Nothing
## TODO: chunk size for evaluate = FALSE
`pdredge` <-
function(global.model, cluster = NULL,
beta = c("none", "sd", "partial.sd"),
evaluate = TRUE,
rank = "AICc", fixed = NULL, m.lim = NULL, m.min, m.max, subset,
trace = FALSE, varying, extra, ct.args = NULL,
deps = attr(allTerms0, "deps"),
check = FALSE, ...) {
.Deprecated("dredge")
allTerms0 <- 0L # placeholder for Rcheck
cl <- match.call()
cl[[1L]] <- as.symbol(".dredge.par")
return(eval(cl))
}
`.dredge.par` <-
function(global.model, cluster = NULL,
beta = c("none", "sd", "partial.sd"),
evaluate = TRUE,
rank = "AICc", fixed = NULL, m.lim = NULL, m.min, m.max, subset,
trace = FALSE, varying, extra, ct.args = NULL,
deps = attr(allTerms0, "deps"),
check = FALSE, ...) {
#FIXME: m.max cannot be 0 - e.g. for intercept only model
trace <- min(as.integer(trace), 2L)
strbeta <- betaMode <- NULL
eval(.expr_beta_arg)
###PAR
qlen <- 25L
# Imports: clusterCall, clusterApply
doParallel <- isTRUE(evaluate) && inherits(cluster, "cluster")
if(doParallel) {
.parallelPkgCheck() # XXX: workaround to avoid importing from 'parallel'
clusterCall <- get("clusterCall")
clusterApply <- get("clusterApply")
clusterCall(cluster, "require", .packageName, character.only = TRUE)
.getRow <- function(X) clusterApply(cluster, X, fun = ".pdredge_process_model")
} else {
.getRow <- function(X) lapply(X, pdredge_process_model, envir = props)
clusterCall <- function(...) NULL
message("Not using cluster.")
}
###PAR
gmEnv <- parent.frame()
gmNobs <- nobs(global.model)
gmCall <- get_call(global.model)
if (is.null(gmCall)) {
gmCall <- substitute(global.model)
if(!is.call(gmCall)) {
stop("need a 'global.model' with a call component. Consider using ",
if(inherits(global.model, c("gamm", "gamm4")))
"'uGamm'" else "'updateable'")
}
#"For objects without a 'call' component the call to the fitting function \n",
#" must be used directly as an argument to 'dredge'.")
# NB: this is unlikely to happen
if(!is.function(eval.parent(gmCall[[1L]])))
cry(, "could not find function '%s'", asChar(gmCall[[1L]]))
} else {
# if 'update' method does not expand dots, we have a problem with
# expressions like ..1, ..2 in the call. So try to replace them with
# respective arguments in the original call
isDotted <- grep("^\\.\\.", sapply(as.list(gmCall), asChar))
if(length(isDotted) != 0L) {
if(is.name(substitute(global.model))) {
cry(, "the call stored in 'global.model' contains dotted names and cannot be updated. \n Consider using 'updateable' on the modelling function")
} else gmCall[isDotted] <-
substitute(global.model)[names(gmCall[isDotted])]
}
# object from 'run.mark.model' has $call of 'make.mark.model' - fixing
# it here:
if(inherits(global.model, "mark") && gmCall[[1L]] == "make.mark.model") {
gmCall <- call("run.mark.model", model = gmCall, invisible = TRUE)
}
}
thisCall <- sys.call()
exprApply(gmCall[["data"]], NA, function(expr) {
if(is.symbol(expr[[1L]]) && all(expr[[1L]] != c("@", "$")))
cry(thisCall, "'global.model' uses \'data\' that is a function value: use a variable instead")
})
lik <- .getLik(global.model)
logLik <- lik$logLik
# *** Rank ***
rank.custom <- !missing(rank)
if(!rank.custom && lik$name == "qLik") {
rank <- "QIC"
cry(, "using 'QIC' instead of 'AICc'", warn = TRUE)
}
rankArgs <- list(...)
