Nothing
#' Identification of upstream transcription factors for all genes.
#'
#' @param data_omics OmicsData object.
#' @return data_omics OmicsData object with upstream TFs identified for all
#' genes.
#'
#' @keywords manip
TFidentallgenes <- function(data_omics){
all_genes = unique(data_omics[[1]][[1]][[3]])
for(glen in 1: dim(all_genes)[1])
{data_omics[[1]][[3]][[2]]$all_gen[[glen]] = list(NA)}
names(data_omics[[1]][[3]][[2]]$all_gen) =
as.character(all_genes[[1]])
ind_allgenes = which(all_genes[,1] %in% data_omics[[3]][[2]][,2])
for(f in ind_allgenes)
{ ind_match = which(data_omics[[3]][[2]][,2] ==
as.character(all_genes[f,1]))
df_tf = data.frame(data_omics[[3]][[2]][ind_match,1])
colnames(df_tf) = c("upstreamTFs")
if(is.na(data_omics[[1]][[3]][[2]]$all_gen[[f]][[1]][1]))
{data_omics[[1]][[3]][[2]]$all_gen[[f]] = df_tf
}else{
data_omics[[1]][[3]][[2]]$all_gen[[f]] =
rbind(data_omics[[1]][[3]][[2]]$all_gen[[f]], df_tf)
}
message(paste("Upstream TFs identified for gene ",
as.character(all_genes[f,1]),
", no. ", f, " from ", dim(all_genes)[1], "\n", sep = ""))
}
return(data_omics)
}
#' Identification of upstream transcription factors.
#'
#' Identification of upstream transcription factors for the differentially
#' expressed genes of the different timepoints.
#'
#' @param data_omics OmicsData object.
#' @return data_omics OmicsData object with upstream TFs of differentially
#' expressed genes for separate timepoints identified.
#'
#' @keywords manip
TFidenttps <- function(data_omics){
data_omics[[1]][[3]][[2]] =
c(data_omics[[1]][[3]][[2]],
data_omics[[1]][[2]][[2]])
for(glen in 1: length(data_omics[[1]][[1]][[1]][[2]]))
{data_omics[[1]][[3]][[2]][[glen+1]] =
as.list(as.character(data_omics[[1]][[3]][[2]][[glen+1]][[1]]))
names(data_omics[[1]][[3]][[2]][[glen+1]]) =
data_omics[[1]][[3]][[2]][[glen+1]] }
for(k in 1: length(data_omics[[1]][[1]][[1]][[2]]))
{
names_genes = names(data_omics[[1]][[3]][[2]][[k+1]])
for(no_pro in 1: length(names_genes))
{if(names_genes[no_pro] %in% names(data_omics[[1]][[3]][[2]][[1]]))
{ data_omics[[1]][[3]][[2]][[k+1]][[no_pro]] =
data.frame(data_omics[[1]][[3]][[2]][[1]][which(names(data_omics[[1]][[3]][[2]][[1]]) ==
names_genes[no_pro])][[1]], upreg = data_omics[[1]][[2]][[2]][[k]][,2][no_pro]> 0)
}else{
data_omics[[1]][[3]][[2]][[k+1]][[no_pro]] = NA
}
}
}
return(data_omics)
}
#' Identification of pathwayIDs and pathway names for proteins at individual
#' timepoints.
#'
#' Take the identified pathways from the list of all proteins and transfer this
#' information for the individual timepoints.
#'
#' @param data_omics OmicsData object.
#' @return data_omics OmicsData object with all pathways identified for the
#' individual timepoints.
