
            	          subrun.logical <- sub$RUN == unique(h$RUN)[k]
            	          subrun.idx <- which(subrun.logical)
            	          sub[subrun.idx, "ABUNDANCE"] <- sub[subrun.idx, "ABUNDANCE"] - sub[subrun.logical & sub$LABEL == "H", "ABUNDANCE"]+allmed
            	        }
            			
            	        sub <- sub[sub$LABEL == "L", ]
          	        }
          			
    				## single feature, use original values
    				
          	        subtemp <- sub[!is.na(sub$ABUNDANCE),]
          			
          	        if (!is.null(censoredInt)) {
          		        if (censoredInt == "NA") {
    						subtempcount <- sub[!is.na(sub$INTENSITY), ]
    						subtempimpute <- sub[is.na(sub$INTENSITY), ]
    						subtempimpute <- subtempimpute[!is.na(subtempimpute$ABUNDANCE), ]
    					}
    					
    					if (censoredInt == "0") {
    						subtempcount <- sub[!is.na(sub$INTENSITY) & sub$INTENSITY > 1, ] ## change at 2019. 10. 25
    						subtempcount <- subtempcount[!is.na(subtempcount$ABUNDANCE) & subtempcount$ABUNDANCE > 0, ] ## change at 2019. 10. 25
    						
    						subtempimpute <- sub[!is.na(sub$INTENSITY) & sub$censored, ] ## change at 2019. 10. 25
    						
    					}
    						
    					numFea <- xtabs(~RUN, subtempcount)
    					numFeaPercentage <- 1 - numFea / length(unique(subtemp$FEATURE))
    					numFeaTF <- numFeaPercentage >= 0.5
    					
    					numimpute <- xtabs(~RUN, subtempimpute)
    			
    					sub.result <- data.frame(Protein=subtemp$PROTEIN,
    					                         LogIntensities=subtemp$ABUNDANCE, 
    					                         RUN=subtemp$RUN, 
    					                         NumMeasuredFeature = as.vector(numFea), 
    					                         MissingPercentage=as.vector(numFeaPercentage), 
    					                         more50missing=numFeaTF, 
    					                         NumImputedFeature = as.vector(numimpute))
          			
    				} else {
    					subtempcount <- subtemp
    					
    					numFea <- xtabs(~RUN, subtempcount)
    					numFeaPercentage <- 1 - numFea / length(unique(subtemp$FEATURE))
    					numFeaTF <- numFeaPercentage >= 0.5
    					
          		        sub.result <- data.frame(Protein=subtemp$PROTEIN,
          		                                 LogIntensities=subtemp$ABUNDANCE, 
          		                                 RUN=subtemp$RUN, 
          		                                 NumMeasuredFeature = as.vector(numFea), 
          		                                 MissingPercentage=as.vector(numFeaPercentage), 
          		                                 more50missing=numFeaTF)
          				
    				}
    
          	        # result <- rbind(result, sub.result)
                }
    			
    			return(list(sub.result, predAbundance))
    			#return(list(sub.result))
    			
    		}  ## loop for proteins
    		close(pb)
    		#stopCluster(cl)  # foreach autocloses
    		
    		## Clean up the parallelized results
    		results.list <- list()
    		predAbundance.list <- list()
    		for(j in 1:length(MS_results[[1]])){
    		  # deal with the "results" first
    		  results.list[[j]] <- MS_results[[1]][[j]]
    		  predAbundance.list[[j]] <- MS_results[[2]][[j]]
    		}
    		result <- do.call(rbind, results.list)
    		predAbundance <- do.call(c, predAbundance.list)
    		#predAbundance <- predAbundance[-which(duplicated(predAbundance))] # remove duplicates
    		dataafterfit <- NULL
    		
		} else {
		    ##################
		    ## no cluster
		    pb <- txtProgressBar(max = nlevels(data$PROTEIN), style = 3)
		    
		    for(i in 1: nlevels(data$PROTEIN)) {
		        
		        sub <- data[data$PROTEIN == levels(data$PROTEIN)[i], ]
		        sub.pro.id <- levels(data$PROTEIN)[i]
		        
                if (message.show) {
                    message(paste("Getting the summarization by Tukey's median polish per subplot for protein ",
                                  sub.pro.id, "(", i," of ", length(unique(data$PROTEIN)), ")"))
                }
                  
                sub$FEATURE <- factor(sub$FEATURE)	
                sub$feature.label <- paste(sub$FEATURE, sub$LABEL, sep="_")
                sub$run.label <- paste(sub$RUN, sub$LABEL, sep="_")
                  
                ### how to decide censored or not
                if ( MBimpute ) {
                    if (!is.null(censoredInt)) {
                        ## 1. censored 
                        if (censoredInt == "0") {
                              
                            sub[sub$censored == TRUE, 'ABUNDANCE'] <- 0
                            sub$cen <- ifelse(sub$censored, 0, 1)
                              
                        }
                          
                        ## 2. all censored missing
                        if (censoredInt == "NA") {
                              
                            sub[sub$censored == TRUE, 'ABUNDANCE'] <- NA
                            sub$cen <- ifelse(sub$censored, 0, 1)
                              
                        }
                    }
                }
                  
                ## if all measurements are NA,
                if ( nrow(sub) == (sum(is.na(sub$ABUNDANCE)) + sum(!is.na(sub$ABUNDANCE) & sub$ABUNDANCE == 0)) ) {
                    message(paste("Can't summarize for ", sub.pro.id, 
                                  "(", i, " of ", length(unique(data$PROTEIN)),
                                  ") because all measurements are NAs."))
                    next()
                }
                  
                ## remove features which are completely NAs
                if ( MBimpute ) {
                    if (!is.null(censoredInt)) {
                        ## 1. censored 
                        if (censoredInt == "0") {
                            subtemp <- sub[sub$LABEL == "L" & !is.na(sub$ABUNDANCE) & sub$ABUNDANCE != 0, ]
                              
                        }
                          
                        ## 2. all censored missing
                        if (censoredInt == "NA") {
                              
                            subtemp <- sub[sub$LABEL == "L" & !is.na(sub$ABUNDANCE), ]
                              
                        }  
                          
                    } 
                } else {
                    subtemp <- sub[sub$LABEL == "L" & !is.na(sub$ABUNDANCE) & sub$ABUNDANCE != 0, ]
                }
                  
                countfeature <- xtabs(~FEATURE, subtemp)
                namefeature <- names(countfeature)[countfeature == 0]
                  
                if (length(namefeature) != 0) {
                    sub <- sub[-which(sub$FEATURE %in% namefeature), ]
                      
                    if (nrow(sub) == 0) {
                        message(paste("Can't summarize for ", sub.pro.id, 
                                "(", i, " of ", length(unique(data$PROTEIN)), 
                                ") because all measurements are NAs."))
                        next()
                          
                    } else {
                        sub$FEATURE <- factor(sub$FEATURE)
                    }
                }
                  
                ## remove features which have only 1 measurement.
                namefeature1 <- names(countfeature)[countfeature == 1]
                  
                if (length(namefeature1) != 0) {
                    sub <- sub[-which(sub$FEATURE %in% namefeature1), ]
                      
                    if (nrow(sub) == 0) {
                        message(paste("Can't summarize for ", sub.pro.id, 
                                "(", i, " of ", length(unique(data$PROTEIN)), 
                                ") because features have only one measurement across MS runs."))
                        next()

