R/linearHypothesis.R

Defines functions matchCoefs.lmList matchCoefs.mlm matchCoefs.lme matchCoefs.merMod matchCoefs.mer matchCoefs.default matchCoefs linearHypothesis.rlm df.residual.rlm linearHypothesis.svyglm linearHypothesis.lme linearHypothesis.mer linearHypothesis.merMod coef.multinom linearHypothesis.survreg print.linearHypothesis.mlm linearHypothesis.mlm check.imatrix linearHypothesis.lm linearHypothesis.glm linearHypothesis.default linearHypothesis.nlsList linearHypothesis.lmList printHypothesis makeHypothesis

Documented in linearHypothesis.default linearHypothesis.glm linearHypothesis.lm linearHypothesis.lme linearHypothesis.lmList linearHypothesis.mer linearHypothesis.merMod linearHypothesis.mlm linearHypothesis.nlsList linearHypothesis.rlm linearHypothesis.survreg linearHypothesis.svyglm makeHypothesis matchCoefs matchCoefs.default matchCoefs.lme matchCoefs.lmList matchCoefs.mer matchCoefs.merMod matchCoefs.mlm printHypothesis print.linearHypothesis.mlm

#---------------------------------------------------------------------------------------
# Revision history:
#   2009-01-16: replaced unlist(options("foo")) with getOption("foo")
#   2009-09-16: optionally allow models with aliased coefficients. J. Fox
#   2009-12-10: modification by A. Zeileis to allow wider range of coef. names.
#   2009-12-22: small changes to linearHypothesis.mlm() to handle user-specified
#               within-subjects designs in Anova()
#   2010-05-21: linearHypothesis.default() and .lm() changed so that differences
#               in df, etc. will be postive.
#   2010-06-12: linearHypothesis.mlm() changed to allow observation weights
#	2010-06-22: fixed bug in linearHypothesis.lm caused by 2010-05-21 revision
#   2010-01-21: added methods for mixed models; added matchCoefs() and methods. J. Fox
#   2011-05-03: fixed bug in displaying numbers starting with "-1" or "+1" in printed representation. J. Fox
#   2011-06-09: added matchCoefs.mlm(). J. Fox
#   2011-11-27: added linearHypothesis.svyglm(). John
#   2011-12-27: fixed printing bug in linearHypothesis(). John
#   2012-02-28: added F-test to linearHypothesis.mer(). John
#   2012-03-07: singular.ok argument added to linearHypothesis.mlm(). J. Fox
#   2012-08-20: Fixed p-value bug for chisq test in .mer method. John
#   2012-09-17: updated linearHypothesis.mer for pkrtest 0.3-2. John
#   2012-11-21: test for NULL rhs to avoid warning in R 2.16.0. John
#   2013-01-28: hypotheses can now contain newlines and tabs
#   2013-02-14: fixed bug in printing constants of the form 1.x*. John
#   2013-06-20: added .merMod() method. John
#   2013-06-22: tweaks for lme4. John
#   2013-06-22: test argument uniformly uses "Chisq" rather than "chisq". J. Fox
#   2013-08-19: removed calls to unexported functions in stats. J. Fox
#   2014-08-17: added call to requireNamespace() and :: as needed (doesn't work for pbkrtest). J. Fox
#   2014-08-18: fixed bug in linearHypothesis.survreg(). J. Fox
#   2014-09-23: added linearHypothesis.rlm. J. Fox
#   2014-12-18: check that residual df nonzero in Anova.lm() and Anova.default
#               and residual SS nonzero in Anova.lm(). John
#   2015-01-27: KRmodcomp() and methods now imported from pbkrtest. John
#   2015-02-03: Check for NULL df before 0 df in default method. John
#   2016-06-29: added "value" and "vcov" attributes to returned object, print vcov when verbose. John
#   2017-02-16: replaced KRmodcomp() with pbkrtest::KRmodcomp(). John
#   2017-11-07: added complete=FALSE to vcov() calls. John
#   2019-06-06: remove vcov.default(), which is no longer needed, suggestion of Pavel Krivitsky. John
#   2020-05-27: tweak to linearHypothesis.survreg(). John
#   2020-12-21: regularize handling of vcov. arg. Sandy and John
#   2020-12-21: new matchCoefs.lmList() method, which covers nlsList objects. John
#   2020-12-21: added linearHypothesis.lmList(). John
#   2022-04-24: introduce new error.df argument for linearHypothesis.default(). John
#   2022-11-14: make printHypothesis() more tolerant of coefficient names. John
#   2022-12-11: unexported coef.multinom() now uses . rather than : as coef-name separator. John
#   2023-09-18: eliminate warning about arithmetic operators in coef
#               names.
# 2024-05-14: has.intercept() -> has_intercept(). John
#----------------------------------------------------------------------------------------------------


