Nothing
## File Name: tam.mml.R
## File Version: 9.863
tam.mml <- function( resp, Y=NULL, group=NULL, irtmodel="1PL",
formulaY=NULL, dataY=NULL,
ndim=1, pid=NULL,
xsi.fixed=NULL, xsi.inits=NULL,
beta.fixed=NULL, beta.inits=NULL,
variance.fixed=NULL, variance.inits=NULL,
est.variance=TRUE, constraint="cases",
A=NULL, B=NULL, B.fixed=NULL,
Q=NULL, est.slopegroups=NULL, E=NULL,
pweights=NULL,
userfct.variance=NULL, variance.Npars=NULL,
item.elim=TRUE, verbose=TRUE,
control=list()
# control can be specified by the user
){
s1 <- Sys.time()
CALL <- match.call()
prior_list_xsi=NULL
mstep_intercept_method <- "R"
# display
disp <- "....................................................\n"
increment.factor <- progress <- nodes <- snodes <- ridge <- xsi.start0 <- QMC <- NULL
maxiter <- conv <- convD <- min.variance <- max.increment <- Msteps <- convM <- NULL
R <- trim_increment <- NULL
fac.oldxsi <- acceleration <- NULL
#**** handle verbose argument
args_CALL <- as.list( sys.call() )
if ( ! tam_in_names_list( list=control, variable="progress" ) ){
control$progress <- verbose
}
#*******
if ( is.null(A)){ printxsi <- FALSE } else { printxsi <- TRUE }
#--- attach control elements
e1 <- environment()
tam_fct <- "tam.mml"
res <- tam_mml_control_list_define(control=control, envir=e1, tam_fct=tam_fct,
prior_list_xsi=prior_list_xsi)
con <- res$con
con1a <- res$con1a
#- check constraint
constraint <- tam_mml_constraint_check(constraint=constraint)
resp <- as.matrix(resp)
resp0 <- resp <- add.colnames.resp(resp)
if (progress){
cat(disp)
cat("Processing Data ", paste(Sys.time()), "\n") ; flush.console()
}
if ( ! is.null(group) ){
con1a$QMC <- QMC <- FALSE
con1a$snodes <- snodes <- 0
}
# define design matrix in case of PCM2
# if (( irtmodel=="PCM2" ) & (is.null(Q)) & ( is.null(A)) ){
# A <- .A.PCM2( resp )
# }
#-- handle constraints
if ( constraint=="items" ){
irtmodel <- "PCM2"
}
if (( irtmodel=="PCM2" ) & ( is.null(A)) ){
A <- .A.PCM2( resp, constraint=constraint, Q=Q )
}
if ( !is.null(con$seed)){
set.seed( con$seed )
}
nitems <- ncol(resp) # number of items
nstud <- nrow(resp) # number of students
#*****
nstud1 <- sum(1*( rowSums( 1 - is.na(resp) ) > 0 ))
if ( is.null(pweights) ){
pweights <- rep(1,nstud) # weights of response pattern
}
if (progress){
cat(" * Response Data:", nstud, "Persons and ",
nitems, "Items \n" ) ;
flush.console()
}
#!! check dim of person ID pid
if ( is.null(pid) ){ pid <- seq(1,nstud) }else{ pid <- unname(c(unlist(pid))) }
# print( colSums( is.na(resp)) )
# normalize person weights to sum up to nstud
pweights0 <- pweights
pweights <- nstud * pweights / sum(pweights)
#@@--
# a matrix version of person weights
pweightsM <- outer( pweights, rep(1,nitems) )
# calculate ndim if only B or Q are supplied
if ( ! is.null(B) ){ ndim <- dim(B)[3] }
if ( ! is.null(Q) ){ ndim <- dim(Q)[2] }
betaConv <- FALSE #flag of regression coefficient convergence
varConv <- FALSE #flag of variance convergence
nnodes <- length(nodes)^ndim
if ( snodes > 0 ){ nnodes <- snodes }
#--- print information about nodes
res <- tam_mml_progress_proc_nodes( progress=progress, snodes=snodes, nnodes=nnodes,
skillspace="normal", QMC=QMC)
# maximum no. of categories per item. Assuming dichotomous
maxK <- max( resp, na.rm=TRUE ) + 1
# create design matrices
modeltype <- "PCM"