                    } else {
                        sub$FEATURE <- factor(sub$FEATURE)
                    }
                }
                  
                ## check one more time
                ## if all measurements are NA,
                if ( nrow(sub) == (sum(is.na(sub$ABUNDANCE)) + sum(!is.na(sub$ABUNDANCE) & sub$ABUNDANCE == 0)) ) {
                    message(paste("After removing features which has only 1 measurement, Can't summarize for ",
                                  sub.pro.id, "(", i," of ", length(unique(data$PROTEIN)), 
                            ") because all measurements are NAs."))
                    next()
                }
                  
                ## remove run which has no measurement at all 
                ## remove features which are completely NAs
                if ( MBimpute ) {
                    if (!is.null(censoredInt)) {
                        ## 1. censored 
                        if (censoredInt == "0") {
                            subtemp <- sub[sub$LABEL == "L" & !is.na(sub$ABUNDANCE) & sub$ABUNDANCE != 0, ]
                        }
                          
                        ## 2. all censored missing
                        if (censoredInt == "NA") {
                            subtemp <- sub[sub$LABEL == "L" & !is.na(sub$ABUNDANCE), ]
                        }  
                    } 
                } else {
                    subtemp <- sub[sub$LABEL == "L" & !is.na(sub$ABUNDANCE) & sub$ABUNDANCE != 0, ]
                }
                  
                count <- aggregate(ABUNDANCE ~ RUN, data=subtemp, length)
                norun <- setdiff(unique(data$RUN), count$RUN)
                  
                if (length(norun) != 0 & length(intersect(norun, as.character(unique(sub$RUN))))) { 
                    # removed NA rows already, if there is no overlapped run, error
                    sub <- sub[-which(sub$RUN %in% norun), ]
                    sub$RUN <- factor(sub$RUN)
                }
                  
                if (remove50missing) {
                    # count # feature per run
                    if (!is.null(censoredInt)) {
                        if (censoredInt == "NA") {
                            subtemp <- sub[sub$LABEL == "L" & !is.na(sub$INTENSITY), ]
                        }
                          
                        if (censoredInt == "0") {
                            subtemp <- sub[sub$LABEL == "L" & !is.na(sub$INTENSITY) & sub$INTENSITY != 0, ]
                        }
                    }
                      
                    numFea <- xtabs(~RUN, subtemp) ## RUN or run.label?
                    numFea <- numFea/length(unique(subtemp$FEATURE))
                    numFea <- numFea <= 0.5
                    removerunid <- names(numFea)[numFea]
                      
                    ## if all measurements are NA,
                    if (length(removerunid)==length(numFea)) {
                        message(paste("Can't summarize for ", sub.pro.id, 
                                "(", i, " of ", length(unique(data$PROTEIN)),
                                ") because all runs have more than 50% NAs and are removed with the option, remove50missing=TRUE."))
                        next()
                    }
                      
                }
                  
                ## check whether we need to impute or not.
                if (sum(sub$cen == 0) > 0) {
                      
                    ## 2. put minimum in feature level to NA
                    if (cutoffCensored == "minFeature") {
                        if (censoredInt == "NA") {
                            cut <- aggregate(ABUNDANCE ~ feature.label, data=sub, function(x) min(x, na.rm=TRUE))
                            ## cutoff for each feature is little less than minimum abundance in a run.
                            cut$ABUNDANCE <- 0.99*cut$ABUNDANCE
                              
                            ## remove runs which has more than 50% missing values
                            if (remove50missing) {
                                if (length(removerunid) != 0) {
                                    sub <- sub[-which(sub$RUN %in% removerunid), ]
                                    sub$RUN <- factor(sub$RUN)
                                }
                            }
                              
                            for(j in 1:length(unique(cut$feature.label))) {
                                sub[is.na(sub$ABUNDANCE) & sub$censored &
                                        sub$feature.label == cut$feature.label[j], "ABUNDANCE"] <- cut$ABUNDANCE[j]
                            }
                        }
                          
                        if (censoredInt == "0") {
                            subtemptemp <- sub[!is.na(sub$ABUNDANCE) & sub$ABUNDANCE != 0, ]
                            cut <- aggregate(ABUNDANCE ~ feature.label, data=subtemptemp, FUN=min)
                            ## cutoff for each feature is little less than minimum abundance in a run.
                            cut$ABUNDANCE <- 0.99*cut$ABUNDANCE
                              
                            ## remove runs which has more than 50% missing values
                            if (remove50missing) {
                                if (length(removerunid) != 0) {
                                    sub <- sub[-which(sub$RUN %in% removerunid), ]
                                    sub$RUN <- factor(sub$RUN)
                                }
                            }
                            
                            for(j in 1:length(unique(cut$feature.label))) {
                                sub[!is.na(sub$ABUNDANCE) & sub$ABUNDANCE == 0  & 
                                        sub$feature.label == cut$feature.label[j], "ABUNDANCE"] <- cut$ABUNDANCE[j]
                            }
                        }
                    }
                      
                    ## 3. put minimum in RUN to NA
                    if (cutoffCensored == "minRun") {
                          
                        ## remove runs which has more than 50% missing values
                        if (remove50missing) {
                            if (length(removerunid) != 0) {
                                sub <- sub[-which(sub$RUN %in% removerunid), ]
                                sub$RUN <- factor(sub$RUN)
                            }
                        }
                          
                        if (censoredInt == "NA") {
                            cut <- aggregate(ABUNDANCE ~ run.label, data=sub, function(x) min(x, na.rm=TRUE))
                            ## cutoff for each Run is little less than minimum abundance in a run.
                            cut$ABUNDANCE <- 0.99*cut$ABUNDANCE
                              
                            for(j in 1:length(unique(cut$run.label))) {
                                sub[is.na(sub$ABUNDANCE) & sub$censored &
                                        sub$run.label == cut$run.label[j], "ABUNDANCE"] <- cut$ABUNDANCE[j]
                                # sub[is.na(sub$ABUNDANCE) & 
                                #         sub$run.label == cut$run.label[j], "ABUNDANCE"] <- cut$ABUNDANCE[j]
                            }
                        }
                          
                        if (censoredInt == "0") {
                            subtemptemp <- sub[!is.na(sub$ABUNDANCE) & sub$ABUNDANCE != 0, ]
                            cut <- aggregate(ABUNDANCE ~ run.label, data=subtemptemp, FUN=min)
                            cut$ABUNDANCE <- 0.99*cut$ABUNDANCE
                              
                            for(j in 1:length(unique(cut$run.label))) {
                                sub[!is.na(sub$ABUNDANCE) & 
                                        sub$ABUNDANCE == 0 & 
                                        sub$run.label == cut$run.label[j], "ABUNDANCE"] <- cut$ABUNDANCE[j]
                            }
                        }
                    }
                      
                    ## 20150829 : 4. put minimum RUN and FEATURE
                    if (cutoffCensored == "minFeatureNRun") {
                        if (censoredInt == "NA") {
                              
                            ## cutoff for each feature is little less than minimum abundance in a run.
                              
                            cut.fea <- aggregate(ABUNDANCE ~ feature.label, data=sub, function(x) min(x, na.rm=TRUE))
                            cut.fea$ABUNDANCE <- 0.99*cut.fea$ABUNDANCE
                              
                            ## remove runs which has more than 50% missing values
                            ## before removing, need to contribute min feature calculation
                            if (remove50missing) {
                                if (length(removerunid) != 0) {
                                    sub <- sub[-which(sub$RUN %in% removerunid), ]
                                    sub$RUN <- factor(sub$RUN)
                                }
                            }
                              
