Nothing
## ----echo=FALSE,message=FALSE,warning=FALSE-----------------------------------
library(knitr)
# Set so that long lines in R will be wrapped:
opts_chunk$set(tidy.opts=list(width.cutoff=80),tidy=TRUE)
## ----mega2rtutDump, message=FALSE---------------------------------------------
library(Mega2R)
dump_mega2rtutorial_data()
## ----mega2rtutDumpls, message=FALSE-------------------------------------------
list.files(where_mega2rtutorial_data())
## ----mega2rtutClean,eval=FALSE------------------------------------------------
# clean_mega2rtutorial_data()
## ----install,eval=FALSE-------------------------------------------------------
# install.packages("Mega2R")
## ----seqsimrdb,eval=FALSE-----------------------------------------------------
# library(Mega2R)
# # Before issuing the next command, make sure you have issued
# # this command `dump_mega2rtutorial_data()` first
# # as instructed in the "Tutorial Data' section above.
# db = file.path(where_mega2rtutorial_data(), "seqsimr.db")
# ENV = read.Mega2DB(db, verbose = TRUE)
## ----seqsimrdb2---------------------------------------------------------------
# Before issuing the next command, make sure you have issued
# this command `dump_mega2rtutorial_data()` first
# as instructed in the "Tutorial Data' section above.
db = file.path(where_mega2rtutorial_data(), "seqsimr.db")
ENV = read.Mega2DB(db, verbose = TRUE)
## ----ls-----------------------------------------------------------------------
ls(ENV)
## ----showMega2ENV-------------------------------------------------------------
showMega2ENV()
## ----str----------------------------------------------------------------------
str(ENV$locus_table)
## ----setrange0----------------------------------------------------------------
dim(ENV$refRanges)
head(ENV$refRanges)
## ----setrange1----------------------------------------------------------------
ranges = matrix(c(1, 2240000, 2245000,
1, 2245000, 2250000,
1, 3760000, 3761000,
1, 3761000, 3762000,
1, 3762000, 3763000,
1, 3763000, 3764000,
1, 3764000, 3765000,
1, 3765000, 3763760,
1, 3763760, 3767000,
1, 3767000, 3768000,
1, 3768000, 3769000,
1, 3769000, 3770000),
ncol = 3, nrow = 12, byrow = TRUE)
setRanges(ranges, 1:3)
dim(ENV$refRanges)
head(ENV$refRanges)
## ----setrange2----------------------------------------------------------------
ranges = matrix(c(1, 2240000, 2245000,
1, 2245000, 2250000,
1, 3760000, 3761000,
1, 3761000, 3762000,
1, 3762000, 3763000,
1, 3763000, 3764000,
1, 3764000, 3765000,
1, 3765000, 3763760,
1, 3763760, 3767000,
1, 3767000, 3768000,
1, 3768000, 3769000,
1, 3769000, 3770000),
ncol = 3, nrow = 12, byrow = TRUE)
ranges = data.frame(ranges)
ranges$name = LETTERS[1:12]
names(ranges) = c("chr", "start", "end", "name")
setRanges(ranges, 1:4)
dim(ENV$refRanges)
head(ENV$refRanges)
## ----callback-----------------------------------------------------------------
show = function(m, r, e) {
print("rrrrrrrrrr")
print(r)
print("mmmmmmmmmm")
print(m)
print("g6g6g6g6g6")
print(head(getgenotypes(m, envir = e)))
}
## ----applyfntoranges1,eval=TRUE-----------------------------------------------
# apply function "show" to all the ranges
# ranges
ENV$verbose = FALSE
applyFnToRanges(show)
