Nothing
## Authors
## Martin Schlather, schlather@math.uni-mannheim.de
##
##
## Copyright (C) 2012 -- 2017 Martin Schlather
##
## This program is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3
## of the License, or (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
## Version3
#RMstrokorbMono <- function(phi) stop("Please use 'RMm2r' instead")
#RMstrokorbBall <- function(phi) stop("Please use 'RMm3b' instead")
#RMstrokorbPoly <- function(phi) stop("Please use 'RMmps' instead")
RFempiricalvariogram <- function(...) {
obsolete <- as.character(list(match.call())[[1]])[1]
new <- "RFvariogram"
warning("'", obsolete, "' is an obsolete function.\n Use '", new,
"' which calculates both empirical and theoretical values.\n (later versions might also be able to fit)")
do.call(new, list(...))
}
RFempiricalmadogram <- function(...) {
obsolete <- as.character(list(match.call())[[1]])[1]
new <- "RFmadogram"
warning("'", obsolete, "' is an obsolete function.\n Use '", new,
"' which calculates both empirical and theoretical values.\n (later versions might also be able to fit)")
do.call(new, list(...))
}
RFempiricalcovariance <- function(...) {
obsolete <- as.character(list(match.call())[[1]])[1]
new <- "RFcov"
warning("'", obsolete, "' is an obsolete function.\n Use '", new,
"' which calculates both empirical and theoretical values.\n (later versions might also be able to fit)")
do.call(new, list(...))
}
#### Version 2
RFoldstyle <- function(old=TRUE) {
RFoptions(general.spConform = !old,
internal.warn_newstyle = old,
internal.warn_oldstyle = !old)
invisible(NULL)
}
OldDistribution <- function(distribution) {
if (missing(distribution) || is.null(distribution) || is.na(distribution))
return(NULL)
names <- c("Gauss", "MaxStable")
Distr <- list("RMgauss", NULL) ## obsolete
nr <- pmatch(distribution, names)
if (!is.finite(nr)) stop("unknown method")
return(Distr[[nr]])
}
OldMethod <- function(method) {
if (missing(method) || is.null(method) || is.na(method)) return("RPgauss")
names <- c("circulant embed",
"cutoff CE",
"intrinsic CE",
"TBM2",
"TBM3",
"spectral TBM",
"direct decomp.",
"sequential",
"Markov",
"average",
"nugget",
"coins",
"hyperplanes",
##
"max.MPP",
"extremalGauss",
"BrownResnick",
"BooleanFunction")
Meth <- c("circulant", "cutoff", "intrinsic", "tbm", "tbm",
"spectral", "direct", "sequential",
"Markov does not work anymore",
"average", "nugget", "coins", "hyperplane",
"smith", "schlather", "brownresnick", "schlather")
nr <- pmatch(method, names)
if (!is.finite(nr)) stop("unknown method")
return(paste("RP", Meth[nr], sep=""))
}
Variogram <- function(x,
model, param=NULL,
dim=NULL,
## y=NULL,
Distances) {
if (RFoptions()$internal$warn_oldstyle)
warning("The function is obsolete. Use 'RFvariogram' instead.")