                            ## cutoff for each Run is little less than minimum abundance in a run.
                              
                            cut.run <- aggregate(ABUNDANCE ~ run.label, data=sub, function(x) min(x, na.rm=TRUE))
                            cut.run$ABUNDANCE <- 0.99*cut.run$ABUNDANCE
                              
                            if (length(unique(cut.fea$feature.label)) > 1) {
                                for(j in 1:length(unique(cut.fea$feature.label))) {
                                    for(k in 1:length(unique(cut.run$run.label))) {
                                        # get smaller value for min Run and min Feature
                                        finalcut <- min(cut.fea$ABUNDANCE[j],cut.run$ABUNDANCE[k])
                                          
                                        sub[is.na(sub$ABUNDANCE) & sub$censored &
                                                sub$feature.label == cut.fea$feature.label[j] & 
                                                sub$run.label == cut.run$run.label[k], "ABUNDANCE"] <- finalcut
                                        
                                    }
                                }
                            }
                            # if single feature, not impute
                        }
                          
                        if (censoredInt == "0") {
                            subtemptemp <- sub[!is.na(sub$ABUNDANCE) & sub$ABUNDANCE != 0, ]
                              
                            cut.fea <- aggregate(ABUNDANCE ~ feature.label, data=subtemptemp, FUN=min)
                            cut.fea$ABUNDANCE <- 0.99*cut.fea$ABUNDANCE
                              
                            ## remove runs which has more than 50% missing values
                            ## before removing, need to contribute min feature calculation
                            if (remove50missing) {
                                if (length(removerunid) != 0) {
                                    sub <- sub[-which(sub$RUN %in% removerunid), ]
                                    sub$RUN <- factor(sub$RUN)
                                }
                            }
                              
                            cut.run <- aggregate(ABUNDANCE~run.label, data=subtemptemp, FUN=min)
                            cut.run$ABUNDANCE <- 0.99*cut.run$ABUNDANCE
                              
                            if (length(unique(cut.fea$feature.label)) > 1) {
                                for(j in 1:length(unique(cut.fea$feature.label))) {
                                    for(k in 1:length(unique(cut.run$run.label))) {
                                        # get smaller value for min Run and min Feature
                                        finalcut <- min(cut.fea$ABUNDANCE[j], cut.run$ABUNDANCE[k])
                                          
                                        sub[!is.na(sub$ABUNDANCE) & 
                                                sub$ABUNDANCE == 0 & 
                                                sub$feature.label == cut.fea$feature.label[j] & 
                                                sub$run.label == cut.run$run.label[k], "ABUNDANCE"] <- finalcut
                                    }
                                }
                            } else { # single feature
                                  
                                sub[!is.na(sub$ABUNDANCE) & sub$ABUNDANCE == 0, "ABUNDANCE"] <- cut.fea$ABUNDANCE
                                  
                            }
                        }
                    }
                      
                    if (MBimpute) {
                          
                        if(!label){ ## label-free
                            if (nrow(sub[sub$cen == 0, ]) > 0) {
                                ## impute by survival model
                                subtemp <- sub[!is.na(sub$ABUNDANCE),]
                                countdf <- nrow(subtemp) < (length(unique(subtemp$FEATURE))+length(unique(subtemp$RUN))-1)
                                  
                                set.seed(100)
                                ### fit the model
                                if (length(unique(sub$FEATURE)) == 1) {
                                    fittest <- survival::survreg(survival::Surv(ABUNDANCE, cen, type='left') ~ RUN, 
                                                                   data=sub, dist='gaussian')
                                } else {
                                    if (countdf) {
                                        fittest <- survival::survreg(survival::Surv(ABUNDANCE, cen, type='left') ~ RUN, 
                                                                     data=sub, dist='gaussian')
                                    } else {
                                        fittest <- survival::survreg(survival::Surv(ABUNDANCE, cen, type='left') ~ FEATURE+RUN, 
                                                                       data=sub, dist='gaussian')
                                    }
                                }
                                  
                                # get predicted value from survival
                                #sub <- data.frame(sub, pred=predict(fittest, newdata=sub, type="response"))
                                predicted <- predict(fittest, newdata=sub, type="response")
                                sub <- data.frame(sub, pred=ifelse(sub$censored & sub$LABEL == "L", predicted, NA))
                                
                                # the replace censored value with predicted value
                                sub[sub$cen == 0, "ABUNDANCE"] <- sub[sub$cen == 0, "pred"]	
                                  
                                # save predicted value
                                  # predAbundance <- c(predAbundance,predict(fittest, newdata=sub, type="response"))
                                  #predAbundance <- c(predict(fittest, newdata=sub, type="response"))
                            }
                        } else { ## label-based
                            # only endogenous will be imputed
                            sub.h <- sub[sub$LABEL == 'H', ]
                            sub.l <- sub[sub$LABEL == 'L', ]
                              
                            if (nrow(sub.l[sub.l$cen == 0, ]) > 0) {
                                ## impute by survival model
                                subtemp <- sub.l[!is.na(sub.l$ABUNDANCE),]
                                countdf <- nrow(subtemp)<(length(unique(subtemp$FEATURE))+length(unique(subtemp$RUN))-1)
                                  
                                set.seed(100)
                                ### fit the model
                                if (length(unique(sub.l$FEATURE))==1) {
                                    fittest <- survival::survreg(survival::Surv(ABUNDANCE, cen, type='left') ~ RUN,
                                                                 data=sub.l, dist='gaussian')
                                } else {
                                    if (countdf) {
                                        fittest <- survival::survreg(survival::Surv(ABUNDANCE, cen, type='left') ~ RUN, 
                                                                       data=sub.l, dist='gaussian')
                                    } else {
                                          fittest <- survival::survreg(survival::Surv(ABUNDANCE, cen, type='left') ~ FEATURE+RUN, 
                                                                       data=sub.l, dist='gaussian')
                                    }
                                }
                                  
                                # get predicted value from survival
                                # sub.l <- data.frame(sub.l, pred=predict(fittest, newdata=sub.l, type="response"))
                                
                                predicted <- predict(fittest, newdata=sub.l, type="response")
                                sub.l <- data.frame(sub.l, pred=ifelse(sub.l$censored & sub.l$LABEL == "L", predicted, NA))
                                  
                                # predAbundance <- c(predAbundance,predict(fittest, newdata=sub, type="response"))
                                #predAbundance <- c(predict(fittest, newdata=sub.l, type="response"))
                                  
                                # the replace censored value with predicted value
                                sub.l[sub.l$cen == 0, "ABUNDANCE"] <- sub.l[sub.l$cen == 0, "pred"]	
                                  
                                sub.h$pred <- NA
                                  
                                ## for label-based, need to merge again
                                sub <- rbind(sub.h, sub.l)
                                  
                            }
                              
                        }
                    }	
                }
                  
                ## then, finally remove NA in abundance
                sub <- sub[!is.na(sub$ABUNDANCE), ]
                  
                if (nlevels(sub$FEATURE) > 1) { ## for more than 1 features
                    if (!label) { ## label-free
                          
                        data_w <- reshape2::dcast(RUN ~ FEATURE, data=sub, value.var='ABUNDANCE', keep=TRUE)
                        rownames(data_w) <- data_w$RUN
                        data_w <- data_w[, -1]
                        data_w[data_w == 1] <- NA
                          
                        if (!original_scale) {
                              
                            meddata  <-  medpolish(data_w,na.rm=TRUE, trace.iter = FALSE)
                            tmpresult <- meddata$overall + meddata$row
                              
                              ## if fractionated sample, need to get per sample run
                              ## ?? if there are technical replicates, how to match sample and MS run for different fractionation??
                              