if(any(badargs <- names(rankArgs) == "marg.ex")) {
cry(, "argument \"marg.ex\" is defunct and has been ignored",
warn = TRUE)
rankArgs <- rankArgs[!badargs]
}
if(any(names(rankArgs) == "na.action"))
cry("RTFM", "argument \"na.action\" is inappropriate here",
warn = FALSE)
IC <- .getRank(rank, rankArgs)
if(any(badargs <- is.na(match(names(rankArgs),
c(names(formals(get("rank", environment(IC))))[-1L], names(formals()))))))
cry("RTFM", ngettext(sum(badargs),
"argument %s is not a name of formal argument of %s",
"arguments %s are not names of formal arguments of %s"),
prettyEnumStr(names(rankArgs[badargs])), "'dredge' or 'rank'",
warn = TRUE)
ICName <- as.character(attr(IC, "call")[[1L]])
if(length(tryCatch(IC(global.model), error = function(e) {
stop(simpleError(conditionMessage(e), subst(attr(IC, "call"),
x = as.name("global.model"))))
})) != 1L) {
cry(, "result of '%s' is not of length 1", asChar(attr(IC, "call")))
}
allTerms <- allTerms0 <- getAllTerms(global.model, intercept = TRUE,
data = eval(gmCall$data, envir = gmEnv))
# Intercept(s)
interceptLabel <- attr(allTerms, "interceptLabel")
if(is.null(interceptLabel)) interceptLabel <- "(Intercept)"
nIntercepts <- sum(attr(allTerms, "intercept"))
###PAR
# parallel: check whether the models would be identical:
if(doParallel && check) testUpdatedObj(cluster, global.model, gmCall, level = check)
###PAR
# Check for na.omit
if(!(gmNaAction <- .checkNaAction(cl = gmCall, what = "'global.model'", envir = gmEnv)))
cry(, attr(gmNaAction, "message"))
if(names(gmCall)[2L] == "") gmCall <-
match.call(gmCall, definition = eval.parent(gmCall[[1L]]),
expand.dots = TRUE)
gmCoefNames <- names(coeffs(global.model))
if(any(dup <- duplicated(gmCoefNames)))
cry(, "model cannot have duplicated coefficient names: ",
prettyEnumStr(gmCoefNames[dup]))
gmCoefNames <- fixCoefNames(gmCoefNames)
nVars <- length(allTerms)
if(isTRUE(rankArgs$REML) || (isTRUE(.isREMLFit(global.model)) && is.null(rankArgs$REML)))
cry(, "comparing models fitted by REML", warn = TRUE)
if ((betaMode != 0L) && is.null(tryCatch(std.coef(global.model, betaMode == 2L),
error = return_null, warning = return_null))) {
cry(, "do not know how to standardize coefficients of '%s', argument 'beta' ignored",
class(global.model)[1L], warn = TRUE)
betaMode <- 0L
strbeta <- "none"
}
if(nomlim <- is.null(m.lim)) m.lim <- c(0, NA)
## XXX: backward compatibility:
if(!missing(m.max) || !missing(m.min)) {
warning("arguments 'm.min' and 'm.max' are deprecated, use 'm.lim' instead")
if(!nomlim) stop("cannot use both 'm.lim' and 'm.min' or 'm.max'")
if(!missing(m.min)) m.lim[1L] <- m.min[1L]
if(!missing(m.max)) m.lim[2L] <- m.max[1L]
}
if(!is.numeric(m.lim) || length(m.lim) != 2L || any(m.lim < 0, na.rm = TRUE))
stop("invalid 'm.lim' value")
m.lim[2L] <- if (!is.finite(m.lim[2L])) (nVars - nIntercepts) else
min(nVars - nIntercepts, m.lim[2L])
if (!is.finite(m.lim[1L])) m.lim[1L] <- 0
m.min <- m.lim[1L]
m.max <- m.lim[2L]
# fixed variables:
if (!is.null(fixed)) {
if (inherits(fixed, "formula")) {
if (fixed[[1L]] != "~" || length(fixed) != 2L)
cry(, "'fixed' should be a one-sided formula", warn = TRUE)
fixed <- as.vector(getAllTerms(fixed))
} else if (identical(fixed, TRUE)) {
fixed <- as.vector(allTerms[!(allTerms %in% interceptLabel)])
} else if (!is.character(fixed)) {
cry(, paste("'fixed' should be either a character vector with",
" names of variables or a one-sided formula"))
}
if (!all(i <- (fixed %in% allTerms))) {
cry(, "some terms in 'fixed' do not exist in 'global.model': %s",
prettyEnumStr(fixed[!i]), warn = TRUE)
fixed <- fixed[i]
}
}
#deps <- attr(allTerms0, "deps")
fixed <- union(fixed, rownames(deps)[rowSums(deps, na.rm = TRUE) == ncol(deps)])
fixed <- c(fixed, allTerms[allTerms %in% interceptLabel])
fixed <- fixed[!duplicated(fixed)]
nFixed <- length(fixed)
if(nFixed != 0L) message(sprintf(ngettext(nFixed, "Fixed term is %s", "Fixed terms are %s"),
prettyEnumStr(fixed)))
termsOrder <- order(allTerms %in% fixed)
allTerms <- allTerms[termsOrder]
di <- match(allTerms, rownames(deps))
deps <- deps[di, di, drop = FALSE]
gmFormulaEnv <- environment(as.formula(formula(global.model), env = gmEnv))