if (is.null(dim) &&!missing(Distances))
dim <- if (is.matrix(x)) ncol(x) else 1
if (!missing(param) && is.na(param[1])) param[1] <- 0
## Print(model, param)
model <- PrepareModel(model, param)
RFvariogram(x=x, model=model, dim=dim, distances=Distances)
}
Covariance <- CovarianceFct <-
function(x, y=NULL,
model, param=NULL,
dim=NULL,
Distances, fctcall=c("Cov", "Variogram", "CovMatrix")) {
if (RFoptions()$internal$warn_oldstyle)
warning("The function is obsolete. Use 'RFcov' instead")
if (is.null(dim) && !missing(Distances))
dim <- if (is.matrix(x)) ncol(x) else 1
if (!missing(param) && is.na(param[1])) param[1] <- 0
model <- PrepareModel(model, param)
fctcall <- match.arg(fctcall)
rfeval(x=x, y=y, model=model, dim=dim, distances=Distances, fctcall=fctcall)
}
CovMatrix <- function(x, y=NULL,
model, param=NULL,
dim=NULL,
Distances) {
if (RFoptions()$internal$warn_oldstyle)
warning("The function is obsolete. Use 'RFcovmatrix' instead")
if (is.null(dim) && !missing(Distances))
dim <- if (is.matrix(x)) ncol(x) else 1
if (!missing(param) && is.na(param[1])) param[1] <- 0
model <- PrepareModel(model, param)
RFcovmatrix(x=x, y=y, model=model, dim=dim, distances=Distances)
}
DoSimulateRF <- function (n = 1, register = 0, paired=FALSE, trend=NULL) {
if (RFoptOld[[1]]$internal$warn_oldstyle)
warning("The function is obsolete.\nSee documentation of 'RFSimulate' (advanced part) instead.")
if (!is.null(trend))
stop("parameter trend in DoSimulateRF cannot be used anymore")
RFoptOld <-
internal.rfoptions(register=register, gauss.paired=paired, spConform=FALSE)
on.exit(RFoptions(LIST=RFoptOld[[1]]))
RFsimulate(n=n)
}
InitSimulateRF <- function (x, y = NULL, z = NULL, T=NULL,
grid=!missing(gridtriple), model, param,
trend, method = NULL,
register = 0, gridtriple, distribution=NA) {
if (RFoptOld[[2]]$internal$warn_oldstyle)
warning("This function is obsolete. Use 'RFsimulate' instead.")
RFoptOld <-
internal.rfoptions(register=register, #gauss.method=method,
spConform=FALSE)
on.exit(RFoptions(LIST=RFoptOld[[1]]))
OldDistribution(distribution) ## only check whether input is oK
model <- c(list(OldMethod(method)),
list(PrepareModel(model, param, trend)))
if (!missing(gridtriple)) {
if (gridtriple) {
if (!is.null(x)) {
if (is.matrix(x)) {
x <- apply(x, 2,
function(s) {c(s[1], s[3], length(seq(s[1], s[2], s[3])))})
} else {
x <- seq(x[1], x[2], x[3])
if (length(y)!=0) y <- seq(y[1], y[2], y[3])
if (length(z)!=0) z <- seq(z[1], z[2], z[3])
}
}
}
}
if (length(T)!=0) T <- c(T[1], T[3], length(seq(T[1], T[2], T[3])))
p <- list("Simulate", PrepareModel2(model))
warn.seed.not.na(RFoptOld, TRUE)
rfInit(model=p, x=x, y =y, z = z, T=T, grid=grid, RFopt=RFoptOld[[2]])
}
InitGaussRF <- function(x, y = NULL, z = NULL, T=NULL,
grid = !missing(gridtriple),
model, param,
trend=NULL, method = NULL,
register = 0, gridtriple) {
InitSimulateRF(x=x, y=y, z=z, T=T,
grid=grid, model=model, param=param, trend=trend,
method=method,
register=register,
gridtriple=gridtriple, distribution="Gauss")
}
GaussRF <- function (x, y = NULL, z = NULL, T=NULL,
grid=!missing(gridtriple), model, param, trend=NULL, method = NULL,
n = 1, register = 0, gridtriple,
paired=FALSE, PrintLevel=1, Storing=TRUE, ...) { #
if (RFoptions()$internal$warn_oldstyle)
warning("The function is obsolete. Use 'RFsimulate' instead.")