                              #if( length(unique(sub$METHOD)) > 1 ) {
                              #  runinfo <- unique(sub[, c("GROUP_ORIGINAL", "SUBJECT_ORIGINAL", "RUN", "METHOD")])
                              #  runinfo$uniquesub <- paste(runinfo$GROUP_ORIGINAL, runinfo$SUBJECT_ORIGINAL, sep="_")
                              #}
                              
                        } else { # original_scale
                            data_w <- 2^(data_w)
                             
                            meddata  <-  medpolish(data_w,na.rm=TRUE, trace.iter = FALSE)
                            tmpresult <- meddata$overall + meddata$row
                              
                            tmpresult <- log2(tmpresult)
                        }
                          
                        # count # feature per run
                        if (!is.null(censoredInt)) {
                            if (censoredInt == "NA") {
                                subtemp <- sub[!is.na(sub$INTENSITY), ]
                                subtempimpute <- sub[is.na(sub$INTENSITY), ]
                                subtempimpute <- subtempimpute[!is.na(subtempimpute$ABUNDANCE), ]
                            }
                              
                            if (censoredInt == "0") {
                                subtemp <- sub[!is.na(sub$INTENSITY) & sub$INTENSITY > 1, ] ## change at 2019. 10. 25
                                subtemp <- subtemp[!is.na(subtemp$ABUNDANCE) & subtemp$ABUNDANCE > 0, ] ## change at 2019. 10. 25
                                
                                subtempimpute <- sub[!is.na(sub$INTENSITY) & sub$censored, ] ## change at 2019. 10. 25
                                
                            }
                              
                            subtemp$RUN <- factor(subtemp$RUN, levels = rownames(data_w))
                            numFea <- xtabs(~RUN, subtemp)
                            numFeaPercentage <- 1 - numFea / length(unique(subtemp$FEATURE))
                            numFeaTF <- numFeaPercentage >= 0.5
                              
                            subtempimpute$RUN <- factor(subtempimpute$RUN, levels = rownames(data_w))
                            numimpute <- xtabs(~RUN, subtempimpute)
                              
                            sub.result <- data.frame(Protein = unique(sub$PROTEIN), 
                                                     LogIntensities = tmpresult, 
                                                     RUN = names(tmpresult), 
                                                     NumMeasuredFeature = as.vector(numFea), 
                                                     MissingPercentage = as.vector(numFeaPercentage), 
                                                     more50missing = numFeaTF, 
                                                     NumImputedFeature = as.vector(numimpute))
                              
                        } else {
                            subtemp <- sub[!is.na(sub$INTENSITY), ]
                              
                            subtemp$RUN <- factor(subtemp$RUN, levels =rownames(data_w))
                            numFea <- xtabs(~RUN, subtemp)
                            numFeaPercentage <- 1 - numFea / length(unique(subtemp$FEATURE))
                            numFeaTF <- numFeaPercentage >= 0.5
                              
                            sub.result <- data.frame(Protein=unique(sub$PROTEIN), 
                                                     LogIntensities=tmpresult, 
                                                     RUN=names(tmpresult), 
                                                     NumMeasuredFeature = as.vector(numFea), 
                                                     MissingPercentage=as.vector(numFeaPercentage), 
                                                     more50missing=numFeaTF)
                              
                        }
                          
                        result <- rbind(result, sub.result)
                          
                    } else { ## labeled
                          
                        data_w <- reshape2::dcast(run.label ~ FEATURE, data=sub, value.var='ABUNDANCE', keep=TRUE)
                        rownames(data_w) <- data_w$run.label
                        data_w <- data_w[, -1]
                        #data_w[data_w==1] <- NA
                          
                        meddata  <-  medpolish(data_w, na.rm=TRUE, trace.iter = FALSE)
                        tmpresult <- meddata$overall + meddata$row
                          
                        reformresult <- data.frame(tmpresult)
                        end <- nchar(rownames(reformresult))
                        reformresult$LABEL <- substr(rownames(reformresult), end, end)
                        reformresult$RUN <- substr(rownames(reformresult), 1, end-2)
                        colnames(reformresult)[1] <- "ABUNDANCE"
                          
                        ## now single feature, adjust reference feature difference
                        h <- reformresult[reformresult$LABEL == "H", ]
                        allmed <- median(h$ABUNDANCE, na.rm=TRUE)
                          
                        for (k in 1:length(unique(h$RUN))) {
                            ## ABUNDANCE is normalized
                            reformresult.logical <- reformresult$RUN == unique(h$RUN)[k]
                            reformresult.idx <- which(reformresult.logical)
                            reformresult[reformresult.idx, "ABUNDANCE"] <- reformresult[reformresult.idx, "ABUNDANCE"]-reformresult[reformresult.logical & reformresult$LABEL=="H","ABUNDANCE"]+allmed
                        }
                          
                        reformresult <- reformresult[reformresult$LABEL == "L", ]
                          
                        subtemp <- reformresult[!is.na(reformresult$ABUNDANCE), ]
                          
                        # count # feature per run
                        if (!is.null(censoredInt)) {
                            if (censoredInt == "NA") {
                                subtemp <- sub[sub$LABEL == "L" & !is.na(sub$INTENSITY), ]
                                subtempimpute <- sub[sub$LABEL == "L" & is.na(sub$INTENSITY), ]
                                subtempimpute <- subtempimpute[!is.na(subtempimpute$ABUNDANCE), ]
                            }
                              
                            if (censoredInt == "0") {
                                subtemp <- sub[sub$LABEL == "L" & !is.na(sub$INTENSITY) & sub$INTENSITY > 1, ] ## change at 2019. 10. 25
                                subtemp <- subtemp[subtemp$LABEL == "L" & !is.na(subtemp$ABUNDANCE) & subtemp$ABUNDANCE > 0, ] ## change at 2019. 10. 25
                                
                                subtempimpute <- sub[sub$LABEL == "L" & !is.na(sub$INTENSITY) & sub$censored, ] ## change at 2019. 10. 25
                               
                            }
                              
                            numFea <- xtabs(~RUN, subtemp)
                            numFeaPercentage <- 1 - numFea / length(unique(subtemp$FEATURE))
                            numFeaTF <- numFeaPercentage >= 0.5
                              
                            numimpute <- xtabs(~RUN, subtempimpute)
                              
                            sub.result <- data.frame(Protein = unique(sub$PROTEIN), 
                                                     LogIntensities = reformresult$ABUNDANCE, 
                                                     RUN = reformresult$RUN, 
                                                     NumMeasuredFeature = as.vector(numFea), 
                                                     MissingPercentage = as.vector(numFeaPercentage), 
                                                     more50missing = numFeaTF, 
                                                     NumImputedFeature = as.vector(numimpute))
                              
                        } else {
                            subtemp <- sub[sub$LABEL == "L" & !is.na(sub$INTENSITY), ]
                              
                            numFea <- xtabs(~RUN, subtemp)
                            numFeaPercentage <- 1 - numFea / length(unique(subtemp$FEATURE))
                            numFeaTF <- numFeaPercentage >= 0.5
                              