# TODO: gmEnv <- gmFormulaEnv ???
### BEGIN Manage 'varying'
## @param: varying
## @value: varying, varyingNames, variants, nVariants, nVarying
if(!missing(varying) && !is.null(varying)) {
nVarying <- length(varying)
varyingNames <- names(varying)
fvarying <- unlist(varying, recursive = FALSE, use.names = FALSE)
vlen <- vapply(varying, length, 1L)
nVariants <- prod(vlen)
variants <- as.matrix(expand.grid(split(seq_len(sum(vlen)),
rep(seq_len(nVarying), vlen))))
variantsFlat <- unlist(lapply(varying, .makeListNames),
recursive = FALSE, use.names = FALSE)
} else {
variants <- varyingNames <- NULL
nVariants <- 1L
nVarying <- 0L
}
## END: varying
## BEGIN Manage 'extra'
## @param: extra, global.model, gmFormulaEnv,
## @value: extra, nExtra, extraNames, nullfit_
if(!missing(extra) && length(extra) != 0L) {
if (any(c("adjR^2", "R^2") %in% extra) && nVariants > 1L)
stop("\"R^2\" in 'extra' can be used only with no 'varying'")
# a cumbersome way of evaluating a non-exported function in a parent frame:
extra <- eval(as.call(list(call("get", ".get.extras",
envir = call("asNamespace", .packageName), inherits = FALSE),
substitute(extra), r2nullfit = TRUE)), parent.frame())
#extra <- eval(call(".get.extras", substitute(extra), r2nullfit = TRUE), parent.frame())
if(any(c("adjR^2", "R^2") %in% names(extra))) {
nullfit_ <- null.fit(global.model, evaluate = TRUE, envir = gmFormulaEnv)
}
applyExtras <- function(x) unlist(lapply(extra, function(f) f(x)))
extraResult <- applyExtras(global.model)
if(!is.numeric(extraResult))
cry(, "function in 'extra' returned non-numeric result")
nExtra <- length(extraResult)
extraNames <- names(extraResult)
} else {
nExtra <- 0L
extraNames <- character(0L)
}
## END: manage 'extra'
nov <- as.integer(nVars - nFixed)
ncomb <- (2L ^ nov) * nVariants
novMax <- log2(.Machine$integer.max %/% nVariants)
if(nov > novMax)
cry(, "number of non-fixed predictors [%d] exceeds the allowed maximum of %.0f (with %d variants)", nov, novMax, nVariants)
resultChunkSize <- 25L
if(evaluate) {
rvNcol <- nVars + nVarying + 3L + nExtra
rval <- matrix(NA_real_, ncol = rvNcol, nrow = resultChunkSize)
coefTables <- vector(resultChunkSize, mode = "list")
}
## BEGIN: Manage 'subset'
## @param: hasSubset, subset, allTerms, [interceptLabel],
## @value: hasSubset, subset
if(missing(subset)) {
hasSubset <- 1L
} else {
if(!tryCatch(is.language(subset) || is.matrix(subset), error = function(e) FALSE))
subset <- substitute(subset)
if(is.matrix(subset)) {
dn <- dimnames(subset)
#at <- allTerms[!(allTerms %in% interceptLabel)]
n <- length(allTerms)
if(is.null(dn) || any(sapply(dn, is.null))) {
di <- dim(subset)
if(any(di != n)) stop("unnamed 'subset' matrix does not have both dimensions",
" equal to number of terms in 'global.model': %d", n)
dimnames(subset) <- list(allTerms, allTerms)
} else {
if(!all(unique(unlist(dn)) %in% allTerms))