## ----applyfntoranges2,eval=TRUE-----------------------------------------------
# apply function "show" to all genotypes on chromosomes 1
# ranges
applyFnToRanges(show,
ranges_arg =
matrix(c(1, 4000000, 5000000, "range4m",
1, 5000000, 6000000, "range5m",
1, 6000000, 7000000, "range6m",
1, 7000000, 8000000, "range7m",
1, 8000000, 9000000, "range8m",
1, 9000000,10000000, "range9m"),
ncol = 4, nrow = 6, byrow = TRUE),
indices_arg = 1:4)
## ----setannotations0----------------------------------------------------------
ENV$txdb
ENV$entrezGene
## ----applyfntogenes0,eval=TRUE------------------------------------------------
if ((require("org.Hs.eg.db") &
require("TxDb.Hsapiens.UCSC.hg19.knownGene")) == TRUE) {
# apply function "show" to all transcripts on genes ELL2 and CARD15
applyFnToGenes(show, genes_arg = c("CEP104"))
}
## ----applyfntogenes19,eval=TRUE-----------------------------------------------
if ((require("org.Hs.eg.db") &
require("TxDb.Hsapiens.UCSC.hg19.knownGene")) == TRUE) {
setAnnotations("TxDb.Hsapiens.UCSC.hg19.knownGene", "org.Hs.eg.db")
applyFnToGenes(show, genes_arg = c("CEP104"))
}
## ----applyfntogenes,eval=TRUE-------------------------------------------------
# apply function "show" to all genotypes on chromosomes 1 for two base
# pair ranges
applyFnToGenes(show, ranges_arg =
matrix(c(1, 5000000, 10000000,
1, 10000000, 15000000),
ncol = 3, nrow = 2, byrow = TRUE))
# apply function "show" to all genotypes for first marker
# in each chromosome (We only have data for chromosome 1.)
# NOTE: Since we are using an arbitrary collection of markers, the
# range is not available.
applyFnToGenes(show, markers_arg = ENV$markers[! duplicated(ENV$markers$chromosome), 3])
# apply function "show" to all genotypes on chromosomes 24 and 26.
# remember our example database is only chr 1
applyFnToGenes(show, chrs_arg=c(24, 26))
## ----showstat,eval=TRUE-------------------------------------------------------
show.stat = function(m, r, e, fn) {
print(r)
# collect genotypes for the set of markers "m"
mm = getgenotypes(m, envir=e)
# apply xxx.test of trait vs marker (accumulating samples)
pv = apply(mm, 2, fn)
names(pv) = m$MarkerName
print(pv)
}
show2 = function(m, r, e) {
f = function(x) {
tryCatch(fisher.test(table(e$fam$trait, x)),
error = function(e) {list(p.value = NA)}) $p.value }
show.stat(m, r, e, f)
}
show3 = function(m, r, e) {
f = function(x) {
tryCatch(chisq.test(table(e$fam$trait, x)),
error = function(e) {list(p.value = NA)}) $p.value }
show.stat(m, r, e, f)
}
## ----xshow2,eval=TRUE---------------------------------------------------------
if ((require("org.Hs.eg.db") &
require("TxDb.Hsapiens.UCSC.hg19.knownGene")) == TRUE) {
applyFnToGenes(show2, genes_arg = c("CEP104"))
}
## ----xshow3,eval=TRUE---------------------------------------------------------
if ((require("org.Hs.eg.db") &
require("TxDb.Hsapiens.UCSC.hg19.knownGene")) == TRUE) {
applyFnToGenes(show3, genes_arg = c("CEP104"))
}
## ----getgenotypes,eval=TRUE---------------------------------------------------
genotype = getgenotypes(ENV$markers[1:10,])
dim(genotype)
head(genotype)
## ----getgenotypesraw,eval=TRUE------------------------------------------------
# two ints in upper/lower half integer representing allele
raw = getgenotypesraw(ENV$markers[1:10,])
dim(raw)
head(raw)