if (irtmodel=="RSM"){ modeltype <- "RSM" }
#****
# ARb 2015-12-08
maxKi <- NULL
if ( ! (item.elim ) ){
maxKi <- rep( maxK - 1, ncol(resp) )
}
#***
design <- designMatrices( modeltype=modeltype, maxKi=maxKi, resp=resp,
A=A, B=B, Q=Q, R=R, ndim=ndim, constraint=constraint )
A <- design$A
B <- design$B
cA <- design$flatA
cA[is.na(cA)] <- 0
if (progress){
cat(" * Created Design Matrices (",
paste(Sys.time()), ")\n") ; flush.console()
}
design <- NULL
# #---2PL---
# B_orig <- B #keep a record of generated B before estimating it in 2PL model
# #---end 2PL---
#--- xsi parameter index
res <- tam_mml_proc_est_xsi_index(A=A, xsi.inits=xsi.inits, xsi.fixed=xsi.fixed)
np <- res$np
xsi <- res$xsi
est.xsi.index0 <- est.xsi.index <- res$est.xsi.index
#--- inits variance
res <- tam_mml_inits_variance( variance.inits=variance.inits, ndim=ndim,
variance.fixed=variance.fixed )
variance <- res$variance
#--- inits group
res <- tam_mml_inits_groups( group=group )
G <- res$G
groups <- res$groups
group <- res$group
var.indices <- res$var.indices
#--- inits beta regression coefficients
res <- tam_mml_inits_beta( Y=Y, formulaY=formulaY, dataY=dataY, G=G, group=group,
groups=groups, nstud=nstud, pweights=pweights, ridge=ridge, beta.fixed=beta.fixed,
xsi.fixed=xsi.fixed, constraint=constraint, ndim=ndim, beta.inits=beta.inits )
Y <- res$Y
nullY <- res$nullY
formulaY <- res$formulaY
nreg <- res$nreg
W <- res$W
YYinv <- res$YYinv
beta.fixed <- res$beta.fixed
beta <- res$beta
#--- response indicators
res <- tam_mml_proc_response_indicators( resp=resp, nitems=nitems )
resp <- res$resp
resp.ind <- res$resp.ind
resp.ind.list <- res$resp.ind.list
nomiss <- res$nomiss
#-- AXsi
AXsi <- matrix(0,nrow=nitems,ncol=maxK ) #A times xsi
#--- parameter indices xsi parameters
res <- tam_mml_proc_xsi_parameter_index_A(A=A, np=np)
indexIP <- res$indexIP
indexIP.list <- res$indexIP.list
indexIP.list2 <- res$indexIP.list2
indexIP.no <- res$indexIP.no
#--- sufficient statistics for item parameters
res <- tam_mml_sufficient_statistics( nitems=nitems, maxK=maxK, resp=resp, resp.ind=resp.ind,
pweights=pweights, cA=cA, progress=progress )
ItemScore <- res$ItemScore
cResp <- res$cResp
col.index <- res$col.index
#--- inits xsi
res <- tam_mml_inits_xsi( A=A, resp.ind=resp.ind, ItemScore=ItemScore, xsi.inits=xsi.inits,
xsi.fixed=xsi.fixed, est.xsi.index=est.xsi.index, pweights=pweights,
xsi.start0=xsi.start0, xsi=xsi, resp=resp )
xsi <- res$xsi
personMaxA <- res$personMaxA
ItemMax <- res$ItemMax
equal.categ <- res$equal.categ
#--- prior distribution xsi
prior_list_xsi <- tam_mml_proc_prior_list_xsi( prior_list_xsi=prior_list_xsi, xsi=xsi )
xsi.min.deviance <- xsi
beta.min.deviance <- beta
variance.min.deviance <- variance
#--- create grid of nodes for numeric or stochastic integration
res <- tam_mml_create_nodes( snodes=snodes, nodes=nodes, ndim=ndim, QMC=QMC )
theta <- res$theta
theta2 <- res$theta2
thetawidth <- res$thetawidth
theta0.samp <- res$theta0.samp
thetasamp.density <- res$thetasamp.density
deviance <- 0
deviance.history <- tam_deviance_history_init(maxiter=maxiter)
iter <- 0
a02 <- a1 <- 999 # item parameter change
a4 <- 0
##**SE
se.xsi <- 0*xsi
se.B <- 0*B
#--- create unidim_simplify
res <- tam_mml_proc_unidim_simplify( Y=Y, A=A, G=G, beta.fixed=beta.fixed )
