R/evTests.R

Defines functions evTestK GKRstatistic GKRJack Sn thetas ind.matrix evTestA evTestC

Documented in evTestA evTestC evTestK

## Copyright (C) 2012 Marius Hofert, Ivan Kojadinovic, Martin Maechler, and Jun Yan
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
## FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.


##' Test of extreme-value dependence based on the empirical copula
##' See CJS paper for more details
##'
##' @title Test of EV dependence based on the empirical copula
##' @param x the data
##' @param N number of multiplier replications
##' @return an object of class 'htest'
##' @author Ivan Kojadinovic
evTestC <- function(x, N = 1000) {

    ## checks
    stopifnot(N >= 1)
    if(!is.matrix(x)) {
        warning("coercing 'x' to a matrix.")
        stopifnot(is.matrix(x <- as.matrix(x)))
    }
    ## make pseudo-observations
    p <- ncol(x)
    n <- nrow(x)
    u <- pobs(x) # ties.method should not matter

    ## set r according to recommendations
    r <- 3:5
    nr <- length(r)

    ## grid = pseudo-observations
    m <- 0

    ## parameters
    offsetstat <- 0.75
    der2n <- TRUE

    ## make grid
    if (m > 0) {
        y <- seq(1/m, 1 - 1/m, len = m)
        v <- rep(list(y), p)
        g <- as.matrix(expand.grid(v, KEEP.OUT.ATTRS = FALSE))
        m <- nrow(g)
    } else {
        g <- u
        m <- n
    }

    out <- .C(evtest,
              as.double(u),
              as.integer(n),
              as.integer(p),
              as.double(g),
              as.integer(m),
              as.integer(N),
              as.double(1/r),
              as.integer(nr),
              s0 = double(N * nr),
              as.integer(der2n),
              as.double(offsetstat),
              stat = double(nr))[c("s0", "stat")]

    ## s <- out$stat
    ## s0 <- matrix(out$s0, ncol = nr, byrow = TRUE)
    ## pval <- apply(s0 >= matrix(s, nrow=N, ncol=nr, byrow=TRUE),
    ##               2, function(x) (sum(x) + 0.5) / (N + 1) )
    ## comb.s <- sum(s)
    ## comb.pval <- ( sum( apply(s0, 1, sum) >= comb.s ) + 0.5 ) / (N + 1)

    ## return(list(statistic=c(s, comb.s),
    ##             pvalue=c(pval, comb.pval), s0=s0))

    ## p-values
    s0 <- matrix(out$s0, ncol = nr, byrow = TRUE)
    comb.s <- sum(out$stat)
    comb.pval <- ( sum( apply(s0, 1, sum) >= comb.s ) + 0.5 ) / (N + 1)

    structure(class = "htest",
              list(method = "Max-stability based test of extreme-value dependence for multivariate copulas",
                   statistic = c(statistic = comb.s),
                   p.value = comb.pval,
                   data.name = deparse(substitute(x))))

}

##' Test of bivariate extreme-value dependence based on the CFG estimator
##'
##' @title Test of bivariate extreme-value dependence based on the CFG estimator
##' @param x the data
##' @param N number of multiplier replications
##' @param derivatives can be either "An" or "Cn"
##' @param ties.method passed to pobs
##' @return an object of class 'htest'
##' @author Ivan Kojadinovic
evTestA <- function(x, N = 1000, derivatives = c("An", "Cn"),
                    ties.method = eval(formals(rank)$ties.method),
                    trace.lev = 0L, report.err = FALSE) {
    ## checks
    stopifnot(!is.na(N <- as.integer(N)), N >= 1L)
    if(!is.matrix(x)) {
        warning("coercing 'x' to a matrix.")
        stopifnot(is.matrix(x <- as.matrix(x)))
    }
    derivatives <- match.arg(derivatives)
    ties.method <- match.arg(ties.method)