## ----init_pedgene,message=FALSE-----------------------------------------------
# Before issuing the next command, make sure you have issued
# this command `dump_mega2rtutorial_data()` first
# as instructed in the "Tutorial Data' section above.
db = file.path(where_mega2rtutorial_data(), "seqsimr.db")
ENV = init_pedgene(db)
## ----mega2pedgene-------------------------------------------------------------
ENV$verbose=TRUE
Mega2pedgene(gs=50:60)
## ----FnToRanges,eval=FALSE----------------------------------------------------
# # we will skip this line for the Rmd document production because it takes too long
# applyFnToRanges(DOpedgene, ENV$refRanges, ENV$refIndices, envir = ENV)
## ----eval=FALSE---------------------------------------------------------------
# if ((require("org.Hs.eg.db") &
# require("TxDb.Hsapiens.UCSC.hg19.knownGene")) == TRUE) {
# applyFnToGenes(
# DOpedgene,
# genes_arg = c('DISP1', 'KIF26B', 'AK5', 'ST7L'),
# envir = ENV
# )
# }
## ----FnToGenes,eval=TRUE------------------------------------------------------
if ((require("org.Hs.eg.db") &
require("TxDb.Hsapiens.UCSC.hg19.knownGene")) == TRUE) {
applyFnToGenes(DOpedgene,
genes_arg = c('DISP1', 'AK5'),
envir = ENV)
}
## ----FnToGenesall,eval=FALSE--------------------------------------------------
# if ((require("org.Hs.eg.db") &
# require("TxDb.Hsapiens.UCSC.hg19.knownGene")) == TRUE) {
# # we will skip this line for the Rmd document production because it takes too long
# applyFnToGenes(DOpedgene, genes_arg = '*', envir = ENV)
# }
## ----init_SKAT,message=FALSE--------------------------------------------------
# Before issuing the next command, make sure you have issued
# this command `dump_mega2rtutorial_data()` first
# as instructed in the "Tutorial Data' section above.
db = file.path(where_mega2rtutorial_data(), "seqsimr.db")
ENV = init_SKAT(db, verbose = F, allMarkers = F)
## ----init_SKAT2,eval=FALSE----------------------------------------------------
# # Before issuing the next command, make sure you have issued
# # this command `dump_mega2rtutorial_data()` first
# # as instructed in the "Tutorial Data' section above.
# db = file.path(where_mega2rtutorial_data(), "seqsimr.db")
# ENV = init_SKAT(db, verbose = T, allMarkers = F)
## ----FnToRangesSKAT,eval=TRUE-------------------------------------------------
ENV$verbose = FALSE
ENV$SKAT_results = ENV$SKAT_results[0, ]
Mega2SKAT(ENV$phe[, 3] - 1 ~ 1, "D", kernel = "linear.weighted", weights.beta=c(0.5,0.5))
## ----FnToRangesa,eval=TRUE----------------------------------------------------
print(ENV$SKAT_results)
## ----FnToRange2s,eval=FALSE---------------------------------------------------
# # we will skip this line for the Vignette document production because it takes too long
# ENV$verbose = FALSE
# ENV$SKAT_results = ENV$SKAT_results[0, ]
# Mega2SKAT(ENV$phe[, 3] - 1 ~ 1, "D", kernel = "linear.weighted", weights.beta=c(0.5,0.5), gs=1:nrow(ENV$refRanges))
# print(ENV$SKAT_results)
## ----FnToGenesSKAT,eval=TRUE--------------------------------------------------
ENV$SKAT_results = ENV$SKAT_results[0, ]
if ((require("org.Hs.eg.db") &
require("TxDb.Hsapiens.UCSC.hg19.knownGene")) == TRUE) {
Mega2SKAT(
ENV$phe[, 3] - 1 ~ 1,
"D",
kernel = "linear.weighted",
weights.beta = c(0.5, 0.5),
genes = c('DISP1', 'AK5', 'KIF26B', 'ST7L'),
envir = ENV
)
}
## ----FnToGenesa,eval=TRUE-----------------------------------------------------
print(ENV$SKAT_results)
## ----FnToGene2s,eval=TRUE-----------------------------------------------------
ENV$verbose = FALSE
ENV$SKAT_results = ENV$SKAT_results[0, ]
if ((require("org.Hs.eg.db") &
require("TxDb.Hsapiens.UCSC.hg19.knownGene")) == TRUE) {
Mega2SKAT(
ENV$phe[, 3] - 1 ~ 1,
"D",
kernel = "linear.weighted",
weights.beta = c(0.5, 0.5),
genes = '*',
envir = ENV
)
}
## ----FnToGene2a,eval=TRUE-----------------------------------------------------
print(ENV$SKAT_results)