#'
#' @keywords manip
PWidenttps <- function(data_omics)
{
data_omics[[1]][[3]][[1]] =
c(data_omics[[1]][[3]][[1]],
data_omics[[1]][[2]][[1]])
for(plen in 1: length(data_omics[[1]][[1]][[1]][[1]]))
{data_omics[[1]][[3]][[1]][[plen+1]] =
as.list(as.character(data_omics[[1]][[3]][[1]][[plen+1]][,1]))
names(data_omics[[1]][[3]][[1]][[plen+1]]) =
data_omics[[1]][[3]][[1]][[plen+1]] }
for(k in 1: length(data_omics[[1]][[1]][[1]][[1]]))
{
names_prot = names(data_omics[[1]][[3]][[1]][[k+1]])
for(no_pro in 1: length(names_prot))
{data_omics[[1]][[3]][[1]][[k+1]][[no_pro]] =
data_omics[[1]][[3]][[1]][[1]][which(names(data_omics[[1]][[3]][[1]][[1]]) == names_prot[no_pro])][[1]]
data_omics[[1]][[3]][[1]][[k+1]][[no_pro]] =
data.frame(data_omics[[1]][[3]][[1]][[k+1]][[no_pro]],
upreg = (data_omics[[1]][[2]][[1]][[k]][,2][no_pro]> 0),
phosphoeffect = NA )
if(data_omics[[1]][[2]][[1]][[k]][,2][no_pro]> 0 & !is.na(data_omics[[1]][[2]][[1]][[k]][,3][no_pro]) & data_omics[[1]][[2]][[1]][[k]][,3][no_pro] > 0)
{data_omics[[1]][[3]][[1]][[k+1]][[no_pro]]$phosphoeffect = 1 }
if(data_omics[[1]][[2]][[1]][[k]][,2][no_pro]< 0 & !is.na(data_omics[[1]][[2]][[1]][[k]][,3][no_pro]) & data_omics[[1]][[2]][[1]][[k]][,3][no_pro]> 0)
{data_omics[[1]][[3]][[1]][[k+1]][[no_pro]]$phosphoeffect = -1 }
if(data_omics[[1]][[2]][[1]][[k]][,2][no_pro]> 0 & !is.na(data_omics[[1]][[2]][[1]][[k]][,3][no_pro]) & data_omics[[1]][[2]][[1]][[k]][,3][no_pro]< 0)
{data_omics[[1]][[3]][[1]][[k+1]][[no_pro]]$phosphoeffect = -1 }
if(data_omics[[1]][[2]][[1]][[k]][,2][no_pro]< 0 & !is.na(data_omics[[1]][[2]][[1]][[k]][,3][no_pro]) & data_omics[[1]][[2]][[1]][[k]][,3][no_pro]< 0)
{data_omics[[1]][[3]][[1]][[k+1]][[no_pro]]$phosphoeffect = 1 }
if(data_omics[[1]][[2]][[1]][[k]][,2][no_pro]> 0 & is.na(data_omics[[1]][[2]][[1]][[k]][,3][no_pro]))
{data_omics[[1]][[3]][[1]][[k+1]][[no_pro]]$phosphoeffect = 1 }
if(data_omics[[1]][[2]][[1]][[k]][,2][no_pro]< 0 & is.na(data_omics[[1]][[2]][[1]][[k]][,3][no_pro]))
{data_omics[[1]][[3]][[1]][[k+1]][[no_pro]]$phosphoeffect = -1 }
}
}
return(data_omics)
}
#' Identification of pathwayIDs and pathway names for all proteins.
#'
#' Identification of pathwayIDs and pathway names for all proteins.
#'
#' @param data_omics OmicsData object.
#' @param genelists lists of genelists from chosen pathway databases.
#' @return OmicsData object with identified pathway IDs for list of all
#' proteins.
#'
#' @keywords manip
PWidentallprots<- function(data_omics, genelists){
all_prots = as.character(unique(data_omics[[1]][[1]][[2]][[1]]))
for(plen in 1: length(unique(data_omics[[1]][[1]][[2]][[1]])))
{data_omics[[1]][[3]][[1]]$all_prot[[plen]] = list(NA)}
names(data_omics[[1]][[3]][[1]]$all_prot) = all_prots
if("biocarta" %in% data_omics[[2]][[1]])
{ genelist_ind = 1
datab = "biocarta"
data_omics = PWidentallprotssub(data_omics,
genelists, genelist_ind, datab)
}
if("kegg" %in% data_omics[[2]][[1]])
{ genelist_ind = 2
datab = "kegg"
data_omics = PWidentallprotssub(data_omics,
genelists, genelist_ind, datab)
}
if("nci" %in% data_omics[[2]][[1]])
{ genelist_ind = 3
datab = "nci"
data_omics = PWidentallprotssub(data_omics,
genelists, genelist_ind, datab)
}
if("reactome" %in% data_omics[[2]][[1]])
{ genelist_ind = 4
datab = "reactome"
data_omics = PWidentallprotssub(data_omics,
genelists, genelist_ind, datab)
}
for(plen in 1: length(unique(data_omics[[1]][[1]][[2]][[1]])))
{data_omics[[1]][[3]][[1]]$all_prot[[plen]] =
unique(data_omics[[1]][[3]][[1]]$all_prot[[plen]])}
return(data_omics)
}
#' Internal subfunction for all protein pathway identification.