has_intercept.matrix <- function (model, ...) {
	"(Intercept)" %in% colnames(model)
}


makeHypothesis <- function(cnames, hypothesis, rhs = NULL){
	parseTerms <- function(terms){
		component <- gsub("^[-\\ 0-9\\.]+", "", terms)
		component <- gsub(" ", "", component, fixed=TRUE)
		component
	}
	stripchars <- function(x) {
	  x <- gsub("\\n", " ", x)
	  x <- gsub("\\t", " ", x)
		x <- gsub(" ", "", x, fixed = TRUE)
		x <- gsub("*", "", x, fixed = TRUE)
		x <- gsub("-", "+-", x, fixed = TRUE)
		x <- strsplit(x, "+", fixed = TRUE)[[1]]
		x <- x[x!=""]
		x
	}
	char2num <- function(x) {
		x[x == ""] <- "1"
		x[x == "-"] <- "-1"
		as.numeric(x)
	}
	constants <- function(x, y) { 
		with.coef <- unique(unlist(sapply(y,
								function(z) which(z == parseTerms(x)))))
		if (length(with.coef) > 0) x <- x[-with.coef]
		x <- if (is.null(x)) 0 else sum(as.numeric(x))
		if (any(is.na(x)))
			stop('The hypothesis "', hypothesis,
					'" is not well formed: contains bad coefficient/variable names.')
		x
	}
	coefvector <- function(x, y) {
		rv <- gsub(" ", "", x, fixed=TRUE) ==
				parseTerms(y)
		if (!any(rv)) return(0)
		if (sum(rv) > 1) stop('The hypothesis "', hypothesis,
					'" is not well formed.')
		rv <- sum(char2num(unlist(strsplit(y[rv], x, fixed=TRUE))))
		if (is.na(rv))
			stop('The hypothesis "', hypothesis,
					'" is not well formed: contains non-numeric coefficients.')
		rv
	}
	
	if (!is.null(rhs)) rhs <- rep(rhs, length.out = length(hypothesis))
	if (length(hypothesis) > 1)
		return(rbind(Recall(cnames, hypothesis[1], rhs[1]),
						Recall(cnames, hypothesis[-1], rhs[-1])))
	
	cnames_symb <- sapply(c("@", "#", "~"), function(x) length(grep(x, cnames)) < 1)
	
	if(any(cnames_symb)) {
		cnames_symb <- head(c("@", "#", "~")[cnames_symb], 1)
		cnames_symb <- paste(cnames_symb, seq_along(cnames), cnames_symb, sep = "")
		hypothesis_symb <- hypothesis
		for(i in order(nchar(cnames), decreasing = TRUE))
			hypothesis_symb <- gsub(cnames[i], cnames_symb[i], hypothesis_symb, fixed = TRUE)
	} else {
		stop('The hypothesis "', hypothesis,
				'" is not well formed: contains non-standard coefficient names.')
	}
	
	lhs <- strsplit(hypothesis_symb, "=", fixed=TRUE)[[1]] 
	if (is.null(rhs)) {
		if (length(lhs) < 2) rhs <- "0"
		else if (length(lhs) == 2) {
			rhs <- lhs[2]
			lhs <- lhs[1]
		}
		else stop('The hypothesis "', hypothesis,
					'" is not well formed: contains more than one = sign.')
	}
	else {
		if (length(lhs) < 2) as.character(rhs)
		else stop('The hypothesis "', hypothesis,
					'" is not well formed: contains a = sign although rhs was specified.')
	}
	lhs <- stripchars(lhs)
	rhs <- stripchars(rhs)
	rval <- sapply(cnames_symb, coefvector, y = lhs) - sapply(cnames_symb, coefvector, y = rhs) 
	rval <- c(rval, constants(rhs, cnames_symb) - constants(lhs, cnames_symb)) 
	names(rval) <- c(cnames, "*rhs*")
	rval
}