## ----init_famSKAT,message=FALSE-----------------------------------------------
# Before issuing the next command, make sure you have issued
# this command `dump_mega2rtutorial_data()` first
# as instructed in the "Tutorial Data' section above.
db = file.path(where_mega2rtutorial_data(), "seqsimr.db")
ENV = init_famSKATRC(db, verbose = F)
## ----init_famSKATb------------------------------------------------------------
# The special hack below reduces the samples to 20% of the original, so the run will
# finish in reasonable time. There are 20 different pedigrees.
setfam(ENV$fam[(ENV$fam$pedigree_link %in% 0:3),], ENV)
ENV$phe = mkphenotype(ENV)
ENV$phe[ENV$phe == 0] = NA
## ----init_famSKAT2,eval=FALSE-------------------------------------------------
# # Before issuing the next command, make sure you have issued
# # this command `dump_mega2rtutorial_data()` first
# # as instructed in the "Tutorial Data' section above.
# db = file.path(where_mega2rtutorial_data(), "seqsimr.db")
# ENV = init_famSKATRC(db, verbose = T)
## ----FnToRangesfamSKAT,eval=TRUE----------------------------------------------
ENV$verbose = FALSE
Mega2famSKATRC(pheno=3,gs=1:60)
## ----FnToRangesfama,eval=TRUE-------------------------------------------------
print(ENV$famSKATRC_results)
## ----FnToRange2fams,eval=FALSE------------------------------------------------
# # we will skip this line for the Vignette document production because it takes too long
# ENV$verbose = FALSE
# Mega2famSKATRC(pheno=3, gs=1:nrow(ENV$refRanges))
# print(ENV$famSKATRC_results)
## ----FnToGenesfamSKAT,eval=TRUE-----------------------------------------------
ENV$verbose = TRUE
if ((require("org.Hs.eg.db") &
require("TxDb.Hsapiens.UCSC.hg19.knownGene")) == TRUE) {
Mega2famSKATRC(
pheno = 3,
genes = c('DISP1', 'AK5', 'KIF26B', 'ST7L'),
envir = ENV
)
print(ENV$famSKATRC_results)
}
## ----FnToGene2fams,eval=FALSE-------------------------------------------------
# ENV$verbose = FALSE
# if ((require("org.Hs.eg.db") &
# require("TxDb.Hsapiens.UCSC.hg19.knownGene")) == TRUE) {
# Mega2famSKATRC(pheno = 3,
# genes = '*',
# envir = ENV)
# }
# print(ENV$famSKATRC_results)
## ----mega2vcflib--------------------------------------------------------------
# Before issuing the next command, make sure you have issued
# this command `dump_mega2rtutorial_data()` first
# as instructed in the "Tutorial Data' section above.
vcfdir = file.path(where_mega2rtutorial_data(), "vcfr")
if (! dir.exists(vcfdir)) dir.create(vcfdir)
## ----mega2vcf-----------------------------------------------------------------
# Before issuing the next command, make sure you have issued
# this command `dump_mega2rtutorial_data()` first
# as instructed in the "Tutorial Data' section above.
vcffile = file.path(where_mega2rtutorial_data(), "vcfr", "vcf.01")
Mega2VCF(vcffile, ENV$markers[ENV$markers$chromosome==1 ,])
## ----lsvcf--------------------------------------------------------------------
# Before issuing the next command, make sure you have issued
# this command `dump_mega2rtutorial_data()` first
# as instructed in the "Tutorial Data' section above.
vcfdir = file.path(where_mega2rtutorial_data(), "vcfr")
list.files(vcfdir)