warning("at least some dimnames of 'subset' matrix do not ",
"match term names in 'global.model'")
subset0 <- subset
subset <- matrix(subset[
match(allTerms, rownames(subset)),
match(allTerms, colnames(subset))],
dimnames = list(allTerms, allTerms),
nrow = n, ncol = n)
nas <- is.na(subset)
lotri <- lower.tri(subset)
i <- lotri & nas & !t(nas)
subset[i] <- t(subset)[i]
subset[!lotri] <- NA
}
if(any(!is.na(subset[!lower.tri(subset)]))) {
warning("non-missing values exist outside the lower triangle of 'subset'")
subset[!lower.tri(subset)] <- NA
}
mode(subset) <- "logical"
hasSubset <- 2L # subset as matrix
} else {
if(inherits(subset, "formula")) {
if (subset[[1L]] != "~" || length(subset) != 2L)
stop("'subset' formula should be one-sided")
subset <- subset[[2L]]
}
subset <- as.expression(subset)
ssValidNames <- c("comb", "*nvar*")
tmpTerms <- terms(reformulate(allTerms0[!(allTerms0 %in% interceptLabel)]))
gloFactorTable <- t(attr(tmpTerms, "factors") != 0)
offsetNames <- sapply(attr(tmpTerms, "variables")[attr(tmpTerms, "offset") + 1L], asChar)
if(length(offsetNames) != 0L) {
gloFactorTable <- rbind(gloFactorTable,
matrix(FALSE, ncol = ncol(gloFactorTable), nrow = length(offsetNames),
dimnames = list(offsetNames, NULL)))
for(i in offsetNames) gloFactorTable[offsetNames, offsetNames] <- TRUE
#Note `diag<-` does not work for x[1x1] matrix:
# diag(gloFactorTable[offsetNames, offsetNames, drop = FALSE]) <- TRUE
}
.DebugPrint(gloFactorTable)
# fix interaction names in rownames:
rownames(gloFactorTable) <- allTerms0[!(allTerms0 %in% interceptLabel)]
subsetExpr <- subset[[1L]]
subsetExpr <- exprapply0(subsetExpr, c("with", "."), .subst.with, gloFactorTable,
allTerms, as.name("comb"), gmEnv)
subsetExpr <- exprapply0(subsetExpr, c("{", "Term"), .subst.term)
tmp <- updateDeps(subsetExpr, deps)
subsetExpr <- tmp$expr
deps <- tmp$deps
subsetExpr <- exprapply0(subsetExpr, "dc", .subst.vars.for.args)
subsetExpr <- .subst.names.for.items(subsetExpr, allTerms, "comb")
if(nVarying) {
ssValidNames <- c("cVar", "comb", "*nvar*")
subsetExpr <- exprapply0(subsetExpr, "V", .subst.v,
as.name("cVar"), varyingNames)
if(!all(all.vars(subsetExpr) %in% ssValidNames))
subsetExpr <- .subst.names.for.items(subsetExpr, varyingNames,
"cVar", fun = "[[")
}
ssVars <- all.vars(subsetExpr)
okVars <- ssVars %in% ssValidNames
if(!all(okVars)) stop("unrecognized names in 'subset' expression: ",
prettyEnumStr(ssVars[!okVars]))
ssEnv <- new.env(parent = parent.frame())
ssFunc <- setdiff(all.vars(subsetExpr, functions = TRUE), ssVars)
if("dc" %in% ssFunc) assign("dc", .subset_dc, ssEnv)
hasSubset <- if(any(ssVars == "cVar")) 4L else # subset as expression
3L # subset as expression using 'varying' variables
}
} # END: manage 'subset'
comb.sfx <- rep(TRUE, nFixed)
comb.seq <- if(nov != 0L) seq_len(nov) else 0L
k <- 0L
extraResult1 <- integer(0L)