printHypothesis <- function(L, rhs, cnames){
  hyps <- rownames(L)
	hyp <- rep("", nrow(L))
	for (i in 1:nrow(L)){
		sel <- L[i,] != 0
		h <- L[i, sel]
		h <- ifelse(h < 0, as.character(h), paste("+", h, sep=""))
		nms <- cnames[sel]
		if (any(grepl("[-+*/]", nms))) {
		  if (!is.null(hyps)) {
		    h <- hyps[i]
		    hyp[i] <- if (grepl("=[^ ]", h)) sub("=", " = ", h) else h
		  } 
		  next
		}
		h <- paste(h, nms)
		h <- gsub("-", " - ", h)
		h <- gsub("+", "  + ", h, fixed=TRUE)
		h <- paste(h, collapse="")
		h <- gsub("  ", " ", h, fixed=TRUE)
		h <- sub("^\\ \\+", "", h)
		h <- sub("^\\ ", "", h)
		h <- sub("^-\\ ", "-", h)	
		h <- paste(" ", h, sep="")
		h <- paste(h, "=", rhs[i])		
		h <- gsub(" 1([^[:alnum:]_.]+)[ *]*", "", 
				gsub("-1([^[:alnum:]_.]+)[ *]*", "-", 
						gsub("- +1 +", "-1 ", h)))
		h <- sub("Intercept)", "(Intercept)", h)		
		h <- gsub("-", " - ", h)
		h <- gsub("+", "  + ", h, fixed=TRUE)
		h <- gsub("  ", " ", h, fixed=TRUE)
		h <- sub("^ *", "", h)
		hyp[i] <- h
	}
	if (any(hyp == "")) hyp <- ""
	hyp
}

linearHypothesis <- function (model, ...){
  UseMethod("linearHypothesis")
}


lht <- function (model, ...)
	linearHypothesis(model, ...)
	
linearHypothesis.lmList <- function(model,  ..., vcov.=vcov, coef.=coef){
   vcov.List <- function(object, ...) {
       vlist <- lapply(object, vcov)
       ng <- length(vlist)
       nv <- dim(vlist[[1]])[1]
       v <- matrix(0, nrow=ng*nv, ncol=ng*nv)
       for (j in 1:ng){
          cells <- ((j-1)*nv + 1):(j*nv)
          v[cells, cells] <- vlist[[j]]
        }
      v
   }
   suppress.vcov.msg <- missing(vcov.)
   if (!is.function(vcov.)) stop("vcov. must be a function")
   if (!is.function(coef.)) stop("coef. must be a function")
   linearHypothesis.default(model, vcov.=vcov.List(model), 
       coef.=unlist(lapply(model, coef.)), suppress.vcov.msg = suppress.vcov.msg, ...)
   }

linearHypothesis.nlsList <- function(model,  ..., vcov.=vcov, coef.=coef){
  NextMethod()
}