    ## make pseudo-observations
    n <- nrow(x)
    if(n > .Machine$integer.max) stop("n too large (not implemented)")
    n <- as.integer(n)
    u <- pobs(x, ties.method = ties.method)
    if(!is.double(u)) storage.mode(u) <- "double"
    ## make grid
    ## m = 0
    g <- u
    m <- n # << option? Could have it smaller/differ

    estimator <- "CFG" # -- why is this hardwired -- FIXME ?
    offset <- 0.5

    ## compute the test statistic
    s <- .C(evtestA_stat,
            u[,1],
            u[,2],
            n,
            g[,1],
            g[,2],
            m,
            as.integer(estimator == "CFG"),
            stat = double(1),
            as.double(offset))$stat


    s0 <- if (derivatives == "Cn")
              .C(evtestA,
                 u[,1],
                 u[,2],
                 n,
                 g[,1],
                 g[,2],
                 m,
                 as.integer(estimator == "CFG"),
                 N,
                 s0 = double(N))$s0
         else # "An", the default
             .C(evtestA_derA,
                u[,1], # U[]
                u[,2], # V[]
                n,
                g[,1], # u[]
                g[,2], # v[]
                m,
                as.integer(c(estimator == "CFG", trace.lev, report.err)),
                N,
                s0 = double(N))$s0

    structure(class = "htest",
              list(method = paste("Test of bivariate extreme-value dependence based on the CFG estimator with argument 'derivatives' set to '",
                                  derivatives, "'", sep=""),
                   statistic = c(statistic = s),
                   p.value = (sum(s0 >= s)+0.5)/(N+1),
                   data.name = deparse(substitute(x))))

}

####################################################################
### IN THE REMAINING OF THE FILE:
### EV test based on K - Ben Ghorbal, Neslehova and Genest (2009)
### Canadian Journal of Statistics, volume 37
### Code generously provided by Johanna Neslehova
####################################################################

## internal functions
ind.matrix <- function(X) {
    ## n <- nrow(X)
    x <- as.numeric(X[,1])
    y <- as.numeric(X[,2])
    fun <- function(x,y) as.numeric(x <= y)# !(x>y)
    outer(x,x, FUN=fun) * outer(y,y, FUN=fun)
}

## calculating the thetas for GKRstatistic
thetas <- function(X) {
    mu <- numeric(7)
    theta <- numeric(8)
    n <- nrow(X)
    D <- matrix(1,nrow=n,ncol=n)-diag(n)
    M <- ind.matrix(X)*D #deleting diagonal entries
    N <- t(M)  #transpose of M
    O <- M%*%N
    P <- O*D  #deleting diagonal entries
    A <- matrix(apply(M,1,sum),ncol=1)
    B <- matrix(apply(M,2,sum),ncol=1)
    B.sq <- B*B
    MB <- M%*%B
    ab <- sum(A*B)
    asq <- sum(A*A)
    absq <- sum(A*B.sq)
    BMB <- sum(B*MB)
    AMB <- sum(A*MB)
    BsqMB <- sum(B.sq*MB)
    MN <- sum(O)
    MBMB <- sum(MB*MB)
    b1 <- sum(B)
    b2 <- sum(B.sq)
    b3 <- sum(B.sq*B)
    b4 <- sum(B.sq*B.sq)
    c <- numeric(8)
    mu[1] <- b1
    mu[2] <- b2 - mu[1]
    mu[3] <- b3 - 3*mu[2] - mu[1]
    mu[4] <- b4 - 6*mu[3] - 7*mu[2] - mu[1]
    theta[1] <- ab
    theta[2] <- asq-b1
    theta[3] <- absq-ab
    theta[4] <- BMB-2*theta[1]
    theta[5] <- AMB-b2-theta[2]-theta[1]
    theta[8] <- sum(P*P)-mu[2]
    theta[6] <- BsqMB - 2*absq-theta[3]-theta[4]
    theta[7] <- MBMB-b3-absq-AMB+b2-theta[8]-theta[3]-theta[5]
    mu[5] <- sum(B%*%t(B)) - 2*theta[1] -MN-theta[2]
    mu[6] <- b2*b1 - 2*BMB - 2*AMB  - (b1)^2 + 3*b2 + 4*ab + 2*asq -2*b1 - theta[3] - b3
    ##c[1] <- #BsqMB - 3*absq
    c[1] <- mu[6]#2*(sum((A*B)*MB) - sum((A*A)*B) - 2*sum(t(B)%*%M%*%A) + ab)
    c[2] <- 2*theta[7]#b1*b2 - (b1)^2 - 2*AMB + asq + 4*ab + 3*b2  - b1 - 2*BMB -b3 - absq
    c[3] <- BsqMB - 3*absq + 3*ab - BMB #BsqMB
    c[4] <- 2*(MBMB - b3 - AMB + b2 - absq) #2*(MBMB - b3 - absq)
    c[5] <- BsqMB - BMB #b1*MN - b3 -2*BMB
    c[6] <- BsqMB - absq #BsqMB
    c[7] <- b2*b1 - b3 - absq #b4
    mu[7] <- (b2)^2 - b4 - BsqMB - sum(c)
    list(mu=mu, theta =theta)
}