#'
#' Internal subfunction for all protein pathway identification.
#'
#' @param data_omics OmicsData object.
#' @param genelists lists of genelists from chosen pathway databases
#' @param genelist_ind integer specifying pathway database genelist matching;
#' 1 = biocarta, 2 = kegg, 3 = nci, 4 = reactome.
#' @param datab character vector indicating database name for message.
#' @return OmicsData object with identified pathways for each protein.
#'
#' @keywords manip
PWidentallprotssub <- function(data_omics, genelists, genelist_ind, datab){
V2 = V3 = NULL
all_prots = unique(data_omics[[1]][[1]][[2]])
genes_cha = apply(genelists[[genelist_ind]][,1, with = FALSE], 2,
as.character)
if(datab == "reactome")
{ for(k in 1: length(genes_cha))
{
if(grepl("UniProt:", genes_cha[k]))
{genes_cha[k] = strsplit(genes_cha[k], " ")[[1]][2] }
}
}
ind_allprots = which(all_prots[,1] %in% genes_cha)
ind_allprotslist = which(genes_cha %in% as.character(all_prots[,1]))
for (f in ind_allprots)
{for(s in ind_allprotslist)
{ if(as.character(all_prots[f,1]) == genes_cha[s] )
{df_pw = data.frame(genelists[[genelist_ind]][s,V2],
genelists[[genelist_ind]][s,V3] )
colnames(df_pw) = c("pathwayIDs", "pathwayNames")
if(is.na(data_omics[[1]][[3]][[1]]$all_prot[[f]][[1]][1]))
{data_omics[[1]][[3]][[1]]$all_prot[[f]] = df_pw
}else{
data_omics[[1]][[3]][[1]]$all_prot[[f]] =
rbind(data_omics[[1]][[3]][[1]]$all_prot[[f]],
df_pw)
}}
}
message(datab, " pathways were identified for protein no. ",
f," - ", all_prots[f,1], "\n")
}
return(data_omics)
}
#' Create internal IDs.
#'
#' Create new internal ids in biopax$df:
#'
#' @param data_omics OmicsData object.
#' @param PWinfo pathway database information from chosen pathway databases as
#' from loadPWs.
#' @return list of internal IDs from specified pathway databases.
#'
#' @keywords manip
createIntIDs <- function(data_omics, PWinfo) {
bp_biocarta = "NA"
bp_kegg = "NA"
bp_nci = "NA"
bp_react_homos = "NA"
if("biocarta" %in% data_omics[[2]][[1]])
{PWinfo_ind = 1
PWDBname = "biocarta"
bp_biocarta = genIntIDs(data_omics, PWinfo, PWinfo_ind, PWDBname)}
if("kegg" %in% data_omics[[2]][[1]])
{PWinfo_ind = 2
PWDBname = "kegg"
bp_kegg = genIntIDs(data_omics, PWinfo, PWinfo_ind, PWDBname)}
if("nci" %in% data_omics[[2]][[1]])
{PWinfo_ind = 3
PWDBname = "nci"
bp_nci = genIntIDs(data_omics, PWinfo, PWinfo_ind, PWDBname)}
if("reactome" %in% data_omics[[2]][[1]])
{PWinfo_ind = 4
PWDBname = "reactome"
bp_react_homos = genIntIDs(data_omics, PWinfo, PWinfo_ind, PWDBname)}
intIDs = list(bp_biocarta, bp_kegg, bp_nci, bp_react_homos)
return(intIDs)
}
#' Internal function for generation of pathway database specific internal IDs.
#'
#' Generates new internal ids (database-specific) in biopax$df.
#'
#' @param data_omics OmicsData object.
#' @param PWinfo pathway database information from chosen pathway databases as
#' from loadPWs.
#' @param PWinfo_ind integer specifying element of loadPWs output matching the
#' chosen pathway database.
#' @param PWDBname character; pathway database name.
#' @return data.table with newly generated internal IDs of biopax model.