linearHypothesis.default <- function(model, hypothesis.matrix, rhs=NULL,
		test=c("Chisq", "F"), vcov.=NULL, singular.ok=FALSE, verbose=FALSE, 
    coef. = coef(model), suppress.vcov.msg=FALSE, error.df, ...){
  if (missing(error.df)){
    df <- df.residual(model)
    test <- match.arg(test)
    if (test == "F" && (is.null(df) || is.na(df))){
      test <- "Chisq"
      message("residual df unavailable, test set to 'Chisq'")
    }
  } else {
    df <- error.df
  }
	if (is.null(df)) df <- Inf ## if no residual df available
  if (df == 0) stop("residual df = 0")
	V <- if (is.null(vcov.)) vcov(model, complete=FALSE)
			else if (is.function(vcov.)) vcov.(model) else vcov.
	b <- coef.
	if (any(aliased <- is.na(b)) && !singular.ok)
		stop("there are aliased coefficients in the model")
	b <- b[!aliased]
	if (is.null(b)) stop(paste("there is no coef() method for models of class",
						paste(class(model), collapse=", ")))
	if (is.character(hypothesis.matrix)) {
		L <- makeHypothesis(names(b), hypothesis.matrix, rhs)
		if (is.null(dim(L))) L <- t(L)
		rhs <- L[, NCOL(L)]
		L <- L[, -NCOL(L), drop = FALSE]
		rownames(L) <- hypothesis.matrix
	}
	else {
		L <- if (is.null(dim(hypothesis.matrix))) t(hypothesis.matrix)
				else hypothesis.matrix
		if (is.null(rhs)) rhs <- rep(0, nrow(L))
	}
	q <- NROW(L)
	value.hyp <- L %*% b - rhs
	vcov.hyp <- L %*% V %*% t(L)
	if (verbose){
		cat("\nHypothesis matrix:\n")
		print(L)
		cat("\nRight-hand-side vector:\n")
		print(rhs)
		cat("\nEstimated linear function (hypothesis.matrix %*% coef - rhs)\n")
		print(drop(value.hyp))
		cat("\n")
		if (length(vcov.hyp) == 1) cat("\nEstimated variance of linear function\n")
		else cat("\nEstimated variance/covariance matrix for linear function\n")
		print(drop(vcov.hyp))
		cat("\n")
	}
	SSH <- as.vector(t(value.hyp) %*% solve(vcov.hyp) %*% value.hyp)
	test <- match.arg(test)
	if (!(is.finite(df) && df > 0)) test <- "Chisq"
	name <- try(formula(model), silent = TRUE)
	if (inherits(name, "try-error")) name <- substitute(model)
	title <- "\nLinear hypothesis test:"  
	topnote <- paste("Model 1: restricted model","\n", "Model 2: ", 
			paste(deparse(name), collapse = "\n"), sep = "")
	note <- if (is.null(vcov.) || suppress.vcov.msg) ""
			else "\nNote: Coefficient covariance matrix supplied.\n"
	rval <- matrix(rep(NA, 8), ncol = 4)
	colnames(rval) <- c("Res.Df", "Df", test, paste("Pr(>", test, ")", sep = ""))
	rownames(rval) <- 1:2
	rval[,1] <- c(df+q, df)
	if (test == "F") {
		f <- SSH/q
		p <- pf(f, q, df, lower.tail = FALSE)
		rval[2, 2:4] <- c(q, f, p)
	}
	else {
		p <- pchisq(SSH, q, lower.tail = FALSE)
		rval[2, 2:4] <- c(q, SSH, p)
	}
	if (!(is.finite(df) && df > 0)) rval <- rval[,-1]
	result <- structure(as.data.frame(rval),
			heading = c(title, printHypothesis(L, rhs, names(b)), "", topnote, note),
			class = c("anova", "data.frame"))
	attr(result, "value") <- value.hyp
	attr(result, "vcov") <- vcov.hyp
	result
}

linearHypothesis.glm <- function(model, ...)
	linearHypothesis.default(model, ...)

linearHypothesis.lm <- function(model, hypothesis.matrix, rhs=NULL,
		test=c("F", "Chisq"), vcov.=NULL,
		white.adjust=c(FALSE, TRUE, "hc3", "hc0", "hc1", "hc2", "hc4"),
		singular.ok=FALSE, ...){
    if (df.residual(model) == 0) stop("residual df = 0")
    if (deviance(model) < sqrt(.Machine$double.eps)) stop("residual sum of squares is 0 (within rounding error)")
	if (!singular.ok && is.aliased(model))
		stop("there are aliased coefficients in the model.")
	test <- match.arg(test)
	white.adjust <- as.character(white.adjust)
	white.adjust <- match.arg(white.adjust)
	if (white.adjust != "FALSE"){
		if (white.adjust == "TRUE") white.adjust <- "hc3"
		vcov. <- hccm(model, type=white.adjust)
	}
	rval <- linearHypothesis.default(model, hypothesis.matrix, rhs = rhs,
			test = test, vcov. = vcov., singular.ok=singular.ok, ...)
	if (is.null(vcov.)) {
		rval2 <- matrix(rep(NA, 4), ncol = 2)
		colnames(rval2) <- c("RSS", "Sum of Sq")
		SSH <- rval[2,test]
		if (test == "F") SSH <- SSH * abs(rval[2, "Df"])
		df <- rval[2, "Res.Df"]
		error.SS <- deviance(model)
		rval2[,1] <- c(error.SS + SSH * error.SS/df, error.SS)
		rval2[2,2] <- abs(diff(rval2[,1]))
		rval2 <- cbind(rval, rval2)[,c(1, 5, 2, 6, 3, 4)]
		class(rval2) <- c("anova", "data.frame")
		attr(rval2, "heading") <- attr(rval, "heading")
		attr(rval2, "value") <- attr(rval, "value")
		attr(rval2, "vcov") <- attr(rval, "vcov")
		rval <- rval2
	}
	rval
}