unidim_simplify <- res$unidim_simplify
YSD <- res$YSD
Avector <- res$Avector
#--- warning multiple group estimation
res <- tam_mml_warning_message_multiple_group_models( ndim=ndim, G=G)
#--- acceleration
res <- tam_acceleration_inits(acceleration=acceleration, G=G, xsi=xsi, variance=variance)
xsi_acceleration <- res$xsi_acceleration
variance_acceleration <- res$variance_acceleration
#--- compute some arguments for EM algorithm
maxcat <- tam_rcpp_mml_maxcat(A=as.vector(A), dimA=dim(A) )
# define progress bar for M step
mpr <- round( seq( 1, np, len=10 ) )
hwt.min <- 0
rprobs.min <- 0
AXsi.min <- 0
B.min <- 0
deviance.min <- 1E100
itemwt.min <- 0
se.xsi.min <- se.xsi
se.B.min <- se.B
#''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
##############################################################
#Start EM loop here
while ( ( (!betaConv | !varConv) | ((a1 > conv) | (a4 > conv) | (a02 > convD)) ) & (iter < maxiter) ) {
iter <- iter + 1
#--- progress
res <- tam_mml_progress_em0(progress=progress, iter=iter, disp=disp)
#--- calculate nodes for Monte Carlo integration
if ( snodes > 0){
res <- tam_mml_update_stochastic_nodes( theta0.samp=theta0.samp, variance=variance,
snodes=snodes, beta=beta, theta=theta )
theta <- res$theta
theta2 <- res$theta2
thetasamp.density <- res$thetasamp.density
}
olddeviance <- deviance
#--- calculation of probabilities
res <- tam_mml_calc_prob( iIndex=1:nitems, A=A, AXsi=AXsi, B=B, xsi=xsi, theta=theta,
nnodes=nnodes, maxK=maxK, recalc=TRUE, maxcat=maxcat, use_rcpp=TRUE )
rprobs <- res$rprobs
AXsi <- res$AXsi
#--- calculate student's prior distribution
gwt <- tam_stud_prior( theta=theta, Y=Y, beta=beta, variance=variance, nstud=nstud,
nnodes=nnodes, ndim=ndim, YSD=YSD, unidim_simplify=unidim_simplify,
snodes=snodes )
#--- calculate student's likelihood
res.hwt <- tam_calc_posterior( rprobs=rprobs, gwt=gwt, resp=resp, nitems=nitems,
resp.ind.list=resp.ind.list, normalization=TRUE,
thetasamp.density=thetasamp.density, snodes=snodes, resp.ind=resp.ind,
avoid.zerosum=TRUE )
hwt <- res.hwt$hwt
#--- M step: estimation of beta and variance
resr <- tam_mml_mstep_regression( resp=resp, hwt=hwt, resp.ind=resp.ind,
pweights=pweights, pweightsM=pweightsM, Y=Y, theta=theta, theta2=theta2,
YYinv=YYinv, ndim=ndim, nstud=nstud, beta.fixed=beta.fixed, variance=variance,
Variance.fixed=variance.fixed, group=group, G=G, snodes=snodes, nomiss=nomiss,
thetasamp.density=thetasamp.density, iter=iter, min.variance=min.variance,
userfct.variance=userfct.variance, variance_acceleration=variance_acceleration,
est.variance=est.variance, beta=beta )
beta <- resr$beta
variance <- resr$variance
itemwt <- resr$itemwt
variance_acceleration <- resr$variance_acceleration
variance_change <- resr$variance_change
beta_change <- resr$beta_change
if ( beta_change < conv){ betaConv <- TRUE }
if ( variance_change < conv){ varConv <- TRUE }
#--- M-step item intercepts
if (mstep_intercept_method=="optim"){
res <- tam_calc_counts( resp=resp, theta=theta, resp.ind=resp.ind, group=group,
maxK=maxK, pweights=pweights, hwt=hwt )
n.ik <- res$n.ik
}
res <- tam_mml_mstep_intercept( A=A, xsi=xsi, AXsi=AXsi, B=B, theta=theta,
nnodes=nnodes, maxK=maxK, Msteps=Msteps, rprobs=rprobs, np=np,
est.xsi.index0=est.xsi.index0, itemwt=itemwt, indexIP.no=indexIP.no,