model <- c(list(OldMethod(method)),
list(PrepareModel(model, param, trend)))
# Print(model)
if (!missing(gridtriple)) {
if (gridtriple) {
if (!is.null(x)) {
if (is.matrix(x)) {
x <- apply(x, 2,
function(s) {c(s[1], s[3], length(seq(s[1], s[2], s[3])))})
} else {
x <- seq(x[1], x[2], x[3])
if (length(y)!=0) y <- seq(y[1], y[2], y[3])
if (length(z)!=0) z <- seq(z[1], z[2], z[3])
}
}
}
}
if (length(T)!=0) T <- c(T[1], T[3], length(seq(T[1], T[2], T[3])))
RFoptOld <-
internal.rfoptions(register=register, gauss.paired=paired,
# gauss.method=method,
spConform=FALSE)
on.exit(RFoptions(LIST=RFoptOld[[1]]))
RFsimulate(model=model, x=x, y=y, z=z, T=T, grid=grid, n=n,
#gauss.method=method,
register=register, gauss.paired=paired,
printlevel = PrintLevel, storing=Storing,
...)
## str(RFoptions())
}
## it does not make sense to me at the moment that a space-time model
## for extremes is defined.
InitMaxStableRF <- function(x, y = NULL, z = NULL, grid=NULL, model, param,
maxstable,
method = NULL,
register = 0, gridtriple = FALSE) {
RFoptOld <-
internal.rfoptions(register=register, #gauss.method=method,
spConform=FALSE)
on.exit(RFoptions(LIST=RFoptOld[[1]]))
if (RFoptOld[[2]]$internal$warn_oldstyle)
warning("The function is obsolete. Use 'RFsimulate' instead.")
meth <- if (!is.null(method)) method else maxstable
if (is.null(meth)) stop("method not given")
model <- c(list(OldMethod(meth)),
list(PrepareModel(model, param)))
if (!missing(gridtriple)) {
if (gridtriple) {
if (!is.null(x)) {
if (is.matrix(x)) {
x <- apply(x, 2,
function(s) {c(s[1], s[3], length(seq(s[1], s[2], s[3])))})
} else {
x <- seq(x[1], x[2], x[3])
if (length(y)!=0) y <- seq(y[1], y[2], y[3])
if (length(z)!=0) z <- seq(z[1], z[2], z[3])
}
}
}
}
if (length(T)!=0) T <- c(T[1], T[3], length(seq(T[1], T[2], T[3])))
p <- list("Simulate", PrepareModel2(model))
warn.seed.not.na(RFoptOld, TRUE)
rfInit(model=p, x=x, y=y, z=z, grid=grid, RFopt=RFoptOld[[2]])
}
MaxStableRF <- function (x, y = NULL, z = NULL, grid=NULL,
model, param, maxstable,
method = NULL,
n = 1, register = 0,
gridtriple = FALSE,
...) {
RFoptOld <-
if (n>1) internal.rfoptions(..., register=register, #gauss.method=method,
spConform=FALSE, storing=TRUE)
else internal.rfoptions(..., register=register, #gauss.method=method,
spConform=FALSE)
on.exit(RFoptions(LIST=RFoptOld[[1]]))
if (RFoptOld[[2]]$internal$warn_oldstyle)
warning("The function is obsolete. Use 'RFsimulate' instead.")
meth <- if (!is.null(method)) method else maxstable
if (is.null(meth)) stop("method not given")
model <- c(list(OldMethod(meth)),
list(PrepareModel(model, param)))
if (!missing(gridtriple)) {
if (gridtriple) {
if (!is.null(x)) {
if (is.matrix(x)) {
x <- apply(x, 2,
function(s) {c(s[1], s[3], length(seq(s[1], s[2], s[3])))})
} else {
x <- seq(x[1], x[2], x[3])
if (length(y)!=0) y <- seq(y[1], y[2], y[3])
if (length(z)!=0) z <- seq(z[1], z[2], z[3])
}
}
}
}
return(RFsimulate(model=model, x=x, y=y, z=z, grid=grid, n=n))
}
EmpiricalVariogram <-
function (x, y = NULL, z = NULL, T=NULL, data, grid=NULL, bin, gridtriple = FALSE,
phi, ## phi[1] erste richtung, phi[2] : anzahl der richtungen
theta, ## aehnlich
deltaT) {
if (RFoptions()$internal$warn_oldstyle)
warning("This function is obsolete. Use RFvariogram instead.")