## ----seqsimgwaa, eval=FALSE---------------------------------------------------
# require("GenABEL")
# # Before issuing the next command, make sure you have issued
# # this command `dump_mega2rtutorial_data()` first
# # as instructed in the "Tutorial Data' section above.
# db = file.path(where_mega2rtutorial_data(), "seqsimr.db")
# ENV = read.Mega2DB(db)
#
# # This line converts the database to a gwaa.data-class object. The intermediate
# # files are in tempdir() and begin with "Mega2GenABEL"
# seqsimgwaa = Mega2GenABEL()
## ----strseqsimgwaa, eval=FALSE------------------------------------------------
# str(seqsimgwaa)
## ----mega2gds-----------------------------------------------------------------
# Before issuing the next command, make sure you have issued
# this command `dump_mega2rtutorial_data()` first
# as instructed in the "Tutorial Data' section above.
db = file.path(where_mega2rtutorial_data(), "seqsimr.db")
ENV = read.Mega2DB(db)
## ----mega2gdsfx1--------------------------------------------------------------
# NOTE: the gds file to be created must be closed with the function below,
# or by using an on.exit(closefn.gds(<name>))
showfile.gds(closeall=T, verbose=F)
# Before issuing the next command, make sure you have issued
# this command `dump_mega2rtutorial_data()` first
# as instructed in the "Tutorial Data' section above.
gdsfile = file.path(where_mega2rtutorial_data(), "foo.gds")
gdsn = Mega2gdsfmt(gdsfile, ENV$markers[ENV$markers$chromosome==1 ,], SeqArray=TRUE)
## ----mega2gdspr1--------------------------------------------------------------
print(gdsn)
closefn.gds(gdsn)
## ----mega2gdsfx2,message=FALSE,warning=FALSE----------------------------------
# NOTE: the gds file to be created must be closed with the function below,
# or by using an on.exit(closefn.gds(<name>))
showfile.gds(closeall=T, verbose=F)
## ----mega2gdsfx3,message=FALSE,warning=FALSE----------------------------------
# Before issuing the next command, make sure you have issued
# this command `dump_mega2rtutorial_data()` first
# as instructed in the "Tutorial Data' section above.
gdsfile = file.path(where_mega2rtutorial_data(), "foo.gds")
gdsn = Mega2gdsfmt(gdsfile, ENV$markers[ENV$markers$chromosome==1 ,], SeqArray=FALSE)
## ----mega2gdspr2--------------------------------------------------------------
print(gdsn)
closefn.gds(gdsn)
## ----srdta, eval=FALSE--------------------------------------------------------
# GotGenABEL = require("GenABEL", quietly=FALSE)
# if (GotGenABEL) data(srdta) else srdta=NULL
## ----dmpPed,results="hide",warning=FALSE,eval=FALSE---------------------------
# GotGenABEL = require("GenABEL", quietly=FALSE)
#
# # Before issuing the next command, make sure you have issued
# # this command `dump_mega2rtutorial_data()` first
# # as instructed in the "Tutorial Data' section above.
#
# srdtafile = file.path(where_mega2rtutorial_data(), "srdta")
# if (GotGenABEL) export.plink(srdta, transpose = FALSE, filebasename = srdtafile,
# phenotypes = names(srdta@phdata)[-(1:2)])
## ----srdta.db,eval=FALSE------------------------------------------------------
# GotGenABEL = require("GenABEL", quietly=FALSE)
# # Before issuing the next command, make sure you have issued
# # this command `dump_mega2rtutorial_data()` first
# # as instructed in the "Tutorial Data' section above.
# sdb = file.path(where_mega2rtutorial_data(), "srdta.db")
# ENV = read.Mega2DB(sdb)
#
# mega = Mega2GenABEL()
## ----strs, eval=FALSE---------------------------------------------------------
# GotGenABEL = require("GenABEL", quietly=FALSE)
# str(mega)
# if (GotGenABEL) str(srdta)
## ----mega2genabeltst, eval=FALSE----------------------------------------------
# GotGenABEL = require("GenABEL", quietly=FALSE)
# options(max.print = 30)
# Mega2GenABELtst(mega_ = mega, gwaa_ = srdta)
## ----fin,eval=TRUE,echo=FALSE-------------------------------------------------
clean_mega2rtutorial_data()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.