#'
#' @keywords manip
genIntIDs <- function(data_omics, PWinfo, PWinfo_ind, PWDBname) {
bp_mod = PWinfo[[PWinfo_ind]]
bp_mod_dt = bp_mod$dt
col_names = colnames(bp_mod$dt)
bp_mod_dt = sapply(bp_mod_dt, as.character)
for (i in 1:dim(bp_mod_dt)[1])
{
bp_mod_dt[i,"id"] = paste("bp3_", PWDBname, "_",bp_mod_dt[i,"id"],sep="")
if (bp_mod_dt[i,"property_attr"] == "rdf:resource")
{
bp_mod_dt[i,"property_attr_value"] = paste("#bp3_", PWDBname,
"_",sub("#","",bp_mod_dt[i,"property_attr_value"]), sep = "")
}
}
bp_mod_dt = data.table(bp_mod_dt)
for (col in col_names)
{set(bp_mod_dt, j=col, value=as.character(bp_mod_dt[[col]]))}
bp_mod$dt = bp_mod_dt
message("Internal IDs for ", PWDBname," database were generated.\n")
return(bp_mod)
}
#' Read in matching transcription factor target gene pairs.
#'
#' In case the user is able to provide a file with transcription factor -
#' target gene matches (e.g. from TRANSFAC database) this function can read in
#' the information.
#' The file needs to be a txt file with first column transcription factors and
#' second column target gene symbols without a header.
#'
#' @param data_omics OmicsData object.
#' @param TF_target_path path of txt file containing the transcription factor
#' target gene information as specified above.
#' @return data frame with user-specified TF target gene information.
#'
#' @keywords manip
readTFtargets <- function(data_omics, TF_target_path) {
TF_database_p = read.delim(TF_target_path, header = FALSE)
if(dim(TF_database_p)[2] != 2)
{stop("User-specified TF-target gene information file has wrong format.")}
return(TF_database_p)
}
#' Get Gene Symbols from Ensemble Gene Accession IDs.
#'
#' @param ids vector of Ensemble Gene Accession IDs.
#' @return ids character vector of gene symbols.
#'
#' @keywords manip
getAlias_Ensemble <- function(ids)
{
ensembl = useDataset("hsapiens_gene_ensembl",
mart = useMart("ENSEMBL_MART_ENSEMBL",
dataset="hsapiens_gene_ensembl",
host = "www.ensembl.org"))
hgnc = getBM(attributes = c('ensembl_gene_id', 'hgnc_symbol'),
filters = "ensembl_gene_id", values = ids, mart = ensembl)
return(hgnc)
}
#' Load pathway database information.
#'
#' This function loads the pathway information from pathway databases.
#' Needed in the identifyPWs function.
#'
#' @param pwdatabases vector indicating with which pathway database the
#' pathways should be determined; possible choices
#' are "biocarta", "kegg", "nci", "reactome".
#' @param biopax_level integer indicating biopax level of pathway database
#' information to be retrieved.
#' @return list of biopax model corresponding to specified pathway databases.
#'
#' @keywords manip
loadPWs <- function(pwdatabases, biopax_level) {
ah = AnnotationHub()
biopax = query(ah, "NIH Pathway Interaction Database")
if(biopax_level == 2)
{ind_pw = which(grepl("bp2", biopax$title)== TRUE)
}else{
stop("Biopax level is not supported momentarily.")
}
if("biocarta" %in% pwdatabases)
{bp_biocarta = biopax[[grep("BioCarta", biopax$title)[which(grep("BioCarta", biopax$title) %in% ind_pw)][[1]] ]]
}else{
bp_biocarta = NA}
if("kegg" %in% pwdatabases)
{bp_kegg = biopax[[grep("KEGG", biopax$title)[which(grep("KEGG", biopax$title) %in% ind_pw)][[1]] ]]
}else{
bp_kegg = NA}
if("nci" %in% pwdatabases)
{bp_nci = biopax[[grep("NCI-Nature_Curated", biopax$title)[which(grep("NCI-Nature_Curated", biopax$title) %in% ind_pw)][[1]] ]]
}else{
bp_nci = NA}
if("reactome" %in% pwdatabases)
{bp_react_homos = biopax[[grep("Reactome", biopax$title)[which(grep("Reactome", biopax$title) %in% ind_pw)][[1]] ]]
}else{
bp_react_homos = NA}
return(list(bp_biocarta, bp_kegg, bp_nci, bp_react_homos))
}
#' Generate genelists from pathway databases.
#'
#' This function generates genelists from the chosen pathway databases for
#' further processing in detPathways function.
#'
#' @param intIDs list containing Biopax model with newly generated internal IDs
#' as processed with genintIDs function.
#' The components of the list are biopax models for "biocarta", "kegg", "nci",
#' "reactome". In case a database was not chosen the list
#' entry contains a NA.
#' @param pwdatabases vector indicating with which pathway database the pathways
#' should be determined; possible choices
#' are "biocarta", "kegg", "nci", "reactome".
#' @return list of genelists of specified pathway databases.