indexIP.list2=indexIP.list2, Avector=Avector, max.increment=max.increment,
xsi.fixed=xsi.fixed, fac.oldxsi=fac.oldxsi, ItemScore=ItemScore,
convM=convM, progress=progress, nitems=nitems, iter=iter,
increment.factor=increment.factor, xsi_acceleration=xsi_acceleration,
trim_increment=trim_increment, prior_list_xsi=prior_list_xsi,
mstep_intercept_method=mstep_intercept_method, n.ik=n.ik,
maxcat=maxcat )
xsi <- res$xsi
se.xsi <- res$se.xsi
max.increment <- res$max.increment
xsi_acceleration <- res$xsi_acceleration
xsi_change <- res$xsi_change
logprior_xsi <- res$logprior_xsi
#--- compute deviance
res <- tam_mml_compute_deviance( loglike_num=res.hwt$rfx, loglike_sto=res.hwt$rfx,
snodes=snodes, thetawidth=thetawidth, pweights=pweights, deviance=deviance,
deviance.history=deviance.history, iter=iter, logprior_xsi=logprior_xsi )
deviance <- res$deviance
deviance.history <- res$deviance.history
a01 <- rel_deviance_change <- res$rel_deviance_change
a02 <- deviance_change <- res$deviance_change
penalty_xsi <- res$penalty_xsi
if (con$dev_crit=="relative" ){ a02 <- a01 }
if( deviance < deviance.min ){
xsi.min.deviance <- xsi
beta.min.deviance <- beta
variance.min.deviance <- variance
hwt.min <- hwt
AXsi.min <- AXsi
B.min <- B
deviance.min <- deviance
itemwt.min <- itemwt
se.xsi.min <- se.xsi
se.B.min <- se.B
}
a1 <- xsi_change
a2 <- beta_change
a3 <- variance_change
devch <- -( deviance - olddeviance )
#** print progress
res <- tam_mml_progress_em( progress=progress, deviance=deviance,
deviance_change=deviance_change, iter=iter,
rel_deviance_change=rel_deviance_change, xsi_change=xsi_change,
beta_change=beta_change, variance_change=variance_change, B_change=0,
devch=devch, penalty_xsi=penalty_xsi )
} # end of EM loop
#******************************************************
xsi.min.deviance -> xsi
beta.min.deviance -> beta
variance.min.deviance -> variance
hwt.min -> hwt
AXsi.min -> AXsi
B.min -> B
deviance.min -> deviance
itemwt.min -> itemwt
se.xsi.min -> se.xsi
se.B.min -> se.B
#*** include NAs in AXsi
AXsi <- tam_mml_include_NA_AXsi(AXsi=AXsi, maxcat=maxcat, A=A, xsi=xsi)
#--- generate input for fixed parameters
xsi.fixed.estimated <- tam_generate_xsi_fixed_estimated( xsi=xsi, A=A )
B.fixed.estimated <- tam_generate_B_fixed_estimated(B=B)
#**** standard errors AXsi
se.AXsi <- tam_mml_se_AXsi( AXsi=AXsi, A=A, se.xsi=se.xsi, maxK=maxK )
##*** Information criteria
ic <- tam_mml_ic( nstud=nstud1, deviance=deviance, xsi=xsi, xsi.fixed=xsi.fixed,
beta=beta, beta.fixed=beta.fixed, ndim=ndim, variance.fixed=variance.fixed,
G=G, irtmodel=irtmodel, B_orig=NULL, B.fixed=B.fixed, E=E,
est.variance=TRUE, resp=resp, est.slopegroups=NULL,
variance.Npars=variance.Npars, group=group, penalty_xsi=penalty_xsi,
pweights=pweights, resp.ind=resp.ind)
#*** calculate counts
res <- tam_calc_counts( resp=resp, theta=theta, resp.ind=resp.ind, group=group,
maxK=maxK, pweights=pweights, hwt=hwt )
n.ik <- res$n.ik
pi.k <- res$pi.k
#*** collect item parameters
item1 <- tam_itempartable( resp=resp, maxK=maxK, AXsi=AXsi, B=B, ndim=ndim,
resp.ind=resp.ind, rprobs=rprobs, n.ik=n.ik, pi.k=pi.k,
pweights=pweights)
#*** IRT parameterization
item_irt <- tam_irt_parameterization(resp=resp, maxK=maxK, B=B, AXsi=AXsi,
irtmodel=irtmodel, tam_function="tam.mml")
#**** collect all person statistics