                            sub.result <- data.frame(Protein = unique(sub$PROTEIN),
                                                     LogIntensities = reformresult$ABUNDANCE, 
                                                     RUN = reformresult$RUN, 
                                                     NumMeasuredFeature = as.vector(numFea), 
                                                     MissingPercentage = as.vector(numFeaPercentage), 
                                                     more50missing = numFeaTF)
                              
                        }
                          
                        result <- rbind(result, sub.result)
                    }
                      
                } else { ## single feature
                    if (label) { ## label-based
                          
                        ## single feature, adjust reference feature difference
                        h <- sub[sub$LABEL == "H", ]
                        allmed <- median(h$ABUNDANCE, na.rm=TRUE)
                          
                        for (k in 1:length(unique(h$RUN))) {
                            ## ABUNDANCE is normalized
                            subrun.logical <- sub$RUN == unique(h$RUN)[k]
                            subrun.idx <- which(subrun.logical)
                            sub[subrun.idx, "ABUNDANCE"] <- sub[subrun.idx, "ABUNDANCE"] - sub[subrun.logical & sub$LABEL == "H", "ABUNDANCE"]+allmed
                        }
                          
                        sub <- sub[sub$LABEL == "L", ]
                    }
                      
                    ## single feature, use original values
                      
                    subtemp <- sub[!is.na(sub$ABUNDANCE),]
                      
                    if (!is.null(censoredInt)) {
                        if (censoredInt == "NA") {
                            subtempcount <- sub[!is.na(sub$INTENSITY), ]
                            subtempimpute <- sub[is.na(sub$INTENSITY), ]
                            subtempimpute <- subtempimpute[!is.na(subtempimpute$ABUNDANCE), ]
                        }
                          
                        if (censoredInt == "0") {
                            subtempcount <- sub[!is.na(sub$INTENSITY) & sub$INTENSITY > 1, ] ## change at 2019. 10. 25
                            subtempcount <- subtempcount[!is.na(subtempcount$ABUNDANCE) & subtempcount$ABUNDANCE > 0, ] ## change at 2019. 10. 25
                            
                            subtempimpute <- sub[!is.na(sub$INTENSITY) & sub$censored, ] ## change at 2019. 10. 25
                            
                        }
                          
                        numFea <- xtabs(~RUN, subtempcount)
                        numFeaPercentage <- 1 - numFea / length(unique(subtemp$FEATURE))
                        numFeaTF <- numFeaPercentage >= 0.5
                          
                        numimpute <- xtabs(~RUN, subtempimpute)
                          
                        sub.result <- data.frame(Protein=subtemp$PROTEIN,
                                                 LogIntensities=subtemp$ABUNDANCE, 
                                                 RUN=subtemp$RUN, 
                                                 NumMeasuredFeature = as.vector(numFea), 
                                                 MissingPercentage=as.vector(numFeaPercentage), 
                                                 more50missing=numFeaTF, 
                                                 NumImputedFeature = as.vector(numimpute))
                          
                    } else {
                        subtempcount <- subtemp
                          
                        numFea <- xtabs(~RUN, subtempcount)
                        numFeaPercentage <- 1 - numFea / length(unique(subtemp$FEATURE))
                        numFeaTF <- numFeaPercentage >= 0.5
                          
                        sub.result <- data.frame(Protein=subtemp$PROTEIN,
                                                 LogIntensities=subtemp$ABUNDANCE, 
                                                 RUN=subtemp$RUN, 
                                                 NumMeasuredFeature = as.vector(numFea), 
                                                 MissingPercentage=as.vector(numFeaPercentage), 
                                                 more50missing=numFeaTF)
                          
                    }
                      
                    result <- rbind(result, sub.result)
                }
                
                ## progress
                setTxtProgressBar(pb, i)
                
            }  ## loop for proteins
		    close(pb)
		    
		    dataafterfit <- NULL
		}
	}
		
	###################################
	## Method 3 : log sum	
    ## retired on Aug 2 2016
	
	###################################
	## method 4 : survival model for censored missing values
	if (summaryMethod == "linear" & !is.null(censoredInt)) {
			
		#data <- data[!is.na(data$ABUNDANCE),]
    	data$PROTEIN <- factor(data$PROTEIN)
    	data$RUN <- factor(data$RUN)
    	
		if (label) {
			
			result <- NULL

			for(i in 1:length(unique(data$PROTEIN))) {
	
				sub <- data[data$PROTEIN==unique(data$PROTEIN)[i],]
				sub.pro.id <- unique(data$PROTEIN)[i]
				
				if (message.show) {
				    message(paste("Getting the summarization for censored missing values per subplot for protein ",
				                  sub.pro.id, "(", i, " of ", length(unique(data$PROTEIN)), ")"))
				}
				
				sub$FEATURE <- factor(sub$FEATURE)
				sub$feature.label <- paste(sub$FEATURE, sub$LABEL, sep="_")
				sub$run.label <- paste(sub$RUN, sub$LABEL, sep="_")

				## if all measurements are NA,
      			if (nrow(sub)==sum(is.na(sub$ABUNDANCE))) {
       				message(paste("Can't summarize for ", sub.pro.id, 
       				              "(", i, " of ", length(unique(datafeature$PROTEIN)),
       				              ") because all measurements are NAs."))
        			next()
      			}
      			
				## remove run which has no measurement at all
				subtemp <- sub[sub$LABEL == "L" & !is.na(sub$INTENSITY), ]
				count <- aggregate(ABUNDANCE~RUN, data=subtemp, length)
				norun <- setdiff(unique(data$RUN), count$RUN)
				
				if (length(norun) != 0 & length(intersect(norun, as.character(unique(sub$RUN))))) { 
				    # removed NA rows already, if there is no overlapped run, error
					sub <- sub[-which(sub$RUN %in% norun), ]
					sub$RUN <- factor(sub$RUN)
				}
				
				if (length(unique(sub$RUN)) == 1) {
				
					message(paste("* Only 1 MS run in ", levels(data$PROTEIN)[i], 
					              " has measurement. Can't summarize with censored intensities."))
				
					next()
				}	
				
				## remove features which are completely NAs or zero
				subtemp <- sub[sub$LABEL == "L" & !is.na(sub$INTENSITY) & sub$INTENSITY != 0, ]
				countfeature <- xtabs(~FEATURE, subtemp)
				namefeature <- names(countfeature)[countfeature == 0]
				
				if (length(namefeature) != 0) {
					sub <- sub[-which(sub$FEATURE %in% namefeature), ]
					sub$FEATURE <- factor(sub$FEATURE)
				}		
				
				##### how to decide censored or not
				## 1. censored 
				if (censoredInt == "0") {
					sub$cen <- ifelse(!is.na(sub$INTENSITY) & sub$INTENSITY == 0, 0, 1)
				}
				
				### 2. all censored missing
				if (censoredInt == "NA") {
					sub$cen <- ifelse(is.na(sub$INTENSITY), 0, 1)
				}
				
				##### cutoffCensored
				## 1. put minimum in protein level to NA
				#if (cutoffCensored=="minEachProtein") {
				#	if (censoredInt=="NA") {
				#		cut <- min(sub$ABUNDANCE, na.rm=TRUE) 
				#		sub[is.na(sub$INTENSITY),"ABUNDANCE"] <- cut
				#	} 
					
