R/wood.mle.R

Defines functions wood.mle

Documented in wood.mle

################################
#### Wood's bimodal distribution on the sphere
#### Tsagris Michail 1/2016
#### mtsagris@yahoo.gr
#### References: Andrew T.A. Wood (1982), JRSSC, 31(1): 52-58
#### A bimodal distribution on the sphere
################################
wood.mle <- function(y) {
  ## y is a two column matrix, where the first column is the latitude and
  ## the second is the longitude, all expressed in degrees
  y[, 1] <- 90 - y[, 1] ## we want the co-latitude
  y <- y / 180 * pi
  siny1 <- sin( y[, 1] )
  x <- cbind( siny1 * cos(y[, 2]), siny1 * sin(y[, 2]), cos(y[, 1]) )
  #################
    mle <- function(param) {
      gam <- param[1]  ;  del <- param[2]
      m1 <- c( cos(gam) * cos(del), cos(gam) * sin(del), - sin(gam) )
      m2 <- c( - sin(del), cos(del), 0 )
      m3 <- c( sin(gam) * cos(del), sin(gam) * sin(del), cos(gam) )
      a1 <- as.vector( x %*% m1 )
      a2 <- as.vector( x %*% m2 )
      a3 <- as.vector( x %*% m3 )
      u <- sum(a3)
      down <- sqrt( 1 - a3^2 )
      v <- sum( ( a1^2 - a2^2 ) / down )
      w <- 2 * sum( a1 * a2  / down )
      - u^2 - v^2 - w^2
    }
    #############
    lik <- function(k) {
      - n * log( ( exp(k) - exp(-k) ) / k ) +
      k * ( u * cos(a) + ( v * cos(b) + w * sin(b) ) * sin(a) )
    }
  ##############
  ini <- Rfast::colmeans(y)
  mod <- optim( ini, mle, method = "BFGS" )
  mod <- optim(mod$par, mle, hessian = TRUE)
  gam <- mod$par[1]     ;     del <- mod$par[2]
  m1 <- c( cos(gam) * cos(del), cos(gam) * sin(del), - sin(gam) )
  m2 <- c( - sin(del), cos(del), 0 )
  m3 <- c( sin(gam) * cos(del), sin(gam) * sin(del), cos(gam) )

  a1 <- as.vector( x %*% m1 )
  a2 <- as.vector( x %*% m2 )
  a3 <- as.vector( x %*% m3 )
  u <- sum(a3)
  down <- sqrt( 1 - a3^2 )
  v <- sum( ( a1^2 - a2^2 ) / down )
  w <- 2 * sum( a1 * a2  / down )
  a <- atan2( sqrt(v^2 + w^2), u )
  b <- atan2( w, v )
  n <- dim(y)[1]

  ka <- optimize( lik, c(0, 1000), maximum = TRUE, tol = 1e-7 )
  k <- ka$maximum
  se.mod <- sqrt( diag( solve(mod$hessian) ) )
  se.a <- sqrt( (1 - exp( - 2 * k)) / (1 + exp(- 2* k ) ) / (n * k) )
  se.b <- 1 / ( k * ( 1 + exp(-2 * k) ) / ( 1 - exp(- 2 * k) ) * sin(a)^2 )
  se.k <- sqrt( 1 / ( 1 / k^2 - 2 / ( exp(k) - exp(- k) ) ) ) / sqrt(n)

  confgam <- c(gam - qnorm(0.975) * se.mod[1], gam + qnorm(0.975) * se.mod[1] )
  confgam <- confgam / pi * 180
  confdel <- c(del - qnorm(0.975) * se.mod[2], del + qnorm(0.975) * se.mod[2] )
  confdel <- confdel / pi * 180
  confa <- c(a - qnorm(0.975) * se.a, a + qnorm(0.975) * se.a )
  confa <- confa / pi * 180
  confb <- c(b - qnorm(0.975) * se.b, b + qnorm(0.975) * se.b )
  confb <- confb / pi * 180
  confk <- c(k - qnorm(0.975) * se.k, k + qnorm(0.975) * se.k )

  info <- rbind( c(gam / pi * 180, confgam), c(del / pi * 180, confdel), c(a / pi * 180, confa),
                 c(b / pi * 180, confb),  c(k, confk) )
  rownames(info) <- c("gamma", "delta", "alpha", "beta", "kappa")
  colnames(info) <- c("estimate", "2.5%", "97.5%")
  modes <- rbind( c(a, b/2), c(a, b/2 + pi) )
  modes <- modes / pi * 180
  rownames(modes) <- c("mode 1", "mode 2")
  colnames(modes) <- c("co-latitude", "longitude")
  unitvectors <- cbind(m1, m2, m3)
  colnames(unitvectors) <- c("mu 1", "mu 2", "mu 3")
  list( info = info, modes = modes, unitvectors = unitvectors, loglik = ka$objective - n * log(2 * pi)  )
}

Try the Directional package in your browser

Any scripts or data that you put into this service are public.

Directional documentation built on Oct. 30, 2024, 9:15 a.m.