if (!missing(gridtriple)) {
if (gridtriple) {
if (!is.null(x)) {
if (is.matrix(x)) {
x <- apply(x, 2,
function(s) {c(s[1], s[3], length(seq(s[1], s[2], s[3])))})
} else {
x <- seq(x[1], x[2], x[3])
if (length(y)!=0) y <- seq(y[1], y[2], y[3])
if (length(z)!=0) z <- seq(z[1], z[2], z[3])
}
}
}
}
if (length(T)!=0) T <- c(T[1], T[3], length(seq(T[1], T[2], T[3])))
rfempirical(x=x, y=y, z=z, T=T, data=data, grid=grid,
bin=bin, phi=phi, theta=theta, deltaT=deltaT, vdim=1)
}
Kriging <- function(krige.method, x, y=NULL, z=NULL, T=NULL,
grid=NULL, gridtriple=FALSE,
model, param, given, data, trend=NULL,
pch=".", return.variance=FALSE,
allowdistanceZero = FALSE, cholesky=FALSE) {
RFoptOld <- internal.rfoptions(general.pch=pch, spConform=FALSE,
return_variance=return.variance,
allowdistanceZero=allowdistanceZero)
on.exit(RFoptions(LIST=RFoptOld[[1]]))
if (RFoptOld[[2]]$internal$warn_oldstyle)
warning("The function is obsolete. Use 'RFinterpolate' instead.")
if (!is.null(trend))
stop("in the obsolete setting, Kriging may not be used with trend!\n")
model <- PrepareModel(model, param, trend)
if (!missing(gridtriple)) {
if (gridtriple) {
if (!is.null(x)) {
if (is.matrix(x)) {
x <- apply(x, 2,
function(s) {c(s[1], s[3], length(seq(s[1], s[2], s[3])))})
} else {
x <- seq(x[1], x[2], x[3])
if (length(y)!=0) y <- seq(y[1], y[2], y[3])
if (length(z)!=0) z <- seq(z[1], z[2], z[3])
}
}
}
}
if (length(T)!=0) T <- c(T[1], T[3], length(seq(T[1], T[2], T[3])))
data <- cbind(given, data)
colnames(data) <- c(rep("", ncol(given)), "data")
RFinterpolate(x=x, y=y, z=z, T=T, grid=grid, model=model, data=data)
}
CondSimu <- function(krige.method, x, y=NULL, z=NULL, T=NULL,
grid=NULL, gridtriple=FALSE,
model, param, method=NULL,
given, data, trend=NULL,
n=1, register=0,
err.model=NULL, err.param=NULL, err.method=NULL,
err.register=1,
tol=1E-5, pch=".", #
paired=FALSE,
na.rm=FALSE) {
RFoptOld <- internal.rfoptions(register=register, gauss.paired=paired,
# gauss.method=method,
general.errregister=err.register,
spConform=FALSE)
on.exit(RFoptions(LIST=RFoptOld[[1]]))
if (RFoptOld[[2]]$internal$warn_oldstyle)
warning("The function is obsolete. Use 'RFsimulate' instead.")
if (RFoptOld[[2]]$internal$warn_oldstyle)
warning("The function is obsolete.\nUse 'RFsimulate' instead.")
if (!is.null(err.method)) warning("err.method is ignored.")