check.imatrix <- function(X, terms){ 
# check block orthogonality of within-subjects model matrix
	XX <- crossprod(X)
	if (missing(terms)) terms <- attr(X, "assign")
	for (term in unique(terms)){
		subs <- term == terms
		XX[subs, subs] <- 0
	}
	if (any(abs(XX) > sqrt(.Machine$double.eps)))
		stop("Terms in the intra-subject model matrix are not orthogonal.")
}

linearHypothesis.mlm <- function(model, hypothesis.matrix, rhs=NULL, SSPE, V,
		test, idata, icontrasts=c("contr.sum", "contr.poly"), idesign, iterms,
		check.imatrix=TRUE, P=NULL, title="", singular.ok=FALSE, verbose=FALSE, ...){
	if (missing(test)) test <- c("Pillai", "Wilks", "Hotelling-Lawley", "Roy")
	test <- match.arg(test, c("Pillai", "Wilks", "Hotelling-Lawley", "Roy"),
			several.ok=TRUE)
	df.residual <- df.residual(model)
	wts <- if (!is.null(model$weights)) model$weights else rep(1,nrow(model.matrix(model)))
	# V = (X'WX)^{-1}
	if (missing (V)) V <- solve(wcrossprod(model.matrix(model), w=wts))
	B <- coef(model)
	if (is.character(hypothesis.matrix)) {
		L <- makeHypothesis(rownames(B), hypothesis.matrix, rhs)
		if (is.null(dim(L))) L <- t(L)
		L <- L[, -NCOL(L), drop = FALSE]
		rownames(L) <- hypothesis.matrix
	}
	else {
		L <- if (is.null(dim(hypothesis.matrix))) t(hypothesis.matrix)
				else hypothesis.matrix
	}
	# SSPE = E'WE
	if (missing(SSPE)) SSPE <- wcrossprod(residuals(model),w=wts)
	if (missing(idata)) idata <- NULL
	if (missing(idesign)) idesign <- NULL
	if (!is.null(idata)){
		for (i in 1:length(idata)){
			if (is.null(attr(idata[,i], "contrasts"))){
				contrasts(idata[,i]) <- if (is.ordered(idata[,i])) icontrasts[2]
						else icontrasts[1]
			}
		}
		if (is.null(idesign)) stop("idesign (intra-subject design) missing.")
		X.design <- model.matrix(idesign, data=idata)
		if (check.imatrix) check.imatrix(X.design)
		intercept <- has_intercept(X.design)
		term.names <- term.names(idesign)
		if (intercept) term.names <- c("(Intercept)", term.names)
		which.terms <- match(iterms, term.names)
		if (any(nas <- is.na(which.terms))){
			if (sum(nas) == 1)
				stop('The term "', iterms[nas],'" is not in the intrasubject design.')
			else stop("The following terms are not in the intrasubject design: ",
						paste(iterms[nas], collapse=", "), ".")
		}
		select <- apply(outer(which.terms, attr(X.design, "assign") + intercept, "=="),
				2, any)
		P <- X.design[, select, drop=FALSE]
	}
	if (!is.null(P)){
		rownames(P) <- colnames(B)
		SSPE <- t(P) %*% SSPE %*% P
		B <- B %*% P
	}
	rank <- sum(eigen(SSPE, only.values=TRUE)$values >= sqrt(.Machine$double.eps))
	if (!singular.ok && rank < ncol(SSPE))
		stop("The error SSP matrix is apparently of deficient rank = ",
				rank, " < ", ncol(SSPE))
	r <- ncol(B)
	if (is.null(rhs)) rhs <- matrix(0, nrow(L), r)
	rownames(rhs) <- rownames(L)
	colnames(rhs) <- colnames(B)
	q <- NROW(L)
	if (verbose){
		cat("\nHypothesis matrix:\n")
		print(L)
		cat("\nRight-hand-side matrix:\n")
		print(rhs)
		cat("\nEstimated linear function (hypothesis.matrix %*% coef - rhs):\n")
		print(drop(L %*% B - rhs))
		cat("\n")
	}
	SSPH <- t(L %*% B - rhs) %*% solve(L %*% V %*% t(L)) %*% (L %*% B - rhs)
	rval <- list(SSPH=SSPH, SSPE=SSPE, df=q, r=r, df.residual=df.residual, P=P,
			title=title, test=test, singular=rank < ncol(SSPE))
	class(rval) <- "linearHypothesis.mlm"
	rval
}