#'
#' @keywords manip
genGenelists <- function(intIDs, pwdatabases) {
Genelist_biocarta_all = "NA"
Genelist_kegg_all = "NA"
Genelist_nci_all = "NA"
Genelist_react_homos_all = "NA"
if("biocarta" %in% pwdatabases){
database_int = 1
PWDB_name = "biocarta"
Genelist_biocarta_all = genGenelistssub(intIDs, database_int, PWDB_name)
}
if("kegg" %in% pwdatabases){
database_int = 2
PWDB_name = "kegg"
Genelist_kegg_all = genGenelistssub(intIDs, database_int, PWDB_name)
}
if("nci" %in% pwdatabases){
database_int = 3
PWDB_name = "nci"
Genelist_nci_all = genGenelistssub(intIDs, database_int, PWDB_name)
}
if("reactome" %in% pwdatabases){
database_int = 4
PWDB_name = "reactome"
Genelist_react_homos_all = genGenelistssub(intIDs, database_int,
PWDB_name)
}
return(list(Genelist_biocarta_all, Genelist_kegg_all, Genelist_nci_all,
Genelist_react_homos_all))
}
#' Generate internally genelists from pathway databases.
#'
#' This function generates genelists for a particular pathway database for
#' further processing in detPathways function.
#'
#' @param intIDs list containing Biopax model with newly generated internal IDs
#' as processed with genintIDs function.
#' The components of the list are biopax models for "biocarta", "kegg", "nci",
#' "reactome". In case a database was not chosen the list
#' entry contains a NA.
#' @param database_int integer indicating database entry in indIDs (output of
#' genintIDs); biocarta = 1, kegg = 2, nci = 4, reactome = 4.
#' @param PWDB_name character; pathway database name.
#' @return data.table of genelist of particular pathway database.
#'
#' @keywords manip
genGenelistssub <- function(intIDs, database_int, PWDB_name) {
pathways = listPathways(intIDs[[database_int]])
Genelist = data.table()
Genelist_all = data.table()
for(d in 1:dim(pathways)[1])
{
Genelist = pathway2Geneset(intIDs[[database_int]],
pwid = pathways[d,1])$name
Genelist = Genelist[which(Genelist!="")]
Genelist = cbind(Genelist, pathways[d,1],
listInstances(intIDs[[database_int]],
pathways[d,1])$name)
if(dim(Genelist)[1] != 1)
{Genelist_all = rbind(Genelist_all, as.data.table(Genelist))}
message( PWDB_name, " Genelist is generated, pathway no. ", d, "\n")
}
save(Genelist_all, file = paste(getwd(), "/Genelist_",
PWDB_name, ".RData", sep = "") )
return(Genelist_all)
}
#' Create a new Biopax model containing all database information.
#'
#' This function creates a new biopax model depending on which
#' pathway databases are chosen for analysis.
#'
#' @param intIDs output list of genintIDs function.
#' @param pwdatabases vector indicating with which pathway database the
#' pathways should be determined; possible choices are "biocarta", "kegg",
#' "nci", "reactome".
#' @return biopax object generated from the specified pathway databases.
#'
#' @keywords manip
createBiopaxnew <- function(intIDs, pwdatabases) {
all_databases = createBiopax(level = 2)
if("biocarta" %in% pwdatabases)
{all_databases$dt = rbind(all_databases$dt, intIDs[[1]]$dt)}
if("kegg" %in% pwdatabases)
{all_databases$dt = rbind(all_databases$dt, intIDs[[2]]$dt)}
if("nci" %in% pwdatabases)
{all_databases$dt = rbind(all_databases$dt, intIDs[[3]]$dt)}
if("reactome" %in% pwdatabases)
{all_databases$dt = rbind(all_databases$dt, intIDs[[4]]$dt)}
return(all_databases)
}
#' Loading of genelists
#'
#' This function automatically loads the genelists corresponding to the selected
#' pathway databases stored as RData file in the current working directory.
#'
#' @return genelist of specified pathway database.
#'
#' @keywords manip
loadGenelists <- function()
{
files_genelists = list.files(path = getwd(), pattern = "*.RData")
genelists = list()
for(s in 1: length(files_genelists))
{ genelists[[s]] = base::get(load(paste(getwd(), files_genelists[s], sep = "/")))}
return(genelists)
}
#' Identify overlapping upstream regulators of x transcription factors
#'
#' @param pws_morex_TFs list of transcription factors in identified pathways.
#' @param data_omics OmicsData object.
