Nothing
# Copyright (C) Tal Galili
#
# This file is part of dendextend.
#
# dendextend is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# dendextend is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# http://www.r-project.org/Licenses/
#
#' @title Sorts two clusters vector by their names
#' @description Sorts two clusters vector by their names and returns a list with the sorted vectors.
#' @export
#' @param A1_clusters a numeric vector of cluster grouping (numeric) of items,
#' with a name attribute of item name for each element from group A1.
#' These are often obtained by using some k cut on a dendrogram.
#' @param A2_clusters a numeric vector of cluster grouping (numeric) of items,
#' with a name attribute of item name for each element from group A2.
#' These are often obtained by using some k cut on a dendrogram.
#' @param assume_sorted_vectors logical (FALSE). Can we assume to two group
#' vectors are sorter so that they have the same order of items?
#' IF FALSE (default), then the vectors will be sorted based on their
#' name attribute.
#' @param warn logical (default from dendextend_options("warn") is FALSE).
#' Set if warning are to be issued, it is safer to keep this at TRUE,
#' but for keeping the noise down, the default is FALSE.
#' @param ... Ignored.
#'
#' @return
#' A list with two elements, corresponding to the two clustering vectors.
#'
#' @examples
#'
#' \dontrun{
#'
#' set.seed(23235)
#' ss <- sample(1:150, 4)
#' hc1 <- hclust(dist(iris[ss, -5]), "com")
#' hc2 <- hclust(dist(iris[ss, -5]), "single")
#' # dend1 <- as.dendrogram(hc1)
#' # dend2 <- as.dendrogram(hc2)
#' # cutree(dend1)
#'
#' A1_clusters <- cutree(hc1, k = 3)
#' A2_clusters <- sample(cutree(hc1, k = 3))
#'
#' sort_2_clusters_vectors(A1_clusters, A2_clusters, assume_sorted_vectors = TRUE) # no sorting
#' sort_2_clusters_vectors(A1_clusters, A2_clusters, assume_sorted_vectors = FALSE) # Sorted
#' }
sort_2_clusters_vectors <- function(A1_clusters, A2_clusters, assume_sorted_vectors = FALSE, warn = dendextend_options("warn"), ...) {
# sanity checks in case the names of the vectors do not make sense:
if (!assume_sorted_vectors) {
names_A1_clusters <- names(A1_clusters)
names_A2_clusters <- names(A2_clusters)
if (is.null(names_A1_clusters) || is.null(names_A2_clusters)) {
if (warn) warning("Names of the clusters are NULL, we will assume the vectors are sorted.")
assume_sorted_vectors <- TRUE
}
if (length(names_A1_clusters) != length(names_A2_clusters)) {
if (warn) warning("Names of the clusters are not of equal length, we will assume the vectors are sorted.")
assume_sorted_vectors <- TRUE
}
if (length(names_A1_clusters) != length(A1_clusters)) {
if (warn) warning("Names of the clusters are not of equal length as that of the clusters, we will assume the vectors are sorted.")
assume_sorted_vectors <- TRUE
}
}
# if we are still NOT assuming the vectors are sorted - we can sort them...
if (!assume_sorted_vectors) {
A1_clusters <- A1_clusters[order(names_A1_clusters)] # order the vec accourding to the names, so to allow a comparison
A2_clusters <- A2_clusters[order(names_A2_clusters)] # order the vec accourding to the names, so to allow a comparison
}
return(list(A1_clusters = A1_clusters, A2_clusters = A2_clusters))
}
#' @title Calculating Fowlkes-Mallows index in R
#' @export
#' @description
#'
#' Calculating Fowlkes-Mallows index.
#'
#' The \code{FM_index_R}
#' function also calculates the expectancy and variance of the FM Index
#' under the null hypothesis of no relation.
#'
#'
#' @param A1_clusters a numeric vector of cluster grouping (numeric) of items,
#' with a name attribute of item name for each element from group A1.
#' These are often obtained by using some k cut on a dendrogram.
#' @param A2_clusters a numeric vector of cluster grouping (numeric) of items,
#' with a name attribute of item name for each element from group A2.
#' These are often obtained by using some k cut on a dendrogram.
#' @param assume_sorted_vectors logical (FALSE). Can we assume to two group
#' vectors are sorter so that they have the same order of items?
#' IF FALSE (default), then the vectors will be sorted based on their
#' name attribute.
#' @param warn logical (default from dendextend_options("warn") is FALSE).
#' Set if warning are to be issued, it is safer to keep this at TRUE,
#' but for keeping the noise down, the default is FALSE.
#' @param ... Ignored.
#'
#' @details
#' From Wikipedia:
#'
#' Fowlkes-Mallows index (see references) is an external evaluation method
#' that is used to determine the similarity between two clusterings
#' (clusters obtained after a clustering algorithm). This measure of similarity
#' could be either between two hierarchical clusterings or a clustering and
#' a benchmark classification. A higher the value for the Fowlkes-Mallows index
#' indicates a greater similarity between the clusters and the benchmark
#' classifications.