				#	if (censoredInt=="0") {
				#		cut <- min(sub[!is.na(sub$INTENSITY) & sub$INTENSITY!=0,"ABUNDANCE"]) 
				#		sub[!is.na(sub$INTENSITY) & sub$INTENSITY==0,"ABUNDANCE"] <- cut
				#	}
				#}
				
				## 2. put minimum in feature level to NA
				if (cutoffCensored == "minFeature") {
					if (censoredInt == "NA") {
						cut <- aggregate(ABUNDANCE ~ feature.label, data=sub, function(x) min(x, na.rm=TRUE))
						## cutoff for each Run is little less than minimum abundance in a run.
						cut$ABUNDANCE <- 0.99*cut$ABUNDANCE

						for(j in 1:length(unique(cut$feature.label))) {
							sub[is.na(sub$INTENSITY) & sub$feature.label == cut$feature.label[j], "ABUNDANCE"] <- cut$ABUNDANCE[j]
						}
					}
					
					if (censoredInt == "0") {
						subtemptemp <- sub[!is.na(sub$INTENSITY) & sub$INTENSITY != 0, ]
						cut <- aggregate(ABUNDANCE ~ feature.label, data=subtemptemp, FUN=min)
						## cutoff for each Run is little less than minimum abundance in a run.
						cut$ABUNDANCE <- 0.99*cut$ABUNDANCE

						for(j in 1:length(unique(cut$feature.label))) {
							sub[!is.na(sub$INTENSITY) & sub$INTENSITY == 0  & 
							        sub$feature.label == cut$feature.label[j], "ABUNDANCE"] <- cut$ABUNDANCE[j]
						}
					}
				}
				
				## 3. put minimum in RUN to NA
				if (cutoffCensored == "minRun") {
					if (censoredInt == "NA") {
						cut <- aggregate(ABUNDANCE ~ run.label, data=sub, function(x) min(x, na.rm=TRUE))
						## cutoff for each Run is little less than minimum abundance in a run.
						cut$ABUNDANCE <- 0.99*cut$ABUNDANCE

						for(j in 1:length(unique(cut$run.label))) {
							sub[is.na(sub$INTENSITY) & sub$run.label == cut$run.label[j], "ABUNDANCE"] <- cut$ABUNDANCE[j]
						}
					}
					
					if (censoredInt == "0") {
						subtemptemp <- sub[!is.na(sub$INTENSITY) & sub$INTENSITY != 0, ]
						cut <- aggregate(ABUNDANCE ~ run.label, data=subtemptemp, FUN=min)
						## cutoff for each Run is little less than minimum abundance in a run.
						cut$ABUNDANCE <- 0.99*cut$ABUNDANCE

						for(j in 1:length(unique(cut$run.label))) {
							sub[!is.na(sub$INTENSITY) & sub$INTENSITY == 0 & 
							        sub$run.label == cut$run.label[j], "ABUNDANCE"] <- cut$ABUNDANCE[j]
						}
					}
				}
				
				## 20150829 : 4. put minimum RUN and FEATURE
				if (cutoffCensored == "minFeatureNRun") {
					if (censoredInt == "NA") {
						
						## cutoff for each feature is little less than minimum abundance in a run.

						cut.fea <- aggregate(ABUNDANCE ~ feature.label, data=sub, function(x) min(x, na.rm=TRUE))
						cut.fea$ABUNDANCE <- 0.99*cut.fea$ABUNDANCE
						
						## cutoff for each Run is little less than minimum abundance in a run.

						cut.run <- aggregate(ABUNDANCE ~ run.label, data=sub, function(x) min(x, na.rm=TRUE))
						cut.run$ABUNDANCE <- 0.99*cut.run$ABUNDANCE
						
						
						if (length(unique(sub$feature.label)) > 1) {
							for(j in 1:length(unique(sub$feature.label))) {
								for(k in 1:length(unique(sub$run.label))) {
									# get smaller value for min Run and min Feature
									finalcut <- min(cut.fea$ABUNDANCE[j],cut.run$ABUNDANCE[k])
								
									sub[is.na(sub$INTENSITY) & sub$feature.label == cut.fea$feature.label[j] & 
									        sub$run.label == cut.run$run.label[k], "ABUNDANCE"] <- finalcut
								}
							}
						}
							# if single feature, not impute
					}
					
					if (censoredInt == "0") {
						subtemptemp <- sub[!is.na(sub$INTENSITY) & sub$INTENSITY != 0, ]

						cut.fea <- aggregate(ABUNDANCE ~ feature.label, data=subtemptemp, FUN=min)
						cut.fea$ABUNDANCE <- 0.99*cut.fea$ABUNDANCE
												
						## remove runs which has more than 50% missing values
						## before removing, need to contribute min feature calculation
						if (remove50missing) {
							if (length(removerunid) != 0) {
								sub <- sub[-which(sub$RUN %in% removerunid), ]
								sub$RUN <- factor(sub$RUN)
							}
						}

						cut.run <- aggregate(ABUNDANCE ~ run.label, data=subtemptemp, FUN=min)
						cut.run$ABUNDANCE <- 0.99*cut.run$ABUNDANCE
	
						if (length(unique(sub$feature.label)) > 1) {
							for(j in 1:length(unique(sub$feature.label))) {
								for(k in 1:length(unique(sub$run.label))) {
									# get smaller value for min Run and min Feature
									finalcut <- min(cut.fea$ABUNDANCE[j], cut.run$ABUNDANCE[k])
								
									sub[!is.na(sub$INTENSITY) & sub$INTENSITY == 0 & 
									        sub$feature.label == cut.fea$feature.label[j] & 
									        sub$run.label == cut.run$run.label[k], "ABUNDANCE"] <- finalcut
								}
							}
						} else { # single feature
					
							sub[!is.na(sub$INTENSITY) & sub$INTENSITY == 0, "ABUNDANCE"] <- cut.fea$ABUNDANCE
							
						}
					}
				}	
	
				## when number of measurement is less than df, error for fitting
				subtemp <- sub[!is.na(sub$ABUNDANCE), ]
				countdf <- nrow(subtemp) < (length(unique(subtemp$FEATURE))+length(unique(subtemp$RUN))-1)
				
				set.seed(100)
				### fit the model
				if (length(unique(sub$FEATURE)) == 1) {
					
					# with single feature, not converge, wrong intercept
					# need to check
					fittest <- survival::survreg(survival::Surv(ABUNDANCE, cen, type='left') ~ RUN+ref,
					                             data=sub, dist='gaussian')
				} else {
					if (countdf) {
						fittest <- survival::survreg(survival::Surv(ABUNDANCE, cen, type='left') ~ RUN+ref,
						                             data=sub, dist='gaussian')
					} else {
						fittest <- survival::survreg(survival::Surv(ABUNDANCE, cen, type='left') ~ FEATURE+RUN+ref,
						                             data=sub, dist='gaussian')
					}
				}
				
		
				sub.result <- data.frame(Protein=unique(sub$PROTEIN),
				                         RUN=rep(c(levels(sub$RUN)), 1),
				                         LogIntensities=NA)

				# get the parameters
				cf <- summary(fittest)$coefficients

				# calculate sample quantification for all levels of sample
      			a <- 1	
          
       			for(j in 1:nlevels(sub$RUN)) {
       				contrast.matrix <- rep(0, nlevels(sub$RUN))
        			contrast.matrix[j] <- 1
          			contrast <- .make.contrast.run.quantification.Survival(fittest, contrast.matrix,sub, labeled=TRUE)
	
         			sub.result[a, 3] <- .estimableFixedQuantificationSurvival(cf, contrast)
         			a <- a+1
        		}

				result <- rbind(result, sub.result)
			}

			datamat <- reshape2::dcast( Protein ~ RUN, data=result, value.var='LogIntensities', keep=TRUE)
			datamat <- melt(datamat, id.vars=c('Protein'))
			colnames(datamat) <- c('Protein', 'RUN', 'LogIntensities')
			result <- datamat
			