res <- tam_mml_person_posterior( pid=pid, nstud=nstud, pweights=pweights,
resp=resp, resp.ind=resp.ind, snodes=snodes,
hwtE=hwt, hwt=hwt, ndim=ndim, theta=theta )
person <- res$person
EAP.rel <- res$EAP.rel
# cat("person parameters") ; a1 <- Sys.time(); print(a1-a0) ; a0 <- a1
s2 <- Sys.time()
if ( is.null( dimnames(A)[[3]] ) ){
dimnames(A)[[3]] <- paste0("Xsi", 1:dim(A)[3] )
}
item <- data.frame( "xsi.index"=1:np,
"xsi.label"=dimnames(A)[[3]],
"est"=xsi )
if (progress){
cat(disp)
cat("Item Parameters\n")
item2 <- item
item2[,"est"] <- round( item2[,"est"], 4 )
print(item2)
cat("...................................\n")
cat("Regression Coefficients\n")
print( beta, 4 )
cat("\nVariance:\n" ) #, round( varianceM, 4 ))
if (G==1 ){
varianceM <- matrix( variance, nrow=ndim, ncol=ndim )
print( varianceM, 4 )
} else {
print( variance[ var.indices], 4 ) }
if ( ndim > 1){
cat("\nCorrelation Matrix:\n" ) #, round( varianceM, 4 ))
print( stats::cov2cor(varianceM), 4 )
}
cat("\n\nEAP Reliability:\n")
print( round (EAP.rel,3) )
cat("\n-----------------------------")
devmin <- which.min( deviance.history[,2] )
if ( devmin < iter ){
cat(paste("\n\nMinimal deviance at iteration ", devmin,
" with deviance ", round(deviance.history[ devmin, 2 ],3), sep=""), "\n")
cat("The corresponding estimates are\n")
cat(" xsi.min.deviance\n beta.min.deviance \n variance.min.deviance\n\n")
}
cat( "\nStart: ", paste(s1))
cat( "\nEnd: ", paste(s2),"\n")
print(s2-s1)
cat( "\n" )
}
# collect xsi parameters
obji <- data.frame( "xsi"=xsi, "se.xsi"=se.xsi )
rownames(obji) <- dimnames(A)[[3]]
xsi <- obji
#**** calculate individual likelihood
res.hwt <- tam_calc_posterior( rprobs=rprobs, gwt=1+0*gwt, resp=resp, nitems=nitems,
resp.ind.list=resp.ind.list, normalization=FALSE,
thetasamp.density=thetasamp.density, snodes=snodes, resp.ind=resp.ind )
res.like <- res.hwt$hwt
#***** standardized coefficients
latreg_stand <- tam_latent_regression_standardized_solution(variance=variance, beta=beta, Y=Y)
#-------------------------------
# Output list
deviance.history <- deviance.history[ 1:iter, ]
res <- list( "xsi"=xsi,
"beta"=beta, "variance"=variance,
"item"=item1, item_irt=item_irt,
"person"=person, pid=pid, "EAP.rel"=EAP.rel,
"post"=hwt, "rprobs"=rprobs, "itemweight"=itemwt,
"theta"=theta,
"n.ik"=n.ik, "pi.k"=pi.k,
"Y"=Y, "resp"=resp0,
"resp.ind"=resp.ind, "group"=group,
"G"=if ( is.null(group)){1} else { length(unique( group ) )},
"groups"=if ( is.null(group)){1} else { groups },
"formulaY"=formulaY, "dataY"=dataY,
"pweights"=pweights0,
"time"=c(s1,s2), "A"=A, "B"=B,
"se.B"=se.B,
"nitems"=nitems, "maxK"=maxK, "AXsi"=AXsi,
"AXsi_"=- AXsi,
"se.AXsi"=se.AXsi,
"nstud"=nstud, "resp.ind.list"=resp.ind.list,
"hwt"=hwt, "like"=res.like,
"ndim"=ndim,
"xsi.fixed"=xsi.fixed,
"xsi.fixed.estimated"=xsi.fixed.estimated,
"B.fixed.estimated"=B.fixed.estimated,
"beta.fixed"=beta.fixed, "Q"=Q,
"variance.fixed"=variance.fixed,
"nnodes"=nnodes, "deviance"=ic$deviance,
"ic"=ic, thetasamp.density=thetasamp.density,
"deviance.history"=deviance.history,
"control"=con1a, "irtmodel"=irtmodel,
"iter"=iter,
"printxsi"=printxsi,
"YSD"=YSD, CALL=CALL, latreg_stand=latreg_stand,
prior_list_xsi=prior_list_xsi, penalty_xsi=penalty_xsi)
class(res) <- "tam.mml"
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.