#'
#' @seealso
#' \link{cor_bakers_gamma}
#' @return
#' The Fowlkes-Mallows index between two vectors of clustering groups.
#'
#' Includes the attributes E_FM and V_FM for the relevant expectancy and
#' variance under the null hypothesis of no-relation.
#'
#' @references
#'
#' Fowlkes, E. B.; Mallows, C. L. (1 September 1983).
#' "A Method for Comparing Two Hierarchical Clusterings".
#' Journal of the American Statistical Association 78 (383): 553.
#'
#' \url{https://en.wikipedia.org/wiki/Fowlkes-Mallows_index}
#'
#' @examples
#'
#' \dontrun{
#'
#' set.seed(23235)
#' ss <- TRUE # sample(1:150, 10 )
#' hc1 <- hclust(dist(iris[ss, -5]), "com")
#' hc2 <- hclust(dist(iris[ss, -5]), "single")
#' # dend1 <- as.dendrogram(hc1)
#' # dend2 <- as.dendrogram(hc2)
#' # cutree(dend1)
#'
#' FM_index_R(cutree(hc1, k = 3), cutree(hc1, k = 3)) # 1
#' set.seed(1341)
#' FM_index_R(cutree(hc1, k = 3),
#' sample(cutree(hc1, k = 3)),
#' assume_sorted_vectors = TRUE) # 0.38037
#' FM_index_R(cutree(hc1, k = 3),
#' sample(cutree(hc1, k = 3)),
#' assume_sorted_vectors = FALSE) # 1 again :)
#' FM_index_R(cutree(hc1, k = 3),
#' cutree(hc2, k = 3)) # 0.8059
#' FM_index_R(cutree(hc1, k = 30),
#' cutree(hc2, k = 30)) # 0.4529
#'
#' fo <- function(k) FM_index_R(cutree(hc1, k), cutree(hc2, k))
#' lapply(1:4, fo)
#' ks <- 1:150
#' plot(sapply(ks, fo) ~ ks, type = "b", main = "Bk plot for the iris dataset")
#'
#' clu_1 <- cutree(hc2, k = 100) # this is a lie - since this one is NOT well defined!
#' clu_2 <- cutree(as.dendrogram(hc2), k = 100) # We see that we get a vector of NAs for this...
#'
#' FM_index_R(clu_1, clu_2) # NA
#' }
FM_index_R <- function(A1_clusters, A2_clusters, assume_sorted_vectors = FALSE, warn = dendextend_options("warn"), ...) {
if (!assume_sorted_vectors) {
sorted_As <- sort_2_clusters_vectors(A1_clusters, A2_clusters,
assume_sorted_vectors = assume_sorted_vectors,
warn = warn
)
A1_clusters <- sorted_As[[1]]
A2_clusters <- sorted_As[[2]]
}
if (any(is.na(A1_clusters)) | any(is.na(A2_clusters))) {
if (warn) warning("The clusterings have some NA's in them - returned NA.")
FM_index <- NA
attr(FM_index, "E_FM") <- NA
attr(FM_index, "V_FM") <- NA
return(FM_index)
}
# creating matrix M
# ----------
# a not-so-smart way
# M <- matrix(0, nrow = k, ncol = k)
# for(i in 1:k)
# {
# for(j in 1:k)
# {
# M[i,j] <- sum(rect.hclust(A1, k = k)[[i]] %in% rect.hclust(A2, k = k)[[j]])
# how many of the objects in cluser i in tree A1, exist in cluster j in tree A2
# }
# }
# ----------
# a much better way!
M <- table(A1_clusters, A2_clusters)
# calculate n
n <- length(A1_clusters)
Tk <- sum(M^2) - n
m_i. <- apply(M, 1, sum)
m_.j <- apply(M, 2, sum)
m_.. <- n # sum(M)
if (sum(M) != n) stop("Why does M matrix doesn't sum up to n ??")
Pk <- sum(m_i.^2) - n
Qk <- sum(m_.j^2) - n
FM <- Tk / sqrt(Pk * Qk)
# Expectancy of the FM (according to H0)
E_FM <- sqrt(Pk * Qk) / (n * (n - 1))
Pk2 <- sum(m_i. * (m_i. - 1) * (m_i. - 2))
Qk2 <- sum(m_.j * (m_.j - 1) * (m_.j - 2))
# variance of the FM (according to H0)
V_FM <- 2 / (n * (n - 1)) +
4 * Pk2 * Qk2 / ((n * (n - 1) * (n - 2)) * Pk * Qk) +
(Pk - 2 - 4 * Pk2 / Pk) * (Qk - 2 - 4 * Qk2 / Qk) / ((n * (n - 1) * (n - 2) * (n - 3))) -
Pk * Qk / (n^2 * (n - 1)^2)
FM_index <- FM # c(, E_FM, V_FM)
attr(FM_index, "E_FM") <- E_FM
attr(FM_index, "V_FM") <- V_FM
return(FM_index)
}
#' @title Calculating Fowlkes-Mallows Index
#' @export
#' @description
#'
#' Calculating Fowlkes-Mallows index.