#' @param order_neighbors integer specifiying the order of the neighborhood:
#' order 1 is TF plus its immediate neighbors.
#' @param noTFs_inPW integer; only regulators in upstream pathways with more
#' than this number of TFs are identified.
#' @return list of possible proteomic regulators.
#'
#' @keywords manip
identRegulators <- function(pws_morex_TFs, data_omics, order_neighbors,
noTFs_inPW) {
regulators = list()
regulators[1: length(pws_morex_TFs)] = NA
names(regulators) = names(pws_morex_TFs)
for(pwxTFs in 1:length(pws_morex_TFs))
{
neighbors = findxnextneighbors(data_omics, pws_morex_TFs, pwxTFs,
order_neighbors)
if(length(neighbors) > 0 & !is.na(neighbors[[1]][1,1]))
{
if(noTFs_inPW > 1)
{regulators[[pwxTFs]] = findxneighborsoverlap(neighbors, noTFs_inPW,
regulators[[pwxTFs]])
}else{
regulators[[pwxTFs]] = neighbors
}
}else{
regulators[[pwxTFs]] = neighbors
}
if(is.na(regulators[[pwxTFs]][[1]][1])[1])
{message("Pathway '", names(pws_morex_TFs[pwxTFs]),
"' is checked for regulators...\n The pathway seems to have no inhibitory/activating pathway components.\n")
}else{
if(noTFs_inPW == 1)
{message("Pathway '", names(pws_morex_TFs[pwxTFs]),
"' is checked for regulators...\n Regulators identified: ",
paste(do.call("rbind", regulators[[pwxTFs]])[,1], collapse = ", "), "\n")
}else{
message("Pathway '", names(pws_morex_TFs[pwxTFs]),
"' is checked for regulators...\n Regulators identified: ",
paste(regulators[[pwxTFs]][,1], collapse = ", "), "\n") }
}
}
return(regulators)
}
#' Find overlap of next neighbors of transcription factors in identified
#' pathways.
#'
#' Find the overlap of x next neighbors of transcription factors in identified
#' pathways. Writes the overlap into a given list called 'regulators'.
#'
#' @param neighbors list of x next neighbors for each transcription factor in
#' the pathway as provided by findxnextneighbors function.
#' @param regul list element of regulators list for current pathway.
#' @param noTFs_inPW numeric value specifying number of TFs being at least part
#' of the pathway.
#' @return list of regulators identified in x next neighbors of TFs.
#'
#' @keywords manip
findxneighborsoverlap <- function(neighbors, noTFs_inPW, regul) {
neighborlist = do.call("rbind", neighbors)
neighborlist = na.omit(neighborlist)
regul_upreg = vector()
if(length(neighborlist[,1])>0)
{for(nover in 1: length(neighborlist[,1]))
{ neighbors_found = 0
for(no_TFs in 1: length(neighbors))
{if(neighborlist[nover,1] %in% neighbors[[no_TFs]][,1] )
{neighbors_found = neighbors_found + 1
if(neighbors_found > (noTFs_inPW-1) )
{regul = c(regul, as.character(neighbors[[no_TFs]][which(as.character(neighbors[[no_TFs]][,1]) ==
as.character(neighborlist[nover,1])),1]))}
}
}
}
}
regul = unique(regul[3: length(regul)])
regul_upreg = neighborlist[match(regul, neighborlist[,1]),2]
regul = data.frame(regulators = regul, upreg = regul_upreg)
return(regul)
}
#' Find next neighbors of transcription factors in identified pathways.
#'
#' Produces a list of x next neighbors for each transcription factor in the
#' pathway.
#'
#' @param data_omics OmicsData object.
#' @param pws_morex_TFs list of transcription factors in identified pathways.
#' @param pwxTFs numeric variable of pathway currently investigated
#' (from pws_morexTFs).
#' @param order_neighbors integer specifiying the order of the neighborhood:
#' order 1 is TF plus its immediate neighbors.
#' @return list of x next neighbors for each TF in the pathway.
