plotOTU: Basic plot function of the raw or normalized data.

Description Usage Arguments Value See Also Examples

View source: R/plotOTU.R

Description

This function plots the abundance of a particular OTU by class. The function uses the estimated posterior probabilities to make technical zeros transparent.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
plotOTU(
  obj,
  otu,
  classIndex,
  log = TRUE,
  norm = TRUE,
  jitter.factor = 1,
  pch = 21,
  labs = TRUE,
  xlab = NULL,
  ylab = NULL,
  jitter = TRUE,
  ...
)

Arguments

obj

A MRexperiment object with count data.

otu

The row number/OTU to plot.

classIndex

A list of the samples in their respective groups.

log

Whether or not to log2 transform the counts - if MRexperiment object.

norm

Whether or not to normalize the counts - if MRexperiment object.

jitter.factor

Factor value for jitter.

pch

Standard pch value for the plot command.

labs

Whether to include group labels or not. (TRUE/FALSE)

xlab

xlabel for the plot.

ylab

ylabel for the plot.

jitter

Boolean to jitter the count data or not.

...

Additional plot arguments.

Value

Plotted values

See Also

cumNorm

Examples

1
2
3
4
5
data(mouseData)
classIndex=list(controls=which(pData(mouseData)$diet=="BK"))
classIndex$cases=which(pData(mouseData)$diet=="Western")
# you can specify whether or not to normalize, and to what level
plotOTU(mouseData,otu=9083,classIndex,norm=FALSE,main="9083 feature abundances")

metagenomeSeq documentation built on Nov. 8, 2020, 5:34 p.m.