#'
#' The \code{FM_index_R} function calculates the expectancy and variance of the FM Index
#' under the null hypothesis of no relation.
#'
#'
#' @param A1_clusters a numeric vector of cluster grouping (numeric) of items,
#' with a name attribute of item name for each element from group A1.
#' These are often obtained by using some k cut on a dendrogram.
#' @param A2_clusters a numeric vector of cluster grouping (numeric) of items,
#' with a name attribute of item name for each element from group A2.
#' These are often obtained by using some k cut on a dendrogram.
#' @param assume_sorted_vectors logical (FALSE). Can we assume to two group
#' vectors are sorter so that they have the same order of items?
#' IF FALSE (default), then the vectors will be sorted based on their
#' name attribute.
#' @param warn logical (default from dendextend_options("warn") is FALSE).
#' Set if warning are to be issued, it is safer to keep this at TRUE,
#' but for keeping the noise down, the default is FALSE.
#' @param ... Ignored
#'
#' @details
#' From Wikipedia:
#'
#' Fowlkes-Mallows index (see references) is an external evaluation method
#' that is used to determine the similarity between two clusterings
#' (clusters obtained after a clustering algorithm). This measure of similarity
#' could be either between two hierarchical clusterings or a clustering and
#' a benchmark classification. A higher the value for the Fowlkes-Mallows index
#' indicates a greater similarity between the clusters and the benchmark
#' classifications.
#'
#' @seealso
#' \link{cor_bakers_gamma}
#' @return
#' The Fowlkes-Mallows index between two vectors of clustering groups.
#'
#' Includes the attributes E_FM and V_FM for the relevant expectancy and
#' variance under the null hypothesis of no-relation.
#'
#' @references
#'
#' Fowlkes, E. B.; Mallows, C. L. (1 September 1983).
#' "A Method for Comparing Two Hierarchical Clusterings".
#' Journal of the American Statistical Association 78 (383): 553.
#'
#' \url{https://en.wikipedia.org/wiki/Fowlkes-Mallows_index}
#'
#' @examples
#'
#' \dontrun{
#'
#' set.seed(23235)
#' ss <- TRUE # sample(1:150, 10 )
#' hc1 <- hclust(dist(iris[ss, -5]), "com")
#' hc2 <- hclust(dist(iris[ss, -5]), "single")
#' # dend1 <- as.dendrogram(hc1)
#' # dend2 <- as.dendrogram(hc2)
#' # cutree(dend1)
#'
#' FM_index(cutree(hc1, k = 3), cutree(hc1, k = 3)) # 1 with EV
#'
#' # checking speed gains
#' library(microbenchmark)
#' microbenchmark(
#' FM_index(cutree(hc1, k = 3), cutree(hc1, k = 3)),
#' FM_index(cutree(hc1, k = 3), cutree(hc1, k = 3),
#' assume_sorted_vectors = TRUE
#' ),
#' FM_index(cutree(hc1, k = 3), cutree(hc1, k = 3),
#' assume_sorted_vectors = TRUE
#' )
#' )
#' # C code is 1.2-1.3 times faster.
#'
#' set.seed(1341)
#' FM_index(cutree(hc1, k = 3), sample(cutree(hc1, k = 3)),
#' assume_sorted_vectors = TRUE
#' ) # 0.38037
#' FM_index(cutree(hc1, k = 3), sample(cutree(hc1, k = 3)),
#' assume_sorted_vectors = FALSE
#' ) # 1 again :)
#' FM_index(cutree(hc1, k = 3), cutree(hc2, k = 3)) # 0.8059
#' FM_index(cutree(hc1, k = 30), cutree(hc2, k = 30)) # 0.4529
#'
#' fo <- function(k) FM_index(cutree(hc1, k), cutree(hc2, k))
#' lapply(1:4, fo)
#' ks <- 1:150
#' plot(sapply(ks, fo) ~ ks, type = "b", main = "Bk plot for the iris dataset")
#' }
FM_index <- function(A1_clusters, A2_clusters, assume_sorted_vectors = FALSE, warn = dendextend_options("warn"), ...) {
FM <- FM_index_R(A1_clusters, A2_clusters,
assume_sorted_vectors = assume_sorted_vectors, warn = warn, ...
)
return(FM)
}
#' @title Calculating Fowlkes-Mallows Index under H0
#' @export
#' @description
#'
#' Calculating Fowlkes-Mallows index under the null hypothesis of no relation
#' between the clusterings (random order of the items labels).
#'
#' @param A1_clusters a numeric vector of cluster grouping (numeric) of items,
#' with a name attribute of item name for each element from group A1.
#' These are often obtained by using some k cut on a dendrogram.
#' @param A2_clusters a numeric vector of cluster grouping (numeric) of items,
#' with a name attribute of item name for each element from group A2.
#' These are often obtained by using some k cut on a dendrogram.
#' @param warn logical (default from dendextend_options("warn") is FALSE).
#' Set if warning are to be issued, it is safer to keep this at TRUE,
#' but for keeping the noise down, the default is FALSE.