#'
#' @keywords manip
findxnextneighbors <- function(data_omics, pws_morex_TFs, pwxTFs,
order_neighbors) {
mygraph = pathway2RegulatoryGraph(data_omics[[2]][[2]],
names(pws_morex_TFs)[pwxTFs],
expandSubpathways = TRUE,
splitComplexMolecules = TRUE,
useIDasNodenames = FALSE, verbose = TRUE)
if(class(mygraph)== "graphNEL")
{ mygraph_i = igraph.from.graphNEL(mygraph, name = TRUE)
neighbors = list()
for(neigh in 1: dim(pws_morex_TFs[[pwxTFs]])[1])
{ if(pws_morex_TFs[[pwxTFs]][neigh,1] %in%
get.vertex.attribute(mygraph_i,"name"))
{neighbors[[neigh]] = get.vertex.attribute(mygraph_i,"name",index =
unlist(neighborhood(mygraph_i,order_neighbors,
as.character(pws_morex_TFs[[pwxTFs]][neigh,1]),mode="in")))
neighbors[[neigh]] = neighbors[[neigh]][which(neighbors[[neigh]] !=
pws_morex_TFs[[pwxTFs]][neigh,1]) ]
if(length(neighbors[[neigh]]) > 0)
{neighbors[[neigh]] = data.frame(regulators = neighbors[[neigh]], upreg = pws_morex_TFs[[pwxTFs]][neigh,2])
names(neighbors)[neigh] = as.character(pws_morex_TFs[[pwxTFs]][neigh,1])
}else{
neighbors[[neigh]] = data.frame(regulators = NA, upreg = NA)
names(neighbors)[neigh] = NA
}
}else{
neighbors[[neigh]] = data.frame(regulators = NA, upreg = NA)
names(neighbors)[neigh] =NA
}
}
}else{
neighbors[[neigh]] = data.frame(regulators = NA, upreg = NA)
names(neighbors)[neigh] =NA
message("This pathway was not from graphNEL class and is therefore not processable.
Please check that only graphNEL class pathways are used.\n")
}
return(neighbors)
}
#' Select pathways with more than x TFs
#'
#' @param pathway_list first element of list returned from identPWsofTFs
#' function; contains a list of pathways.
#' @param pathway_frame second element of list returned from identPWsofTFs
#' function; contains a data.frame of pathways.
#' @param noTFs_inPW numeric value specifying number of TFs being at least
#' part of the pathway.
#' @return list of pathways with more than x TFs.
#'
#' @keywords manip
selectPWsofTFs <- function(pathway_list, pathway_frame, noTFs_inPW) {
countTFsinPW = 0
pws_more_TFs = list()
ind_no_TFs = vector()
for(TF_found in 1: dim(unique(pathway_frame))[1])
{ pws_more_TFs[[TF_found]] = NA
names(pws_more_TFs)[TF_found] =
as.character(unique(pathway_frame[TF_found,1]))
for(pw_found in 1: length(pathway_list))
{if(as.character(unique(pathway_frame[TF_found,1])) %in%
pathway_list[[pw_found]][,1])
{pws_more_TFs[[TF_found]] = append(pws_more_TFs[[TF_found]],
names(pathway_list)[pw_found])}
}
pws_more_TFs[[TF_found]] =
pws_more_TFs[[TF_found]][2: length(pws_more_TFs[[TF_found]])]
if(length(pws_more_TFs[[TF_found]]) >= noTFs_inPW )
{ind_no_TFs[TF_found] = TF_found}
pws_more_TFs[[TF_found]] = data.frame(pws_more_TFs[TF_found], upreg = pathway_frame[TF_found,3])
}
ind_no_TFs = na.omit(ind_no_TFs)
pws_more_TFs = pws_more_TFs[ind_no_TFs]
return(pws_more_TFs)
}
#' Identification of pathways containing the transcription factors identified in
#' upstream analysis
#'
#' @param genelists data.table as read/loaded by loadGenelist function.
#' @param tps_TFs data.table of upstream transcription factors
#' as returned from identTFs function.
#' @return list with first element being a pathway list and second being a
#' pathway dataframe of pathways including the TFs of the specified timepoint.