calls <- vector(mode = "list", length = resultChunkSize)
ord <- integer(resultChunkSize)
argsOptions <- list(
response = attr(allTerms0, "response"),
intercept = nIntercepts,
interceptLabel = interceptLabel,
random = attr(allTerms0, "random"),
gmCall = gmCall,
gmEnv = gmEnv,
allTerms = allTerms0,
gmCoefNames = gmCoefNames,
gmDataHead = if(!is.null(gmCall$data)) {
if(eval(call("is.data.frame", gmCall$data), gmEnv))
eval(call("head", gmCall$data, 1L), gmEnv) else gmCall$data
} else NULL,
gmFormulaEnv = gmFormulaEnv
)
# BEGIN parallel
qi <- 0L
queued <- vector(qlen, mode = "list")
props <- list(
gmEnv = gmEnv,
IC = IC,
# beta = beta,
# allTerms = allTerms,
nExtra = nExtra,
matchCoefCall = as.call(c(list(
as.name("matchCoef"), as.name("fit1"),
all.terms = allTerms, beta = betaMode,
allCoef = TRUE), ct.args))
# matchCoefCall = as.call(c(alist(matchCoef, fit1, all.terms = Z$allTerms,
# beta = Z$beta, allCoef = TRUE), ct.args))
)
if(nExtra) {
props$applyExtras <- applyExtras
props$extraResultNames <- names(extraResult)
}
props <- as.environment(props)
if(doParallel) {
clusterVExport(cluster, pdredge_props = props,
.pdredge_process_model = pdredge_process_model
)
clusterCall(cluster, eval, call("options", options("na.action")), env = 0L)
}
# END parallel
retColIdx <- if(nVarying) -nVars - seq_len(nVarying) else TRUE
dotrace <- if(trace == 1L) {
dotrace <- function() {
cat(iComb, ": "); print(clVariant)
utils::flush.console()
}
} else if(trace > 1L) {
progressBar <- .progbar(max = ncomb, title = "\"dredge\" working...")
on.exit(.closeprogbar(progressBar))
function() progressBar(value = iComb,
title = sprintf("dredge: %d of ca. %.0f subsets", k, (k / iComb) * ncomb))
} else function() {}
warningList <- list()
iComb <- -1L
while((iComb <- iComb + 1L) < ncomb) {
varComb <- iComb %% nVariants
jComb <- (iComb - varComb) / nVariants
if(varComb == 0L) {
isok <- TRUE
comb <- c(as.logical(intToBits(jComb)[comb.seq]), comb.sfx)
nvar <- sum(comb) - nIntercepts
# !!! POSITIVE condition for 'pdredge', NEGATIVE for 'dredge':
if((nvar >= m.min && nvar <= m.max) &&
formula_margin_check(comb, deps) &&
switch(hasSubset,
# 1 - no subset, 2 - matrix, 3 - expression
TRUE, # 1
all(subset[comb, comb], na.rm = TRUE), # 2
evalExprInEnv(subsetExpr, env = ssEnv, enclos = parent.frame(),
comb = comb, `*nvar*` = nvar), # 3
TRUE
)
) {
newArgs <- makeArgs(global.model, allTerms[comb], argsOptions) #comb
formulaList <- if(is.null(attr(newArgs, "formulaList"))) newArgs else
attr(newArgs, "formulaList")
if(!is.null(attr(newArgs, "problems"))) {
print.warnings(structure(vector(mode = "list",
length = length(attr(newArgs, "problems"))),
names = attr(newArgs, "problems")))
} # end if <problems>
cl <- gmCall
cl[names(newArgs)] <- newArgs
} else isok <- FALSE # end if <subset, m.max >= nvar >= m.min>
} # end if(jComb != prevJComb)
if(isok) {
## --- Variants ---------------------------
clVariant <- cl