#' @param ... Ignored
#'
#'
#' @seealso
#' \link{cor_bakers_gamma},
#' \code{\link{FM_index_R}}, \code{\link{FM_index}}
#'
#' @return
#' The Fowlkes-Mallows index between two vectors of clustering groups.
#' Under H0. (a double without attr)
#'
#' @references
#'
#' Fowlkes, E. B.; Mallows, C. L. (1 September 1983).
#' "A Method for Comparing Two Hierarchical Clusterings".
#' Journal of the American Statistical Association 78 (383): 553.
#'
#' \url{https://en.wikipedia.org/wiki/Fowlkes-Mallows_index}
#'
#' @examples
#'
#' \dontrun{
#'
#' set.seed(23235)
#' ss <- TRUE # sample(1:150, 10 )
#' hc1 <- hclust(dist(iris[ss, -5]), "com")
#' hc2 <- hclust(dist(iris[ss, -5]), "single")
#' # dend1 <- as.dendrogram(hc1)
#' # dend2 <- as.dendrogram(hc2)
#' # cutree(dend1)
#'
#' # small k
#' A1_clusters <- cutree(hc1, k = 3) # will give a right tailed distribution
#' # large k
#' A1_clusters <- cutree(hc1, k = 50) # will give a discrete distribution
#' # "medium" k
#' A1_clusters <- cutree(hc1, k = 25) # gives almost the normal distribution!
#' A2_clusters <- A1_clusters
#'
#' R <- 10000
#' set.seed(414130)
#' FM_index_H0 <- replicate(R, FM_index_permutation(A1_clusters, A2_clusters)) # can take 10 sec
#' plot(density(FM_index_H0), main = "FM Index distribution under H0\n (10000 permutation)")
#' abline(v = mean(FM_index_H0), col = 1, lty = 2)
#'
#'
#' # The permutation distribution is with a heavy right tail:
#' # Source of the skew functions is based on: library(psych)
#'
#' skew <- function (x, na.rm = TRUE) {
#' x <- na.omit(x)
#' sum((x - mean(x))^3)/(length(x) * sd(x)^3)
#' }
#' skew(FM_index_H0) # 1.254
#'
#'
#' mean(FM_index_H0)
#' var(FM_index_H0)
#' the_FM_index <- FM_index(A1_clusters, A2_clusters)
#' the_FM_index
#' our_dnorm <- function(x) {
#' dnorm(x,
#' mean = attr(the_FM_index, "E_FM"),
#' sd = sqrt(attr(the_FM_index, "V_FM"))
#' )
#' }
#' # our_dnorm(0.35)
#' curve(our_dnorm,
#' col = 4,
#' from = -1, to = 1, n = R, add = TRUE
#' )
#' abline(v = attr(the_FM_index, "E_FM"), col = 4, lty = 2)
#'
#' legend("topright", legend = c("asymptotic", "permutation"), fill = c(4, 1))
#' }
FM_index_permutation <- function(A1_clusters, A2_clusters, warn = dendextend_options("warn"), ...) {
return(
as.vector(FM_index(sample(A1_clusters),
sample(A2_clusters),
assume_sorted_vectors = TRUE, warn = warn, ...
))
)
}
#' @title Bk - Calculating Fowlkes-Mallows Index for two dendrogram
#' @export
#' @description
#'
#' Bk is the calculation of Fowlkes-Mallows index for a series of k cuts
#' for two dendrograms.
#'
#' @param tree1 a dendrogram/hclust/phylo object.
#' @param tree2 a dendrogram/hclust/phylo object.
#' @param k an integer scalar or vector with the desired number
#' of cluster groups.
#' If missing - the Bk will be calculated for a default k range of
#' 2:(nleaves-1).
#' No point in checking k=1/k=n, since both will give Bk=1.
#' @param warn logical (default from dendextend_options("warn") is FALSE).
#' Set if warning are to be issued, it is safer to keep this at TRUE,
#' but for keeping the noise down, the default is FALSE.
#' @param ... Ignored (passed to FM_index_R).
#'
#' @details
#' From Wikipedia:
#'
#' Fowlkes-Mallows index (see references) is an external evaluation method
#' that is used to determine the similarity between two clusterings
#' (clusters obtained after a clustering algorithm). This measure of similarity
#' could be either between two hierarchical clusterings or a clustering and
#' a benchmark classification. A higher the value for the Fowlkes-Mallows index
#' indicates a greater similarity between the clusters and the benchmark
#' classifications.
#'
#' @seealso
#' \link{FM_index}, \link{cor_bakers_gamma}, \link{Bk_plot}
#' @return
#' A list (of k's length) of Fowlkes-Mallows index between two dendrogram for
#' a scalar/vector of k values.
#' The names of the lists' items is the k for which it was calculated.
#'
#' @references
#'
#' Fowlkes, E. B.; Mallows, C. L. (1 September 1983).
#' "A Method for Comparing Two Hierarchical Clusterings".
#' Journal of the American Statistical Association 78 (383): 553.