print.linearHypothesis.mlm <- function(x, SSP=TRUE, SSPE=SSP,
		digits=getOption("digits"), ...){
	test <- x$test
	if (!is.null(x$P) && SSP){
		P <- x$P
		cat("\n Response transformation matrix:\n")
		attr(P, "assign") <- NULL
		attr(P, "contrasts") <- NULL
		print(P, digits=digits)
	}
	if (SSP){
		cat("\nSum of squares and products for the hypothesis:\n")
		print(x$SSPH, digits=digits)
	}
	if (SSPE){
		cat("\nSum of squares and products for error:\n")
		print(x$SSPE, digits=digits)
	}
	if ((!is.null(x$singular)) && x$singular){
		warning("the error SSP matrix is singular; multivariate tests are unavailable")
		return(invisible(x))
	}
	SSPE.qr <- qr(x$SSPE)
	# the following code is adapted from summary.manova
	eigs <- Re(eigen(qr.coef(SSPE.qr, x$SSPH), symmetric = FALSE)$values)
	tests <- matrix(NA, 4, 4)
	rownames(tests) <- c("Pillai", "Wilks", "Hotelling-Lawley", "Roy")
	if ("Pillai" %in% test)
		tests[1, 1:4] <- Pillai(eigs, x$df, x$df.residual)
	if ("Wilks" %in% test)
		tests[2, 1:4] <- Wilks(eigs, x$df, x$df.residual)
	if ("Hotelling-Lawley" %in% test)
		tests[3, 1:4] <- HL(eigs, x$df, x$df.residual)
	if ("Roy" %in% test)
		tests[4, 1:4] <- Roy(eigs, x$df, x$df.residual)
	tests <- na.omit(tests)
	ok <- tests[, 2] >= 0 & tests[, 3] > 0 & tests[, 4] > 0
	ok <- !is.na(ok) & ok
	tests <- cbind(x$df, tests, pf(tests[ok, 2], tests[ok, 3], tests[ok, 4],
					lower.tail = FALSE))
	colnames(tests) <- c("Df", "test stat", "approx F", "num Df", "den Df", "Pr(>F)")
	tests <- structure(as.data.frame(tests),
			heading = paste("\nMultivariate Test",
					if (nrow(tests) > 1) "s", ": ", x$title, sep=""),
			class = c("anova", "data.frame"))
	print(tests, digits=digits)
	invisible(x)
}

linearHypothesis.survreg <- function(model, hypothesis.matrix, rhs=NULL,
		test=c("Chisq", "F"), vcov., verbose=FALSE, ...){
  suppress.vcov.msg <- missing(vcov.)
	if (missing(vcov.)) {
		vcov. <- vcov(model, complete=FALSE)
		b <- coef(model)
		if (length(b) != nrow(vcov.)){
  		p <- which(rownames(vcov.) == "Log(scale)")
  		if (length(p) > 0) vcov. <- vcov.[-p, -p]
		}
	}
	linearHypothesis.default(model, hypothesis.matrix, rhs, test, vcov., verbose=verbose, 
	                         suppress.vcov.msg = suppress.vcov.msg, ...)
}

linearHypothesis.polr <- function (model, hypothesis.matrix, rhs=NULL, vcov., verbose=FALSE, ...){
  suppress.vcov.msg <- missing(vcov.)
	k <- length(coef(model))
	V <- getVcov(vcov., model, complete=FALSE)[1:k, 1:k]
	linearHypothesis.default(model, hypothesis.matrix, rhs, vcov.=V, verbose=verbose, 
	                         suppress.vcov.msg = suppress.vcov.msg, ...)
}