isok2 <- TRUE
if(nVarying) {
cvi <- variants[varComb + 1L, ]
isok2 <- (hasSubset != 4L) || evalExprInEnv(subsetExpr, env = ssEnv,
enclos = parent.frame(), comb = comb, `*nvar*` = nvar,
cVar = variantsFlat[cvi])
clVariant[varyingNames] <- fvarying[cvi]
}
if(isok2) {
if(evaluate) {
dotrace()
qi <- qi + 1L
queued[[(qi)]] <- list(call = clVariant, id = iComb)
} else { # if !evaluate
k <- k + 1L # all OK, add model to table
rvlen <- length(ord)
if(k > rvlen) {
nadd <- min(resultChunkSize, ncomb - rvlen)
#message(sprintf("extending result from %d to %d", rvlen, rvlen + nadd))
addi <- seq.int(rvlen + 1L, length.out = nadd)
calls[addi] <- vector("list", nadd)
ord[addi] <- integer(nadd)
}
calls[[k]] <- clVariant
ord[k] <- iComb
}
}
} # if isok
#if(evaluate && qi && (qi + nvariants > qlen || iComb == ncomb)) {
if(evaluate && qi && (qi > qlen || (iComb + 1) == ncomb)) {
qseq <- seq_len(qi)
qresult <- .getRow(queued[qseq])
utils::flush.console()
if(!all(vapply(qresult, function(x) is.list(x) && "value" %in% names(x), FALSE)))
stop("some results returned from cluster node(s) are malformed or NULL. \n",
"This should not happen and indicates problems with ",
"the cluster node", domain = "R-MuMIn")
haveProblems <- logical(qi)
nadd <- sum(sapply(qresult, function(x) inherits(x$value, "condition")
+ length(x$warnings)))
wi <- length(warningList)
if(nadd) warningList <- c(warningList, vector(nadd, mode = "list"))
# DEBUG: print(sprintf("Added %d warnings, now is %d", nadd, length(warningList)))
for (i in qseq)
for(cond in c(qresult[[i]]$warnings,
if(inherits(qresult[[i]]$value, "condition"))
list(qresult[[i]]$value))) {
wi <- wi + 1L
warningList[[wi]] <- if(is.null(conditionCall(cond)))
queued[[i]]$call else conditionCall(cond)
if(inherits(cond, "error")) {
haveProblems[i] <- TRUE
msgsfx <- "(model %d skipped)"
} else
msgsfx <- "(in model %d)"
names(warningList)[wi] <- paste(conditionMessage(cond),
gettextf(msgsfx, queued[[i]]$id))
attr(warningList[[wi]], "id") <- queued[[i]]$id
}
withoutProblems <- which(!haveProblems)
qrows <- lapply(qresult[withoutProblems], "[[", "value")
qresultLen <- length(qrows)
rvlen <- nrow(rval)
if(retNeedsExtending <- k + qresultLen > rvlen) {
nadd <- min(max(resultChunkSize, qresultLen), ncomb - rvlen)
rval <- rbind(rval, matrix(NA_real_, ncol = rvNcol, nrow = nadd),
deparse.level = 0L)
addi <- seq.int(rvlen + 1L, length.out = nadd)
coefTables[addi] <- vector("list", nadd)
calls[addi] <- vector("list", nadd)
ord[addi] <- integer(nadd)
}
qseqOK <- seq_len(qresultLen)
for(m in qseqOK) rval[k + m, retColIdx] <- qrows[[m]]
ord[k + qseqOK] <- vapply(queued[withoutProblems], "[[", 1L, "id")
calls[k + qseqOK] <- lapply(queued[withoutProblems], "[[", "call")
coefTables[k + qseqOK] <- lapply(qresult[withoutProblems], "[[", "coefTable")
k <- k + qresultLen
qi <- 0L
}
} ### for (iComb ...)