#'
#' \url{https://en.wikipedia.org/wiki/Fowlkes-Mallows_index}
#'
#' @examples
#'
#' \dontrun{
#'
#' set.seed(23235)
#' ss <- TRUE # sample(1:150, 10 )
#' hc1 <- hclust(dist(iris[ss, -5]), "com")
#' hc2 <- hclust(dist(iris[ss, -5]), "single")
#' tree1 <- as.dendrogram(hc1)
#' tree2 <- as.dendrogram(hc2)
#' # cutree(tree1)
#'
#' Bk(hc1, hc2, k = 3)
#' Bk(hc1, hc2, k = 2:10)
#' Bk(hc1, hc2)
#'
#' Bk(tree1, tree2, k = 3)
#' Bk(tree1, tree2, k = 2:5)
#'
#' system.time(Bk(hc1, hc2, k = 2:5)) # 0.01
#' system.time(Bk(hc1, hc2)) # 1.28
#' system.time(Bk(tree1, tree2, k = 2:5)) # 0.24 # after fixes.
#' system.time(Bk(tree1, tree2, k = 2:10)) # 0.31 # after fixes.
#' system.time(Bk(tree1, tree2)) # 7.85
#' Bk(tree1, tree2, k = 99:101)
#'
#' y <- Bk(hc1, hc2, k = 2:10)
#' plot(unlist(y) ~ c(2:10), type = "b", ylim = c(0, 1))
#'
#' # can take a few seconds
#' y <- Bk(hc1, hc2)
#' plot(unlist(y) ~ as.numeric(names(y)),
#' main = "Bk plot", pch = 20,
#' xlab = "k", ylab = "FM Index",
#' type = "b", ylim = c(0, 1)
#' )
#' # we are still missing some hypothesis testing here.
#' # for this we'll have the Bk_plot function.
#' }
Bk <- function(tree1, tree2, k, warn = dendextend_options("warn"), ...) {
# some sanity checks!
if (warn) { # the sanity checks are turned off by default since the "labels" function for dendrogram is one which takes some time to run...
# notice that we must have labels.hclust and labels.dendrogram defined!
tree1_labels <- labels(tree1)
tree2_labels <- labels(tree2)
length_tree1_labels <- length(tree1_labels)
length_tree2_labels <- length(tree2_labels)
# Checking for common error options:
if (length_tree1_labels != length_tree2_labels) stop("The two clusters don't have the same number of items!") # If cluster sized are different - stop
if (!all(sort(tree1_labels) == sort(tree2_labels))) stop("Your trees are having leaves with different names - please correct it in order to use this function")
}
if (missing(k)) k <- 2:(nleaves(tree1) - 1)
cutree_tree1 <- cutree(tree1, k, NA_to_0L = FALSE)
cutree_tree2 <- cutree(tree2, k, NA_to_0L = FALSE)
# makes sure the output is a matrix:
# This is if length(k)==1 since in that case
# the output would be a vector, not a matrix.
if (length(k) == 1) {
cutree_tree1 <- as.matrix(cutree_tree1)
cutree_tree2 <- as.matrix(cutree_tree2)
}
# example of such a case:
# a = cutree(tree1, k=1:2)
# is.vector(a)
# is.matrix(a)
# a = as.matrix(a)
# is.vector(a)
# is.matrix(a)
n_ks <- ncol(cutree_tree1)
Bk_for_each_k <- function(i_k) {
FM_index(
cutree_tree1[, i_k], cutree_tree2[, i_k],
assume_sorted_vectors = FALSE,
# We can't trust cutree to give the same order of items!
# In order to assume it, we would need to match order by labels
# and then have cutree( ) with order_clusters_as_data=TRUE
# but for small length of k's, this per-process (/checks)
# will likely be more expensive than simply running it with
# assume_sorted_vectors = FALSE,
warn = warn
)
}
the_Bks <- lapply(seq_len(n_ks), Bk_for_each_k)
names(the_Bks) <- k
return(the_Bks)
}
#' @title Bk permutation - Calculating Fowlkes-Mallows Index for two dendrogram
#' @export
#' @description
#'
#' Bk is the calculation of Fowlkes-Mallows index for a series of k cuts
#' for two dendrograms.
#'
#' Bk permutation calculates the Bk under the null hypothesis of no similarirty
#' between the two trees by randomally shuffling the labels of the two trees
#' and calculating their Bk.
#' @param tree1 a dendrogram/hclust/phylo object.
#' @param tree2 a dendrogram/hclust/phylo object.
#' @param k an integer scalar or vector with the desired number
#' of cluster groups.
#' If missing - the Bk will be calculated for a default k range of
#' 2:(nleaves-1).
#' No point in checking k=1/k=n, since both will give Bk=1.
#' @param R integer (Default is 1000). The number of Bk permutation to perform for each k.
#' @param warn logical (default from dendextend_options("warn") is FALSE).
#' Set if warning are to be issued, it is safer to keep this at TRUE,
#' but for keeping the noise down, the default is FALSE.
#' If set to TRUE, extra checks are made to varify that the two clusters have
#' the same size and the same labels.