## Print(krige.method, is.character(krige.method), (is.na(pmatch(krige.method, c("S","O")))))
if (is.character(krige.method) && is.na(pmatch(krige.method, c("S","O"))))
stop("Sorry. The parameters of the function `CondSimu' as been redefined. Use `krige.method' instead of `method'.")
model <- PrepareModel(model, param, trend)
if (!is.null(trend)) stop("trend cannot be given anymore.")
err.model <- PrepareModel(err.model, err.param)
if (err.model[[1]]=="+" && length(err.model) == 3 &&
err.model[[3]][[1]]=="trend" && err.model[[3]]$mean != 0) {
warning("error model has non-zero mean. Set to zero.")
err.model <- err.model[[2]]
}
if (!missing(gridtriple)) {
if (gridtriple) {
if (!is.null(x)) {
if (is.matrix(x)) {
x <- apply(x, 2,
function(s) {c(s[1], s[3], length(seq(s[1], s[2], s[3])))})
} else {
x <- seq(x[1], x[2], x[3])
if (length(y)!=0) y <- seq(y[1], y[2], y[3])
if (length(z)!=0) z <- seq(z[1], z[2], z[3])
}
}
}
}
if (length(T)!=0) T <- c(T[1], T[3], length(seq(T[1], T[2], T[3])))
data <- cbind(given, data)
if (is.null(dim(given)))
given <- matrix(given)
colnames(data) <- c(rep("", ncol(given)), "data")
return(rfCondGauss(model, x=x, y=y, z=z, T=T, grid=grid, n=n,
data=data, err.model=err.model)$simu)
}
hurst <- function(x, y = NULL, z = NULL, data,
gridtriple = FALSE, sort=TRUE,
block.sequ = unique(round(exp(seq(log(min(3000, dim[1] / 5)),
log(dim[1]), len=min(100, dim[1]))))),
fft.m = c(1, min(1000, (fft.len - 1) / 10)),
fft.max.length = Inf, ## longer ts are cut down
method=c("dfa", "fft", "var"),
mode=c("plot", "interactive"),
pch=16, cex=0.2, cex.main=0.85,
PrintLevel=RFoptions()$basic$printlevel,
height=3.5,
...) {
if (RFoptions()$internal$warn_oldstyle)
warning("'hurst' is obsolete. Use RFhurst instead.")
fft.len <- min(dim[1], fft.max.length)
if (missing(x)) {
gridtriple <- TRUE
## stopifnot(grid)
x <- if (is.array(data)) rbind(1, dim(data), 1) else c(1, length(data), 1)
}
if (gridtriple) {
if (!is.null(x)) {
if (is.matrix(x)) {
x <- apply(x, 2,
function(s) {c(s[1], s[3], length(seq(s[1], s[2], s[3])))})
} else {
x <- seq(x[1], x[2], x[3])
if (length(y)!=0) y <- seq(y[1], y[2], y[3])
if (length(z)!=0) z <- seq(z[1], z[2], z[3])
}
}
}
RFhurst(x=x, y=y, z=z, data=data, sort=sort,
block.sequ=block.sequ, fft.m=fft.m, fft.max.length=fft.max.length,
#gauss.method=method,
#mode=mode, pch=pch, cex=cex, cex.main=cex.main,
printlevel=PrintLevel, height=height, ...)
}
fractal.dim <-
function(x, y = NULL, z = NULL, data,
grid=TRUE, gridtriple = FALSE,
bin,
vario.n=5,
sort=TRUE,
#box.sequ=unique(round(exp(seq(log(1),
# log(min(dim - 1, 50)), len=100)))),
#box.enlarge.y=1,
#range.sequ=unique(round(exp(seq(log(1),
# log(min(dim - 1, 50)), len=100)))),
fft.m = c(65, 86), ## in % of range of l.lambda
fft.max.length=Inf,
fft.max.regr=150000,
fft.shift = 50, # in %; 50:WOSA; 100: no overlapping
method=c("variogram", "fft"),# "box","range", not correctly implement.
mode=c("plot", "interactive"),
pch=16, cex=0.2, cex.main=0.85,
PrintLevel = RFoptions()$basic$printlevel,
height=3.5,
...) {
if (RFoptions()$internal$warn_oldstyle)
warning("`fractal.dim' is obsolete. Use RFfractaldim instead.")