if(k == 0L) {
if(length(warningList)) print.warnings(warningList)
stop("the result is empty")
}
names(calls) <- ord
if(!evaluate) return(calls[seq_len(k)])
if(k < nrow(rval)) {
i <- seq_len(k)
rval <- rval[i, , drop = FALSE]
ord <- ord[i]
calls <- calls[i]
coefTables <- coefTables[i]
}
if(nVarying) {
varlev <- ord %% nVariants
varlev[varlev == 0L] <- nVariants
rval[, nVars + seq_len(nVarying)] <- variants[varlev, ]
}
rval <- as.data.frame(rval, stringsAsFactors = TRUE)
row.names(rval) <- ord
# Convert columns with presence/absence of terms to factors
tfac <- which(!(allTerms %in% gmCoefNames))
rval[tfac] <- lapply(rval[tfac], factor, levels = NaN, labels = "+")
i <- seq_along(allTerms)
v <- order(termsOrder)
rval[, i] <- rval[, v]
allTerms <- allTerms[v]
colnames(rval) <- c(allTerms, varyingNames, extraNames, "df", lik$name, ICName)
if(nVarying) {
variant.names <- vapply(variantsFlat, asChar, "", width.cutoff = 20L)
vnum <- split(seq_len(sum(vlen)), rep(seq_len(nVarying), vlen))
names(vnum) <- varyingNames
for (i in varyingNames) rval[, i] <-
factor(rval[, i], levels = vnum[[i]], labels = variant.names[vnum[[i]]])
}
rval <- rval[o <- order(rval[, ICName], decreasing = FALSE), ]
coefTables <- coefTables[o]
rval$delta <- rval[, ICName] - min(rval[, ICName])
rval$weight <- Weights(rval$delta)
mode(rval$df) <- "integer"
rval <-
structure(rval,
model.calls = calls[o],
global = global.model,
global.call = gmCall,
terms = structure(allTerms, interceptLabel = interceptLabel),
rank = IC,
beta = strbeta,
call = {
cl <- match.call(expand.dots = TRUE)
cl[[1L]] <- as.symbol("dredge")
cl
},
coefTables = coefTables,
nobs = gmNobs,
vCols = varyingNames, ## XXX: remove
column.types = {
colTypes <- c(terms = length(allTerms), varying = length(varyingNames),
extra = length(extraNames), df = 1L, loglik = 1L, ic = 1L, delta = 1L,
weight = 1L)
column.types <- rep(1L:length(colTypes), colTypes)
names(column.types) <- colnames(rval)
lv <- 1L:length(colTypes)
factor(column.types, levels = lv, labels = names(colTypes)[lv])
},
class = c("model.selection", "data.frame")
)
if(length(warningList)) {
class(warningList) <- c("warnings", "list")
attr(rval, "warnings") <- warningList
}
if (!is.null(attr(allTerms0, "random.terms")))
attr(rval, "random.terms") <- attr(allTerms0, "random.terms")
if(doParallel) clusterCall(cluster, "rm",
list = c(".pdredge_process_model", "pdredge_props"), envir = .GlobalEnv)
return(rval)
} ######
`pdredge_process_model` <- function(modv, envir = get("pdredge_props", .GlobalEnv)) {
### modv == list(call = clVariant, id = modelId)
result <- tryCatchWE(eval(modv$call, get("gmEnv", envir)))
if (inherits(result$value, "condition")) return(result)
fit1 <- result$value
if(get("nExtra", envir) != 0L) {
extraResult1 <- get("applyExtras", envir)(fit1)
nExtra <- get("nExtra", envir)
if(length(extraResult1) < nExtra) {
tmp <- rep(NA_real_, nExtra)
tmp[match(names(extraResult1), get("extraResultNames", envir))] <-
extraResult1
extraResult1 <- tmp
}
} else extraResult1 <- NULL
ll <- .getLik(fit1)$logLik(fit1)
mcoef <- eval(get("matchCoefCall", envir))
list(value = c(mcoef, extraResult1, df = attr(ll, "df"), ll = ll,
ic = get("IC", envir)(fit1)),
nobs = nobs(fit1),
coefTable = attr(mcoef, "coefTable"),
warnings = result$warnings)
}
.test_pdredge <- function(dd) {
cl <- attr(dd, "call")
cl$cluster <- cl$check <- NULL
cl[[1L]] <- as.name("dredge")
if(!identical(c(dd), c(eval(cl)))) stop("Whoops...")
dd
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.