#' @param ... Ignored (passed to FM_index_R).
#'
#' @details
#' From Wikipedia:
#'
#' Fowlkes-Mallows index (see references) is an external evaluation method
#' that is used to determine the similarity between two clusterings
#' (clusters obtained after a clustering algorithm). This measure of similarity
#' could be either between two hierarchical clusterings or a clustering and
#' a benchmark classification. A higher the value for the Fowlkes-Mallows index
#' indicates a greater similarity between the clusters and the benchmark
#' classifications.
#'
#' @seealso
#' \code{\link{FM_index}}, \link{Bk}
#' @return
#' A list (of the length of k's), where each element of the list has
#' R (number of permutations) calculations of Fowlkes-Mallows index
#' between two dendrogram after having their labels shuffled.
#'
#' The names of the lists' items is the k for which it was calculated.
#'
#' @references
#'
#' Fowlkes, E. B.; Mallows, C. L. (1 September 1983).
#' "A Method for Comparing Two Hierarchical Clusterings".
#' Journal of the American Statistical Association 78 (383): 553.
#'
#' \url{https://en.wikipedia.org/wiki/Fowlkes-Mallows_index}
#'
#' @examples
#'
#' \dontrun{
#'
#' set.seed(23235)
#' ss <- TRUE # sample(1:150, 10 )
#' hc1 <- hclust(dist(iris[ss, -5]), "com")
#' hc2 <- hclust(dist(iris[ss, -5]), "single")
#' # tree1 <- as.treerogram(hc1)
#' # tree2 <- as.treerogram(hc2)
#' # cutree(tree1)
#'
#' some_Bk <- Bk(hc1, hc2, k = 20)
#' some_Bk_permu <- Bk_permutations(hc1, hc2, k = 20)
#'
#' # we can see that the Bk is much higher than the permutation Bks:
#' plot(
#' x = rep(1, 1000), y = some_Bk_permu[[1]],
#' main = "Bk distribution under H0",
#' ylim = c(0, 1)
#' )
#' points(1, y = some_Bk, pch = 19, col = 2)
#' }
Bk_permutations <- function(tree1, tree2, k, R = 1000, warn = dendextend_options("warn"), ...) {
# some sanity checks!
if (warn) { # the sanity checks are turned off by default since the "labels" function for dendrogram is one which takes some time to run...
# notice that we must have labels.hclust and labels.dendrogram defined!
tree1_labels <- labels(tree1)
tree2_labels <- labels(tree2)
length_tree1_labels <- length(tree1_labels)
length_tree2_labels <- length(tree2_labels)
# Checking for common error options:
if (length_tree1_labels != length_tree2_labels) stop("The two clusters don't have the same number of items!") # If cluster sized are different - stop
if (!all(sort(tree1_labels) == sort(tree2_labels))) stop("Your trees are having leaves with different names - please correct it in order to use this function")
}
Bk_permutations_for_each_k <- function(k) {
A1_clusters <- cutree(tree1, k)
A2_clusters <- cutree(tree2, k)
FM_index_H0 <- replicate(R, FM_index_permutation(A1_clusters, A2_clusters, warn = warn)) # can take 10 sec
return(FM_index_H0)
}
if (missing(k)) k <- 2:(nleaves(tree1) - 1)
the_Bks_permutations <- lapply(k, Bk_permutations_for_each_k)
names(the_Bks_permutations) <- k
return(the_Bks_permutations)
}
#' @title Bk plot - ploting the Fowlkes-Mallows Index of two dendrogram for various k's
#' @export
#' @description
#'
#' Bk is the calculation of Fowlkes-Mallows index for a series of k cuts
#' for two dendrograms.
#' A Bk plot is simply a scatter plot of Bk versus k.
#' This plot helps in identifiying the similarity between two dendrograms in
#' different levels of k (number of clusters).
#'
#' @param tree1 a dendrogram/hclust/phylo object.
#' @param tree2 a dendrogram/hclust/phylo object.
#' @param k an integer scalar or vector with the desired number
#' of cluster groups.
#' If missing - the Bk will be calculated for a default k range of
#' 2:(nleaves-1).
#' No point in checking k=1/k=n, since both will give Bk=1.
#' @param add_E logical (TRUE). Should we add a line of the Expected Bk value
#' for each k, under the null hypothesis of no relation between the clusterings?
#' @param rejection_line_asymptotic logical (TRUE). Should we add a line of
#' the one sided rejection region based on the asymptotic distribution
#' of Bk values, for each k, under the null hypothesis of no relation
#' between the clusterings?
#' @param rejection_line_permutation logical (FALSE). Should we add a line of
#' the one sided rejection region based on the asymptotic distribution
#' of Bk values, for each k, under the null hypothesis of no relation
#' between the clusterings?
#' @param R integer (Default is 1000). The number of Bk permutation to perform
#' for each k. Applicable only if rejection_line_permutation is TRUE.
#' @param k_permutation the k's to be used for permutation (sometimes we might
#' be only interested in some k's and it is not important to run the simulation
#' for all possible ks). If missing - k itself will be used.