coef.multinom <- function(object, ...){
    # the following local function is copied from nnet:::coef.multinom
    coef.m <- function (object, ...) {
            r <- length(object$vcoefnames)
            if (length(object$lev) == 2L) {
                coef <- object$wts[1L + (1L:r)]
                names(coef) <- object$vcoefnames
            }
            else {
                coef <- matrix(object$wts, nrow = object$n[3L], byrow = TRUE)[, 
                                                                              1L + (1L:r), drop = FALSE]
                if (length(object$lev)) 
                    dimnames(coef) <- list(object$lev, object$vcoefnames)
                if (length(object$lab)) 
                    dimnames(coef) <- list(object$lab, object$vcoefnames)
                coef <- coef[-1L, , drop = FALSE]
            }
            coef
        }
    
	b <- coef.m(object, ...)
	cn <- colnames(b)
	rn <- rownames(b)
	b <- as.vector(t(b))
	names(b) <- as.vector(outer(cn, rn, function(c, r) paste(r, c, sep=".")))
	b
}

## functions for mixed models

linearHypothesis.merMod <- function(model, hypothesis.matrix, rhs=NULL,
                                 vcov.=NULL, test=c("Chisq", "F"), 
                                 singular.ok=FALSE, verbose=FALSE, ...){
    linearHypothesis.mer(model=model, hypothesis.matrix=hypothesis.matrix,
                         vcov.=vcov., test=test, singular.ok=singular.ok,
                         verbose=verbose, ...)
}

linearHypothesis.mer <- function(model, hypothesis.matrix, rhs=NULL,
                                 vcov.=NULL, test=c("Chisq", "F"), singular.ok=FALSE, verbose=FALSE, ...){
    test <- match.arg(test)
    V <- as.matrix(if (is.null(vcov.))vcov(model, complete=FALSE)
                   else if (is.function(vcov.)) vcov.(model) else vcov.)
    b <- fixef(model)
    if (any(aliased <- is.na(b)) && !singular.ok)
        stop("there are aliased coefficients in the model")
    b <- b[!aliased]
    if (is.character(hypothesis.matrix)) {
        L <- makeHypothesis(names(b), hypothesis.matrix, rhs)
        if (is.null(dim(L))) L <- t(L)
        rhs <- L[, NCOL(L)]
        L <- L[, -NCOL(L), drop = FALSE]
        rownames(L) <- hypothesis.matrix
    }
    else {
        L <- if (is.null(dim(hypothesis.matrix))) t(hypothesis.matrix)
        else hypothesis.matrix
        if (is.null(rhs)) rhs <- rep(0, nrow(L))
    }
    q <- NROW(L)
    if (verbose){
        cat("\nHypothesis matrix:\n")
        print(L)
        cat("\nRight-hand-side vector:\n")
        print(rhs)
        cat("\nEstimated linear function (hypothesis.matrix %*% coef - rhs)\n")
        print(drop(L %*% b - rhs))
        cat("\n")
    }
    if (test == "Chisq"){
        df <- Inf
        SSH <- as.vector(t(L %*% b - rhs) %*% solve(L %*% V %*% t(L)) %*% (L %*% b - rhs))
    }
    else {
        if (!requireNamespace("lme4")) stop("lme4 package is missing")
        if (!lme4::isREML(model)) 
            stop("F test available only for linear mixed model fit by REML")
        if (!all(rhs == 0)) warning("rhs of hypothesis ignored, set to 0")
        res <- pbkrtest::KRmodcomp(model, L)$test
        df <- res["Ftest", "ddf"]
        F <- res["Ftest", "stat"]
        p <- res["Ftest", "p.value"]
    }
    name <- try(formula(model), silent = TRUE)
    if (inherits(name, "try-error")) name <- substitute(model)
    title <- "\nLinear hypothesis test:"
    topnote <- paste("Model 1: restricted model","\n", "Model 2: ", 
                     paste(deparse(name), collapse = "\n"), sep = "")
    note <- if (is.null(vcov.)) ""
    else "\nNote: Coefficient covariance matrix supplied.\n"
    rval <- matrix(rep(NA, 8), ncol = 4)
    if (test == "Chisq"){
        colnames(rval) <- c("Res.Df", "Df", "Chisq",  paste("Pr(>Chisq)", sep = ""))
        rownames(rval) <- 1:2
        rval[,1] <- c(df+q, df)
        p <- pchisq(SSH, q, lower.tail = FALSE)
        rval[2, 2:4] <- c(q, SSH, p)
        rval <- rval[,-1]
    }
    else{
        colnames(rval) <- c("Res.Df", "Df", "F",  paste("Pr(>F)", sep = ""))
        rownames(rval) <- 1:2
        rval[,1] <- c(df+q, df)
        rval[2, 2:4] <- c(q, F, p)
    }
    structure(as.data.frame(rval),
              heading = c(title, printHypothesis(L, rhs, names(b)), "", topnote, note),
              class = c("anova", "data.frame"))
}