		} else {
			
			result <- NULL

			for(i in 1:length(unique(data$PROTEIN))) {
	
				sub <- data[data$PROTEIN == unique(data$PROTEIN)[i], ]
				sub.pro.id <- unique(data$PROTEIN)[i]
				
				if (message.show) {
				    message(paste("Getting the summarization for censored missing values per subplot for protein ",
				                  sub.pro.id, "(", i, " of ", length(unique(data$PROTEIN)), ")"))
				}
				
				sub$FEATURE <- factor(sub$FEATURE)
	
				## if all measurements are NA,
      			if (nrow(sub) == sum(is.na(sub$ABUNDANCE))) {
       				message(paste("Can't summarize for ", sub.pro.id, 
       				              "(", i, " of ", length(unique(data$PROTEIN)),
       				              ") because all measurements are NAs."))
        			next()
      			}
      			
				## remove run which has no measurement at all
				subtemp <- sub[!is.na(sub$INTENSITY), ]
				count <- aggregate(ABUNDANCE~RUN, data=subtemp, length)
				norun <- setdiff(unique(data$RUN), count$RUN)
				
				if (length(norun) != 0 & length(intersect(norun, as.character(unique(sub$RUN)))) != 0) { 
				    # removed NA rows already, if there is no overlapped run, error
					sub <- sub[-which(sub$RUN %in% norun), ]
					sub$RUN <- factor(sub$RUN)
				}
				
				if (length(unique(sub$RUN)) == 1) {
				
					message(paste("* Only 1 MS run in ", levels(data$PROTEIN)[i], 
					              " has measurement. Can't summarize with censored intensities."))
				
					next()
				}	
						
				
				## remove features which are (completely NAs or zero) 
				subtemp <- sub[!is.na(sub$INTENSITY) & sub$INTENSITY != 0, ]
				countfeature <- xtabs(~FEATURE, subtemp)
				namefeature <- names(countfeature)[countfeature == 0]
				
				if (length(namefeature) != 0) {
					sub <- sub[-which(sub$FEATURE %in% namefeature), ]
					sub$FEATURE <- factor(sub$FEATURE)
				}
				
				if (nrow(sub) == 0) {
				
					message(paste("* All measurements are NAs or only one measurement per feature in ",
					              levels(data$PROTEIN)[i], ". Can't summarize with censored intensities."))
				
					next()
				}	

				##### how to decide censored or not
				## 1. censored 
				if (censoredInt == "0") {
					sub$cen <- ifelse(!is.na(sub$INTENSITY) & sub$INTENSITY == 0, 0, 1)
				}
				
				### 2. all censored missing
				if (censoredInt == "NA") {
					sub$cen <- ifelse(is.na(sub$INTENSITY), 0, 1)
				}

				## 2. put minimum in feature level to NA
				if (cutoffCensored == "minFeature") {
					if (censoredInt == "NA") {
						cut <- aggregate(ABUNDANCE ~ FEATURE, data=sub, function(x) min(x, na.rm=TRUE))
						## cutoff for each Run is little less than minimum abundance in a run.
						cut$ABUNDANCE <- 0.99*cut$ABUNDANCE

						for(j in 1:length(unique(cut$FEATURE))) {
							sub[is.na(sub$INTENSITY) & sub$FEATURE == cut$FEATURE[j], "ABUNDANCE"] <- cut$ABUNDANCE[j]
						}
					}
					
					if (censoredInt == "0") {
						subtemptemp <- sub[!is.na(sub$INTENSITY) & sub$INTENSITY != 0, ]
						cut <- aggregate(ABUNDANCE ~ FEATURE, data=subtemptemp, FUN=min)
						## cutoff for each Run is little less than minimum abundance in a run.
						cut$ABUNDANCE <- 0.99*cut$ABUNDANCE

						for(j in 1:length(unique(cut$FEATURE))) {
							sub[!is.na(sub$INTENSITY) & sub$INTENSITY == 0 & 
							        sub$FEATURE == cut$FEATURE[j], "ABUNDANCE"] <- cut$ABUNDANCE[j]
						}
					}
				}
				
				## 3. put minimum in RUN to NA
				if (cutoffCensored == "minRun") {
					if (censoredInt == "NA") {
						cut <- aggregate(ABUNDANCE~RUN, data=sub, function(x) min(x, na.rm=TRUE))
						## cutoff for each Run is little less than minimum abundance in a run.
						cut$ABUNDANCE <- 0.99*cut$ABUNDANCE

						for(j in 1:length(unique(cut$RUN))) {
							sub[is.na(sub$INTENSITY) & sub$RUN == cut$RUN[j], "ABUNDANCE"] <- cut$ABUNDANCE[j]
						}
					}
					
					if (censoredInt == "0") {
						subtemptemp <- sub[!is.na(sub$INTENSITY) & sub$INTENSITY != 0, ]
						cut <- aggregate(ABUNDANCE~RUN, data=subtemptemp, FUN=min)
						
						## cutoff for each Run is little less than minimum abundance in a run.
						cut$ABUNDANCE <- 0.99*cut$ABUNDANCE

						for(j in 1:length(unique(cut$RUN))) {
							sub[!is.na(sub$INTENSITY) & sub$INTENSITY == 0 & sub$RUN==cut$RUN[j], "ABUNDANCE"] <- cut$ABUNDANCE[j]
						}
					}
				}	
				
				## 20150829 : 4. put minimum RUN and FEATURE
				if (cutoffCensored == "minFeatureNRun") {
					if (censoredInt == "NA") {
						
						## cutoff for each feature is little less than minimum abundance in a run.
						cut.fea <- aggregate(ABUNDANCE ~ FEATURE, data=sub, function(x) min(x, na.rm=TRUE))
						cut.fea$ABUNDANCE <- 0.99*cut.fea$ABUNDANCE
												
						## cutoff for each Run is little less than minimum abundance in a run.

						cut.run <- aggregate(ABUNDANCE ~ RUN, data=sub, function(x) min(x, na.rm=TRUE))
						cut.run$ABUNDANCE <- 0.99*cut.run$ABUNDANCE
						
						if (length(unique(sub$FEATURE)) > 1) {
							for(j in 1:length(unique(sub$FEATURE))) {
								for(k in 1:length(unique(sub$RUN))) {
									# get smaller value for min Run and min Feature
									finalcut <- min(cut.fea$ABUNDANCE[j], cut.run$ABUNDANCE[k])
								
									sub[is.na(sub$INTENSITY) & sub$FEATURE == cut.fea$FEATURE[j] & 
									        sub$RUN == cut.run$RUN[k], "ABUNDANCE"] <- finalcut
								}
							}
						}
							# if single feature, not impute
					}
					
					if (censoredInt == "0") {
						subtemptemp <- sub[!is.na(sub$INTENSITY) & sub$INTENSITY != 0, ]

						cut.fea <- aggregate(ABUNDANCE ~ FEATURE, data=subtemptemp, FUN=min)
						cut.fea$ABUNDANCE <- 0.99*cut.fea$ABUNDANCE
						
						cut.run <- aggregate(ABUNDANCE ~ RUN, data=subtemptemp, FUN=min)
						cut.run$ABUNDANCE <- 0.99*cut.run$ABUNDANCE
	
						if (length(unique(sub$FEATURE)) > 1) {
							for(j in 1:length(unique(sub$FEATURE))) {
								for(k in 1:length(unique(sub$RUN))) {
									# get smaller value for min Run and min Feature
									finalcut <- min(cut.fea$ABUNDANCE[j], cut.run$ABUNDANCE[k])
								
									sub[!is.na(sub$INTENSITY) & sub$INTENSITY == 0 & 
									        sub$FEATURE == cut.fea$FEATURE[j] & sub$RUN == cut.run$RUN[k], "ABUNDANCE"] <- finalcut
								}
							}
						} else { # single feature
					
							sub[!is.na(sub$INTENSITY) & sub$INTENSITY == 0, "ABUNDANCE"] <- cut.fea$ABUNDANCE
							