#' @param conf.level the level of one sided confidence interval used for creation
#' of the rejection lines.
#' @param p.adjust.methods a character scalar of either "none" (default), or
#' "bonferroni". This controls the multiple correction method to use for the
#' critical rejection values. Currently only the Bonferroni method
#' is implemented (based on the number of different k values).
#' @param col_line_Bk the color of the Bk line.
#' @param col_line_asymptotic the color of the rejection asymptotic Bk line.
#' @param col_line_permutation the color of the rejection asymptotic Bk line.
#' @param warn logical (default from dendextend_options("warn") is FALSE).
#' Set if warning are to be issued, it is safer to keep this at TRUE,
#' but for keeping the noise down, the default is FALSE.
#' If set to TRUE, extra checks are made to varify that the two clusters have
#' the same size and the same labels.
#' @param main passed to \link{plot}.
#' @param xlab passed to \link{plot}.
#' @param ylab passed to \link{plot}.
#' @param xlim passed to \link{plot}. If missign, xlim is from 2 to nleaves-1
#' @param ylim passed to \link{plot}.
#' @param try_cutree_hclust logical (TRUE). Since cutree for hclust is MUCH
#' faster than for dendrogram - Bk_plot will first try to change the dendrogram
#' into an hclust object. If it will fail (for example, with unbranched trees),
#' it will continue using the cutree.dendrogram functions.
#' If try_cutree_hclust=FALSE, it will force to use cutree.dendrogram and
#' not cutree.hclust.
#' @param ... Ignored.
#'
#' @details
#' From Wikipedia:
#'
#' Fowlkes-Mallows index (see references) is an external evaluation method
#' that is used to determine the similarity between two clusterings
#' (clusters obtained after a clustering algorithm). This measure of similarity
#' could be either between two hierarchical clusterings or a clustering and
#' a benchmark classification. A higher the value for the Fowlkes-Mallows index
#' indicates a greater similarity between the clusters and the benchmark
#' classifications.
#'
#' The default Bk plot comes with a line with dots (type "b") of the Bk values.
#' Also with a fragmented (lty=2) line (of the same color) of the expected Bk
#' line under H0,
#' And a solid red line of the upper critical Bk values for rejection
#'
#'
#' @seealso
#' \code{\link{FM_index}}, \link{Bk}, \link{Bk_permutations}
#' @return
#' After plotting the Bk plot.
#' Returns (invisible) the output of the elements used for constructing the plot:
#' The Bk values, Bk permutations (if used), Bk theoratical values, etc.
#'
#' @references
#'
#' Fowlkes, E. B.; Mallows, C. L. (1 September 1983).
#' "A Method for Comparing Two Hierarchical Clusterings".
#' Journal of the American Statistical Association 78 (383): 553.
#'
#' \url{https://en.wikipedia.org/wiki/Fowlkes-Mallows_index}
#'
#' @examples
#'
#' \dontrun{
#'
#' set.seed(23235)
#' ss <- TRUE # sample(1:150, 10 )
#' hc1 <- hclust(dist(iris[ss, -5]), "com")
#' hc2 <- hclust(dist(iris[ss, -5]), "single")
#' # tree1 <- as.treerogram(hc1)
#' # tree2 <- as.treerogram(hc2)
#' # cutree(tree1)
#'
#' Bk_plot(hc1, hc2, k = 2:20, xlim = c(2, 149))
#' Bk_plot(hc1, hc2)
#'
#' Bk_plot(hc1, hc2, k = 3)
#' Bk_plot(hc1, hc2, k = 3:10)
#' Bk_plot(hc1, hc2)
#' Bk_plot(hc1, hc2, p.adjust.methods = "bonferroni") # higher rejection lines
#'
#' # this one can take a bit of time:
#' Bk_plot(hc1, hc2,
#' rejection_line_permutation = TRUE,
#' k_permutation = c(2, 4, 6, 8, 10, 20, 30, 40, 50), R = 100
#' )
#' # we can see that the permutation line is VERY close to the asymptotic line.
#' # This is great since it means one can often use the asymptotic results
#' # Without having to do many simulations.
#'
#' # works just as well for dendrograms:
#' dend1 <- as.dendrogram(hc1)
#' dend2 <- as.dendrogram(hc2)
#' Bk_plot(dend1, dend2, k = 2:3, try_cutree_hclust = FALSE) # slower than hclust, but works...
#' Bk_plot(hc1, dend2, k = 2:3, try_cutree_hclust = FALSE) # slower than hclust, but works...
#' Bk_plot(dend1, dend1, k = 2:3, try_cutree_hclust = TRUE) # slower than hclust, but works...
#' Bk_plot(hc1, hc1, k = 2:3) # slower than hclust, but works...
#' # for some reason it can't turn dend2 back to hclust :(
#' a <- Bk_plot(hc1, hc2, k = 2:3, try_cutree_hclust = TRUE) # slower than hclust, but works...