#'
#' @keywords manip
identPWsofTFs <- function(genelists, tps_TFs) {
upstreamTFs = NULL
genelist_n = apply(rbindlist(genelists),2,as.character)
pathway_list = list()
pathway_frame = data.frame()
PWTF_tp_NA = vector()
for(k in 1: dim(tps_TFs)[1])
{ ind_match = which(as.character(genelist_n[,1]) ==
as.character(tps_TFs[,upstreamTFs])[k])
if(length(ind_match)> 0)
{if(length(ind_match) == 1)
{ df_to_bind = data.frame(unique(cbind(matrix(genelist_n[ind_match,2]),matrix(genelist_n[ind_match,3]))),
"upreg" = rep(tps_TFs[k,"upreg"], times = dim(matrix(unique(genelist_n[ind_match,2:3])))[1],
ncol = 3))
colnames(df_to_bind) = c("V2","V3", "upreg")
pathway_frame = rbind(pathway_frame, df_to_bind)
pathway_list[[k]] = df_to_bind
}else
{ new_pathway_frame = data.frame( unique(cbind(matrix(genelist_n[ind_match,2]),matrix(genelist_n[ind_match,3]))) , tps_TFs[k,"upreg"])
colnames(new_pathway_frame) = c("V2","V3", "upreg")
pathway_frame = rbind(pathway_frame, new_pathway_frame)
pathway_list[[k]] = data.frame(unique(genelist_n[ind_match,2:3]),tps_TFs[k,"upreg"])}
}else{
pathway_list[[k]] = NA
}
PWTF_tp_NA[k] = is.na(pathway_list[[k]][[1]][1])
}
names(pathway_list) = as.character(tps_TFs[,upstreamTFs])
pathway_list = pathway_list[!PWTF_tp_NA]
return(list(pathway_list, pathway_frame))
}
#' This function provides a data.table of upstream transcription factors.
#'
#' @param data_omics OmicsData object.
#' @param glen numeric value; identifier for current timepoint.
#' @return data.table of upstream TFs.
#'
#' @keywords manip
identTFs <- function(data_omics, glen) {
no_de_genes = dim(data_omics[[1]][[2]][[2]][glen][[1]])[1]
genes_tp_NA = vector()
for(g in 1: no_de_genes)
{genes_tp_NA[g] = is.na(data_omics[[1]][[3]][[2]][[glen+1]][[g]][[1]][1])}
tps_TFs =
unique(rbindlist(data_omics[[1]][[3]][[2]][[glen+1]][!genes_tp_NA]))
return(tps_TFs)
}
#' Prepare OmicsData object for pathway information.
#'
#' This function identifies the TFs in the pathway genes and determines their
#' target genes on basis of the given (chosen) TF-target database(s).
#'
#' @param data_omics OmicsData object.
#' @param temp_genelist dataframe of unique gene IDs in PWs.
#' @return list with first element being a genelist of the pathways and second
#' being a target gene list of TFs.
#'
#' @keywords manip
identTFTGsinPWs <- function(data_omics, temp_genelist) {
temp_genelist$TFs_PW = NA
temp_targetlist = data.frame(NA, NA, NA)
colnames(temp_targetlist) = c("target", "upreg", "phosphoeffect")
for(gene_no in 1: dim(temp_genelist)[1])
{ if(as.character(temp_genelist[gene_no,1]) %in%
as.character(data_omics[[3]][[2]][,1]))
{temp_genelist[gene_no,4] = 1 #identification TF
match_gene = which(as.character(data_omics[[3]][[2]][,1]) ==
as.character(temp_genelist[gene_no,1]))
if(length(match_gene)>0)
{temp_targetlist =
rbind(temp_targetlist,
data.frame(target = as.character(data_omics[[3]][[2]][match_gene,2]),
upreg = rep(temp_genelist[gene_no,2],
times = length(as.character(data_omics[[3]][[2]][match_gene,2]))),
phosphoeffect = rep(temp_genelist[gene_no,2],
times = length(as.character(data_omics[[3]][[2]][match_gene,2])))))}
}else{
temp_genelist$TFs_PW[gene_no] = NA
}
}
temp_targetlist = temp_targetlist[-1,]
return(list(temp_genelist, temp_targetlist))
}
#' Prepare OmicsData object for pathway information.
#'
#' This function prepares the OmicsData object for the identified pathway
#' information.
#'
#' @param data_omics OmicsData object.
#' @param plen integer indicating the timepoint currently investigated.
#' @return list of OmicsData object, current timepoint and pathways of interest.
#'
#' @keywords manip
preparePWinfo <- function(data_omics, plen) {
no_de_prots = dim(data_omics[[1]][[2]][[1]][plen][[1]])[1]
PW_tp_NA = vector()
for(g in 1: no_de_prots)
{PW_tp_NA[g] = is.na(data_omics[[1]][[3]][[1]][[plen+1]][[g]][[1]][1])}
temp_prot_list = data_omics[[1]][[3]][[1]][[plen+1]][1:no_de_prots]
tps_PWs = rbindlist(temp_prot_list[!PW_tp_NA])
PWofinterest = data_omics[[1]][[3]][[1]][[plen+1]][!PW_tp_NA]
return(list(data_omics,tps_PWs, PWofinterest))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.