linearHypothesis.lme <- function(model, hypothesis.matrix, rhs=NULL,
		vcov.=NULL, singular.ok=FALSE, verbose=FALSE, ...){
	V <- as.matrix(if (is.null(vcov.))vcov(model, complete=FALSE)
					else if (is.function(vcov.)) vcov.(model) else vcov.)
	b <- fixef(model)
	if (any(aliased <- is.na(b)) && !singular.ok)
		stop("there are aliased coefficients in the model")
	b <- b[!aliased]
	if (is.character(hypothesis.matrix)) {
		L <- makeHypothesis(names(b), hypothesis.matrix, rhs)
		if (is.null(dim(L))) L <- t(L)
		rhs <- L[, NCOL(L)]
		L <- L[, -NCOL(L), drop = FALSE]
		rownames(L) <- hypothesis.matrix
	}
	else {
		L <- if (is.null(dim(hypothesis.matrix))) t(hypothesis.matrix)
				else hypothesis.matrix
		if (is.null(rhs)) rhs <- rep(0, nrow(L))
	}
	q <- NROW(L)
	if (verbose){
		cat("\nHypothesis matrix:\n")
		print(L)
		cat("\nRight-hand-side vector:\n")
		print(rhs)
		cat("\nEstimated linear function (hypothesis.matrix %*% coef - rhs)\n")
		print(drop(L %*% b - rhs))
		cat("\n")
	}
	df <- Inf
	SSH <- as.vector(t(L %*% b - rhs) %*% solve(L %*% V %*% t(L)) %*% (L %*% b - rhs))
	name <- try(formula(model), silent = TRUE)
	if (inherits(name, "try-error")) name <- substitute(model)
	title <- "\nLinear hypothesis test:"
	topnote <- paste("Model 1: restricted model","\n", "Model 2: ", 
			paste(deparse(name), collapse = "\n"), sep = "")
	note <- if (is.null(vcov.)) ""
			else "\nNote: Coefficient covariance matrix supplied.\n"
	rval <- matrix(rep(NA, 8), ncol = 4)
	colnames(rval) <- c("Res.Df", "Df", "Chisq",  paste("Pr(>Chisq)", sep = ""))
	rownames(rval) <- 1:2
	rval[,1] <- c(df+q, df)
	p <- pchisq(SSH, q, lower.tail = FALSE)
	rval[2, 2:4] <- c(q, SSH, p)
	rval <- rval[,-1]
	structure(as.data.frame(rval),
			heading = c(title, printHypothesis(L, rhs, names(b)), "", topnote, note),
			class = c("anova", "data.frame"))
}

## for svyglm

linearHypothesis.svyglm <- function(model, ...) linearHypothesis.default(model, ...)

## for rlm

df.residual.rlm <- function(object, ...){
  p <- length(coef(object))
  wt.method <- object$call$wt.method
  if (!is.null(wt.method) && wt.method == "case") {
    sum(object$weights) - p
  }
  else length(object$wresid) - p
}

linearHypothesis.rlm <- function(model, ...) linearHypothesis.default(model, test="F", ...)


## matchCoefs

matchCoefs <- function(model, pattern, ...) UseMethod("matchCoefs")

matchCoefs.default <- function(model, pattern, coef.=coef, ...){
	names <- names(coef.(model))
	grep(pattern, names, value=TRUE)
}

matchCoefs.mer <- function(model, pattern, ...) NextMethod(coef.=fixef)

matchCoefs.merMod <- function(model, pattern, ...) NextMethod(coef.=fixef)

matchCoefs.lme <- function(model, pattern, ...) NextMethod(coef.=fixef)

matchCoefs.mlm <- function(model, pattern, ...){
	names <- rownames(coef(model))
	grep(pattern, names, value=TRUE)
}

matchCoefs.lmList <- function(model, pattern, ...){
  names <- names(unlist(lapply(model, coef)))
  grep(pattern, names, value=TRUE)
}

Try the car package in your browser

Any scripts or data that you put into this service are public.

car documentation built on Sept. 27, 2024, 9:06 a.m.