Nothing
#' @name DAISIE_DE_logpNE_max_min_age_coltime
#' @title Function to calculate the likelihood of observing a non-endemic lineage on the island
#' with minimum and maximum times of colonization. This valid for infinite K according to the DE equations.
#' @description This function calculates the log-likelihood of observing a non-endemic lineage on an island
#' for which the exact colonization time is unknown, but the maximum and minimum times of colonization are
#' known. This is valid for infinite K according to the DE equations
#' @inheritParams default_params_doc
#' @return the loglikelihood
#' @noRd
DAISIE_DE_logpNE_max_min_age_coltime <- function(brts,
pars1,
methode,
reltolint,
abstolint) {
t0 <- brts[1]
t1 <- brts[2]
t2 <- brts[3]
tp <- 0
parameters <- pars1
interval1 <- function(t, state, parameters) {
with(as.list(c(state, parameters)), {
dDm2 <- -(pars1[5] + pars1[1] + pars1[3] + pars1[4]) * Dm2
dE <- pars1[2] - (pars1[1] + pars1[2]) * E + pars1[1] * E^2
list(c(dDm2, dE))
})
}
# Time sequence for interval [t2, tp]
time1 <- c(tp, t2)
# Initial conditions
initial_conditions1 <- c(Dm2 = 1, E = 0)
# Solve the system for interval [t2, tp]
solution1 <- deSolve::ode(y = initial_conditions1,
times = time1,
func = interval1,
parms = parameters,
method = methode,
rtol = reltolint,
atol = abstolint)
interval2 <- function(t, state, parameters) {
with(as.list(c(state, parameters)), {
dDA <- -pars1[4] * DA + pars1[4] * Dm2
dDm1 <- -(pars1[5] + pars1[1] + pars1[3] + pars1[4]) * Dm1 +
(pars1[5] * E + pars1[1] * E^2 + pars1[3]) * DA + pars1[4] * Dm2
dDm2 <- -(pars1[5] + pars1[1] + pars1[3]) * Dm2 +
(pars1[5] * E + pars1[1] * E^2 + pars1[3]) * DA
dE <- pars1[2] - (pars1[1] + pars1[2]) * E + pars1[1] * E^2
list(c(dDA, dDm1, dDm2, dE))
})
}
# Define system of equations for interval [t0, t1]
interval3 <- function(t, state, parameters) {
with(as.list(c(state, parameters)), {
dDA <- -pars1[4] * DA + pars1[4] * Dm1
dDm1 <- -(pars1[5] + pars1[1] + pars1[3]) * Dm1 + (pars1[5] * E + pars1[1] * E^2 + pars1[3]) * DA
dE <- pars1[2] - (pars1[1] + pars1[2]) * E + pars1[1] * E^2
list(c(dDA, dDm1, dE))
})
}
# Initial conditions
initial_conditions2 <- c(DA = 0, Dm1 = 0, Dm2 = solution1[, "Dm2"][[2]], E = solution1[, "E"][[2]])
# Time sequence for interval [t1, t2]
time2 <- c(t2, t1)
# Solve the system for interval [t1, tp]
solution2 <- deSolve::ode(y = initial_conditions2,
times = time2,
func = interval2,
parms = parameters,
method = methode,
rtol = reltolint,
atol = abstolint)
# Initial conditions
initial_conditions3 <- c(DA = solution2[, "DA"][[2]],
Dm1 = solution2[, "Dm1"][[2]],
E = solution2[, "E"][[2]])
# Time sequence for interval [t0, t1]
time3 <- c(t1, t0)
# Solve the system for interval [t0, t1]
solution3 <- deSolve::ode(y = initial_conditions3,
times = time3,
func = interval3,
parms = parameters,
method = methode,
rtol = reltolint,
atol = abstolint)
# Extract log-likelihood
L1 <- solution3[, "DA"][[2]]
logL1b <- log(L1)
return(logL1b)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.