if (missing(x)) {
gridtriple <- TRUE
stopifnot(grid)
x <- if (is.array(data)) rbind(1, dim(data), 1) else c(1, length(data), 1)
}
if (gridtriple) {
if (!is.null(x)) {
if (is.matrix(x)) {
x <- apply(x, 2,
function(s) {c(s[1], s[3], length(seq(s[1], s[2], s[3])))})
} else {
x <- seq(x[1], x[2], x[3])
if (length(y)!=0) y <- seq(y[1], y[2], y[3])
if (length(z)!=0) z <- seq(z[1], z[2], z[3])
}
}
}
RFfractaldim(x=x, y=y, z=z, data=data, grid=grid, bin=bin, vario.n=vario.n,
sort=sort, fft.m=fft.m, fft.max.length=fft.max.length,
fft.max.regr=fft.max.regr, fft.shift=fft.shift,
# gauss.method=method,
mode=mode, pch=pch, cex=cex, cex.main=cex.main,
printlevel=PrintLevel, heigth=height, ...)
}
fitvario <-
function(x, y=NULL, z=NULL, T=NULL, data, model, param,
lower=NULL, upper=NULL, sill=NA, grid=!missing(gridtriple),
gridtriple=FALSE,
...) {
if (RFoptions()$internal$warn_oldstyle)
warning("The function is obsolete. Use 'RFfit' instead.")
fitvario.default(x=x, y=y, z=z, T=T, data=data, model=model, param=param,
lower=lower, upper=upper, sill=sill,
grid=grid, gridtriple,
...)
}
fitvario.default <-
function(x, y=NULL, z=NULL, T=NULL, data, model, param,
grid=!missing(gridtriple), gridtriple=FALSE,
trend = NULL,
## BoxCox ((x+c)^l - 1) / l; log(x+c); with c==1
## BC.lambda : NA / value
## BC.c: nur value
BC.lambda, ## if missing then no BoxCox-Trafo
BC.lambdaLB=-10, BC.lambdaUB=10,
lower=NULL, upper=NULL, sill=NA,
use.naturalscaling=FALSE,
## speed=FALSE, i.e. coordniates will be saved in GATTER
PrintLevel=RFoptions()$basic$printlevel, optim.control=NULL,
bins=20, nphi=1, ntheta=1, ntime=20,
bin.dist.factor=0.5,
upperbound.scale.factor=3, lowerbound.scale.factor=3,
lowerbound.scale.LS.factor=5,
upperbound.var.factor=10, lowerbound.var.factor=100,
lowerbound.sill=1E-10, scale.max.relative.factor=1000,
minbounddistance=0.001, minboundreldist=0.02,
approximate.functioncalls=50,
pch=RFoptions()$general$pch,
transform=NULL, standard.style=NA,
## var.name="X", time.name="T",
lsq.methods=c("self", "plain", "sqrt.nr", "sd.inv", "internal"),
## "internal" : name should not be changed; should always be last
## method!
mle.methods=c("ml"), # "reml", "rml1"),
cross.methods=NULL,
# cross.methods=c("cross.sq", "cross.abs", "cross.ign", "cross.crps"),
users.guess=NULL, only.users = FALSE,
distances=NULL, truedim,
solvesigma = NA,
allowdistanceZero = FALSE,
na.rm = TRUE) { ## do not use FALSE for mixed models !
if (RFoptOld[[2]]$internal$warn_oldstyle)
warning("fitvario is obsolete. Use RFfit instead.")