#'
#' hc1_mixed <- as.hclust(sample(as.dendrogram(hc1)))
#' Bk_plot(
#' tree1 = hc1, tree2 = hc1_mixed,
#' add_E = FALSE,
#' rejection_line_permutation = TRUE, k_permutation = c(2, 4, 6, 8, 10, 20, 30, 40, 50), R = 100
#' )
#' }
Bk_plot <- function(tree1, tree2, k,
add_E = TRUE,
rejection_line_asymptotic = TRUE,
rejection_line_permutation = FALSE,
R = 1000,
k_permutation,
conf.level = 0.95,
p.adjust.methods = c("none", "bonferroni"),
col_line_Bk = 1,
col_line_asymptotic = 2,
col_line_permutation = 4,
warn = dendextend_options("warn"),
main = "Bk plot",
xlab = "k (number of clusters)",
ylab = "Bk (Fowlkes-Mallows Index)",
xlim,
ylim = c(0, 1),
try_cutree_hclust = TRUE,
...) {
if (try_cutree_hclust) {
# if we succeed (tryCatch) in turning it into hclust - use it!
# if not - go on with the function.
if (!is.hclust(tree1)) {
tree1_hc <- tryCatch(as.hclust(tree1), error = function(e) {
FALSE
})
}
if (!is.hclust(tree2)) {
tree2_hc <- tryCatch(as.hclust(tree2), error = function(e) {
FALSE
})
}
# only if we got BOTH trees to be hclust - can be put them in...
if ((exists("tree1_hc") & exists("tree2_hc")) &&
!(is.logical(tree1_hc) | is.logical(tree2_hc))) {
tree1 <- tree1_hc
tree2 <- tree2_hc
}
}
output <- list()
if (missing(k)) k <- 2:(nleaves(tree1) - 1)
the_Bks <- Bk(tree1, tree2,
k = k,
warn = warn
)
output[length(output) + 1] <- list(Bk = the_Bks)
if (missing(xlim)) xlim <- c(2, c(nleaves(tree1) - 1))
# k and as.numeric(names(the_Bks)) should be THE SAME
plot(unlist(the_Bks) ~ k,
main = main, xlab = xlab, ylab = ylab,
xlim = xlim, ylim = ylim,
col = col_line_Bk,
pch = 20, type = "b"
)
if (add_E) {
the_Bks_E <- sapply(the_Bks, function(x) attr(x, "E_FM"))
lines(the_Bks_E ~ k,
col = col_line_Bk,
type = "l", lty = 2, lwd = 2
)
# the points are added for the case we have NA's in the Bk
points(the_Bks_E ~ k,
col = col_line_Bk,
pch = 19, cex = .01
)
}
p.adjust.methods <- match.arg(p.adjust.methods)
if (p.adjust.methods == "bonferroni") {
alfa <- 1 - conf.level
conf.level <- 1 - alfa / length(k)
}
if (rejection_line_asymptotic) {
if (!exists("the_Bks_E")) the_Bks_E <- sapply(the_Bks, function(x) attr(x, "E_FM"))
the_Bks_V <- sapply(the_Bks, function(x) attr(x, "V_FM"))
the_Bks_SD <- sqrt(the_Bks_V)
Z <- qnorm(conf.level)
Bk_critical_value_asymptotic <- the_Bks_E + Z * the_Bks_SD
lines(Bk_critical_value_asymptotic ~ k,
col = col_line_asymptotic,
pch = 20, type = "l", lty = 1, lwd = 2, cex = .5
)
# the points are added for the case we have NA's in the Bk
points(Bk_critical_value_asymptotic ~ k,
col = col_line_asymptotic,
pch = 19, cex = .01
)
output[length(output) + 1] <- list(Bk_critical_value_asymptotic = Bk_critical_value_asymptotic)
}
if (rejection_line_permutation) {
if (missing(k_permutation)) k_permutation <- k
some_Bk_permu <- Bk_permutations(tree1, tree2, k = k_permutation, R = R, warn = warn)
# we can see that the Bk is much higher than the permutation Bks:
Bk_critical_value_permu <- unname(sapply(some_Bk_permu, quantile, probs = conf.level))
lines(Bk_critical_value_permu ~ k_permutation,
col = col_line_permutation,
pch = 20, type = "l", lty = 1, lwd = 2, cex = .5
)
output[length(output) + 1] <- list(Bk_permutations = some_Bk_permu)
output[length(output) + 1] <- list(Bk_critical_value_permu = Bk_critical_value_permu)
}
return(invisible(output))
}
# Bk_plot(tree1, tree2, k = 30:50)
# Bk_plot(tree1, tree2)
# The Bk function was previously also implemented by Matt in:
# https://cran.r-project.org/package=profdpm
# See pages 9 and 10 here: https://CRAN.R-project.org/package=profdpm/vignettes/profdpm.pdf
# As of February 2020 the package went off CRAN, so I removed it also from dendextend.
# I came by this package thanks to chl: https://stats.stackexchange.com/questions/3672/a-measure-to-describe-the-distribution-of-a-dendrogram
# Also, there is a great overview of similarity measures on this here:
# http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.6189&rep=rep1&type=pdf
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.