## calculation of the GKR test statistic Sn
Sn <- function(X) {
    n <- nrow(X)
    D <- matrix(1,nrow=n,ncol=n)-diag(n)
    M <- ind.matrix(X)*D  #delete entries on the diagonal
    w <- sum(M)
    w.sq <- sum((M%*%t(M))*D)
    -1 + (8*w)/(n*(n-1)) - (9*w.sq)/(n*(n-1)*(n-2))
}

## Jackknife variance estimator
## IK: modified version does not work; reverting to original one below
## GKRJack <- function(X) {
##     stopifnot(is.numeric(n <- nrow(X)))
##     Sn <- Sn(X)
##     VSn <- vapply(1:n, function(i) Sn(X[-i, ,drop=FALSE]), 1.)
##     list(Sn=Sn, var = (n-1)/n * sum(VSn - Sn)^2)
## }
GKRJack <- function(X) {
    n <- nrow(X)
    Sn <- Sn(X)
    VSn <- numeric()
    for(i in 1:n){
        cond <- !(1:n == i)
        VSn[i] <- Sn(X[cond,])
    }
    var <- ((n - 1)/n) * (sum((VSn - rep(Sn, n))^2))
    return(list(Sn = Sn, var = var))
}

## Calculation of Sn and its finite sample and asymptotic variance;
## theta41 = theta[4], theta42 = theta[5], theta51 = theta[6] and theta52=theta[7]
## If variance="all", the function gives the asymptotic (var[1]), finite sample (var[2])
## and jackknife variance (var[3]) of sqrt(n)*Sn.
GKRstatistic <- function(X, variance=c("fsample","asymptotic","all")) {
    variance <- match.arg(variance)
    n <- nrow(X)
    psi <- numeric(5)
    mu <- numeric(7)
    var <- NULL
    tmp <- thetas(X)
    mu <- tmp$mu
    w <- mu[1]
    w.sq <- mu[2]
    tau <- -1+(4*w)/(n*(n-1))
    Sn <- -1+(8*w)/(n*(n-1))-(9*w.sq)/(n*(n-1)*(n-2))
    theta <- tmp$theta
    mu[1] <- (mu[1])/(n*(n-1))
    mu[2] <- (mu[2])/(n*(n-1)*(n-2))
    mu[3] <- (mu[3])/(n*(n-1)*(n-2)*(n-3))
    mu[4] <- (mu[4])/(n*(n-1)*(n-2)*(n-3)*(n-4))
    mu[5] <- (mu[5])/(n*(n-1)*(n-2)*(n-3))
    mu[6] <- (mu[6])/(n*(n-1)*(n-2)*(n-3)*(n-4))
    mu[7] <- (mu[7])/(n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5))
    psi[1] <- 64*(mu[2] - 4*mu[5]) - 144*(mu[3]-6*mu[6]) + 81*(mu[4] - 9*mu[7])
    psi[2] <- (2*theta[1]+theta[2])/(n*(n-1)*(n-2))
    psi[3] <- (theta[3] + 2*(theta[4]+theta[5]))/(n*(n-1)*(n-2)*(n-3))
    psi[4] <- (4*(theta[6]+theta[7]))/(n*(n-1)*(n-2)*(n-3)*(n-4))
    if((variance=="asymptotic") || (variance=="all")){
        var = c(var,psi[1]+64*psi[2]-144*psi[3]+81*psi[4])
    }
    if((variance == "fsample") || (variance=="all")){
        psi[5] <- (theta[8]+4*theta[3])/(n*(n-1)*(n-2)*(n-3))
        theta[1] <- (theta[1])/(n*(n-1)*(n-2))
        An <- mu[1]+(n-2)*(mu[2]+psi[2])+(n-2)*(n-3)*mu[5]
        Bn <- 2*mu[2]+2*theta[1]+(n-3)*(mu[3]+psi[3])+(n-3)*(n-4)*mu[6]
        Cn <- 2*mu[2] + (n-3)*(4*mu[3]+2*psi[5])+(n-3)*(n-4)*(mu[4]+psi[4])+(n-3)*(n-4)*(n-5)*mu[7]
        var.tmp <- (64*An)/(n*(n-1))-(144*Bn)/(n*(n-1))+(81*Cn)/(n*(n-1)*(n-2))-64*mu[5] + 144*mu[6] - 81*mu[7]
        var <- c(var,n*var.tmp)
    }
    if((variance=="all")){
        VSn <- numeric(n)
        for(i in 1:n){
            cond <- !(1:n == i)
            VSn[i] <- Sn(X[cond,])
    }
        var <- c(var,n*((n-1)/n)*(sum((VSn-rep(Sn,n))^2)))
    }
    list(Sn=Sn, tau=tau, mu=mu, psi=psi, var=var)
}