RFoptOld <-
internal.rfoptions(fit.boxcox_lb=BC.lambdaLB,
fit.boxcox_ub=BC.lambdaUB,
# fit.sill=sill,
fit.use_naturalscaling= use.naturalscaling,
printlevel=PrintLevel,
fit.bins=bins,
fit.nphi=nphi,
fit.ntheta=ntheta,
fit.ntime=ntime,
fit.bin_dist_factor = bin.dist.factor,
fit.upperbound_scale_factor = upperbound.scale.factor,
fit.lowerbound_scale_factor = lowerbound.scale.factor,
fit.lowerbound_scale_ls_factor=lowerbound.scale.LS.factor,
fit.upperbound_var_factor=upperbound.var.factor,
fit.lowerbound_var_factor=lowerbound.var.factor,
# fit.lowerbound_sill=lowerbound.sill,
fit.scale_max_relative_factor=scale.max.relative.factor,
fit.minbounddistance=minbounddistance,
fit.minboundreldist=minboundreldist,
fit.approximate_functioncalls=approximate.functioncalls,
pch=pch,
# fit.optim_var_elimination=
# if(is.na(standard.style)) 'try' else if (standard.style)
# 'yes' else 'never',
## var.name="X", time.name="T",
fit.only_users = only.users,
# fit.solvesigma = solvesigma ,
allowdistanceZero = allowdistanceZero,
na_rm = na.rm)
on.exit(RFoptions(LIST=RFoptOld[[1]]))
model <- PrepareModel(model, param, trend)
if (gridtriple) {
if (!is.null(x)) {
if (is.matrix(x)) {
x <- apply(x, 2,
function(s) {c(s[1], s[3], length(seq(s[1], s[2], s[3])))})
} else {
x <- seq(x[1], x[2], x[3])
if (length(y)!=0) y <- seq(y[1], y[2], y[3])
if (length(z)!=0) z <- seq(z[1], z[2], z[3])
}
}
}
if (length(T)!=0) T <- c(T[1], T[3], length(seq(T[1], T[2], T[3])))
if (!missing(param)) {
if (is.numeric(lower)) lower <- PrepareModel(model=model, param=lower)
if (is.numeric(upper)) upper <- PrepareModel(model=model, param=upper)
}
RFfit(x=x, y=y, z=z, T=T, data=data, model=model,
lower=lower, upper=upper, grid=grid,boxcox=BC.lambda,
sub.methods=lsq.methods, methods=mle.methods,
users.guess=users.guess, distances=distances,
dim= truedim,
optim.control=optim.control, transform=transform,
spConform=FALSE)
}
DeleteAllRegisters <- function() {
old <- RFoptions()$general$storing
RFoptions(storing=FALSE, storing=old)
}
DeleteRegister <- function(nr=0){
DeleteAllRegisters()
}
RFparameters <- function(...) {
if (RFoptions()$internal$warn_oldstyle)
warning("The function is obsolete. Use 'RFoptions' instead.")
l <- list(...)
nl <- names(l)
names <- c("Storing", "PrintLevel") #
if (any(is.na(pmatch(nl, names))))
warning("some options of 'RFparameters' in the package 'RandomFields' are not recognized anymore. Use 'RFoptions' instead")
if ("Storing" %in% nl) RFoptions(storing=l$Storing)
if ("PrintLevel" %in% nl) RFoptions(printlevel=l$PrintLevel)
}
plotWithCircles <- function(data, factor=1.0,
xlim=range(data[,1])+c(-maxr,maxr),
ylim=range(data[,2])+c(-maxr,maxr),
col=1, fill=0, ...) {
## marked point process: presents positive values of data as radii of circles
CIRLLE.X <- cos(seq(0,2*pi,l=20))
CIRLLE.Y <- sin(seq(0,2*pi,l=20))
circle <- function(x,r) { polygon(x[1]+ r* CIRLLE.X,x[2]+ r* CIRLLE.Y,
col=fill, border=col) }
##r <- x$NormedData - min(x$NormedData) +1
##r <- r/max(r)/nrow(x$coord) * diff(xlim) * diff(ylim) * 2.5;
maxr <- max(data[,3])
plot(Inf, Inf, xlim=xlim, ylim=ylim, xlab="", ylab="",...)
for (i in 1:nrow(data)) { circle(data[i,c(1,2)], factor*data[i,3]) }
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.