						}
					}
				}
					
				
				## when number of measurement is less than df, error for fitting
				subtemp <- sub[!is.na(sub$ABUNDANCE), ]
				countdf <- nrow(subtemp) < (length(unique(subtemp$FEATURE))+length(unique(subtemp$RUN))-1)
				
				### fit the model
				if (length(unique(sub$FEATURE)) == 1) {
					fittest <- survival::survreg(survival::Surv(ABUNDANCE, cen, type='left') ~ RUN,
					                             data=sub, dist='gaussian')
				} else {
					if (countdf) {
						fittest <- survival::survreg(survival::Surv(ABUNDANCE, cen, type='left') ~ RUN,
						                             data=sub, dist='gaussian')
					} else {
						fittest <- survival::survreg(survival::Surv(ABUNDANCE, cen, type='left') ~ FEATURE+RUN,
						                             data=sub, dist='gaussian')
					}
				}
				
				sub.result <- data.frame(Protein=unique(sub$PROTEIN),
				                         RUN=rep(c(levels(sub$RUN)), 1),
				                         LogIntensities=NA)

				# get the parameters
				cf <- summary(fittest)$coefficients

				# calculate sample quantification for all levels of sample
      			a <- 1	
          
       			for(j in 1:nlevels(sub$RUN)) {
       				contrast.matrix <- rep(0, nlevels(sub$RUN))
        			contrast.matrix[j] <- 1
          					contrast <- .make.contrast.run.quantification.Survival(fittest, contrast.matrix,sub, labeled=FALSE)
	
         			 sub.result[a, 3] <- .estimableFixedQuantificationSurvival(cf, contrast)
         			 a <- a+1
        		}

				result <- rbind(result, sub.result)
			}

			datamat <- reshape2::dcast( Protein ~ RUN, data=result, value.var='LogIntensities', keep=TRUE)
			datamat <- melt(datamat, id.vars=c('Protein'))
			colnames(datamat) <- c('Protein','RUN','LogIntensities')
			result <- datamat
		}
		dataafterfit <- NULL	
	}
	
	###################################
	## final result
	finalout <- list(rqdata=result, ModelQC=dataafterfit, PredictedBySurvival=predAbundance)
	return(finalout)
	
}



##########################################################################################
## updated v3
.fit.quantification.run <- function(sub, singleFeature, singleSubject, TechReplicate, labeled, equalFeatureVar) {
	
	if (!labeled) { ### label-free case
		## for single Feature, original value is the run quantification
		if (singleFeature) {
			fit.full <- lm(ABUNDANCE ~ RUN , data = sub)
		}else{
			fit.full <- lm(ABUNDANCE ~ FEATURE + RUN , data = sub)
		}
		
	}else{ ### labeled-based case
		### update v3
		if (singleFeature) {
			fit.full <- lm(ABUNDANCE ~ RUN+ref , data = sub)
		}else{ ## several subjects
			fit.full <- lm(ABUNDANCE ~ FEATURE+RUN+ref , data = sub)
		}
	}
	
	## make equal variance for feature : need to be updated
    if (!equalFeatureVar) {
       fit.full <- .iter.wls.fit.model(data=sub, fit=fit.full, nrepeats=1)
    }
	
	return(fit.full)
}




#############################################
# check whether there are multiple runs for a replicate
# if yes, normalization should be different way.
#############################################

.countMultiRun <- function(data) {
  
    ## if some feature are missing for this spedific run, it could be error. that is why we need balanced design.
    ## with balanced design (fill in NA in each row), it should have different unique number of measurments per fractionation
    ## change it 
    ## 2017.05 24 : however, after going through converter functions, 
    ## with balanced design, impossible to detect fractionation
    is.risky <- FALSE
    
    ## if there is fraction info and multiple value for fraction column, we don't need to count here.
    if( any(is.element(colnames(data), 'FRACTION')) ) {
        ## already fraction info are available. there are multiple runs.
        out <- TRUE
        
    } else {
        
        ## there is no fraction information. First chec, whether there are tech replicates or not.
        info <- unique(data[, c('GROUP_ORIGINAL', 'SUBJECT_ORIGINAL', 'RUN')])
        info$condition <- paste(info$GROUP_ORIGINAL, info$SUBJECT_ORIGINAL, sep="_")

        count.tech <- xtabs(~ condition, info)
        
        is.multiplerun <- any(count.tech > 1)
        
        if ( !is.multiplerun ){ 
            ## only one run for condition*bioreplicate -> no tech replicate at all, no multiple run.
            out <- FALSE
        } else {
            ## need to distinguish whether technical replicate or multiple runs.
            ## For one specific sample, most of features are measured across runs -> tech replicate
            ## if not, multiple runs.
            tmp <- data[!is.na(data$ABUNDANCE), ]
            
            ## get on sample information
            info.sample1 <- info[info$condition == unique(info$condition)[1], ]
            tmp.sample1 <- tmp[tmp$GROUP_ORIGINAL == unique(info.sample1$GROUP_ORIGINAL) &
                                   tmp$SUBJECT_ORIGINAL == unique(info.sample1$SUBJECT_ORIGINAL), ]
            
            standardFeature <- unique(tmp.sample1[tmp.sample1$RUN == unique(tmp.sample1$RUN[1]), 
                                                  "FEATURE"]) 
            tmp.sample1$RUN <- factor(tmp.sample1$RUN)
            
            ## get overlapped feature ID
            countdiff <- tapply (tmp.sample1$FEATURE, 
                                 tmp.sample1$RUN, 
                                 function ( x ) length(intersect(unique(x), standardFeature)) ) 
            
            per.overlap.feature <- (countdiff)[-1] / max(unique(countdiff)) 
            
            ## first, technical replicate, no fraction : 
            ## all runs should have more than 50% features should be the same.
            if ( all( per.overlap.feature > 0.5 ) ){ ## then there are technical replicates
                out <- FALSE
            } else if ( all( per.overlap.feature < 0.5 ) ) {
                out <- TRUE
            } else {
                ## hard to distinguish fractionation automatically. need information
                ## if both fractionation and technical replicates are there, can't distinguish. 
                ## need fractionation info. + even technical replicate information is needed.
                out <- FALSE
                is.risky <- TRUE
            }
        }
    }
    
    result <- list(out = out,
                   is.risky = is.risky)
    
    return(result)
   
}

Try the MSstats package in your browser

Any scripts or data that you put into this service are public.

MSstats documentation built on Feb. 28, 2021, 2:01 a.m.