##' Test of bivariate extreme-value dependence based on Kendall's process
##' See article of Ben Ghorbal, Genest and Neslehova in CJS 2009
##'
##' @title Test of bivariate extreme-value dependence based on Kendall's process
##' @param x the data
##' @param method one of "fsample","asymptotic","jackknife"
##' @return an object of class 'htest'
##' @author Johanna Neslehova and Ivan Kojadinovic
evTestK <- function(x, method = c("fsample","asymptotic","jackknife"),
                    ties = NA, N = 100) {

    ## checks
    if(!is.matrix(x)) {
        warning("coercing 'x' to a matrix.")
        stopifnot(is.matrix(x <- as.matrix(x)))
    }
    method <- match.arg(method)
    n <- nrow(x)

    fun <- switch(method,
                  "fsample" = GKRstatistic(x,variance = "fsample"),
                  "asymptotic" = GKRstatistic(x, variance = "asymptotic"),
                  "jackknife" = GKRJack(x)
                  )
    var <- switch(method,
                  "fsample" = fun$var,
                  "asymptotic" = fun$var,
                  "jackknife" = n * fun$var
                  )

    if(var < 0){
        message("Variance estimator less then zero, using jackknife instead")
        var <- n * GKRJack(x)$var
        method <- "jackknife"
    }

    ## Ties: by default, if at least one column has at least one duplicated entry
    if (is.na(ties <- as.logical(ties))) {
	ties <- any(apply(x, 2, anyDuplicated))
        if (ties)
            warning("argument 'ties' set to TRUE")
    }

    ## Compute bias if ties
    bias <- if (ties) {
                ## Get ties structure from initial sample
                ir <- apply(x, 2, function(y) rank(sort(y)))
                ## Estimate the arameter of the Gumbel--Hougaard
                tau <- cor(x[,1], x[,2], method="kendall")
                theta <- iTau(gumbelCopula(), max(tau, 0))

                do1 <- function() {
                    ## From the Gumbel--Hougaard copula for the moment
                    x.b <- rCopula(n, gumbelCopula(theta, use.indepC = "TRUE"))
                    ## Apply tie structure
                    for (i in 1:2) {
                        x.b <- x.b[order(x.b[,i]),]
                        x.b[,i] <- x.b[ir[,i], i]
                    }
                    ## Test statistic
                    Sn(x.b)
                }
                mean(replicate(N, do1()))
            }
            else 0


    Tn <- sqrt(n) * (fun$Sn - bias) / sqrt(var)
    p.value <- 2 * pnorm(-abs(Tn))

    structure(class = "htest",
              list(method = sprintf("Test of bivariate extreme-value dependence based on Kendall's distribution with argument 'method' set to %s",
                                    dQuote(method)),
                   statistic = c(statistic = Tn),
                   p.value = p.value,
                   bias = bias,
                   variance = var,
                   data.name = deparse(substitute(x))))
}

Try the copula package in your browser

Any scripts or data that you put into this service are public.

copula documentation built on Sept. 11, 2024, 7:48 p.m.