Nothing
density <- function(x, ...) UseMethod('density')
density.fd <- function(x, WfdParobj, conv=0.0001, iterlim=20,
active=1:nbasis, dbglev=0, ...) {
# DENSITYFD estimates the density of a sample of scalar observations.
# These observations may be one of two forms:
# 1. a vector of observatons x_i
# 2. a two-column matrix, with the observations x_i in the
# first column, and frequencies f_i in the second.
# Option 1. corresponds to all f_i = 1.
# Arguments are:
# X ... data value array, either a vector or a two-column
# matrix.
# WFDPAROBJ ... functional parameter object specifying the initial log
# density, the linear differential operator used to smooth
# smooth it, and the smoothing parameter.
# CONV ... convergence criterion
# ITERLIM ... iteration limit for scoring iterations
# ACTIVE ... indices among 1:NBASIS of parameters to optimize
# DBGLEV ... level of output of computation history
# Returns:
# A list containing
# WFDOBJ ... functional data basis object defining final density
# C ... normalizing constant for density p = exp(WFDOBJ)/C
# FLIST ... Struct object containing
# FSTR$f final log likelihood
# FSTR$norm final norm of gradient
# ITERNUM Number of iterations
# ITERHIST History of iterations
# To plot the density function or to evaluate it, evaluate WFDOBJ,
# exponentiate the resulting vector, and then divide by the normalizing
# constant C.
# last modified 3 July 2020 by Jim Ramsay
# check WfdParobj
if (!inherits(WfdParobj, "fdPar")) {
if (inherits(WfdParobj, "fd") || inherits(WfdParobj, "basisfd")) {
WfdParobj <- fdPar(WfdParobj)
} else {
stop("WFDPAROBJ is not a fdPar object")
}
}
# set up WFDOBJ
Wfdobj <- WfdParobj$fd
# set up LFDOBJ
Lfdobj <- WfdParobj$Lfd
Lfdobj <- int2Lfd(Lfdobj)
# set up BASIS
basisobj <- Wfdobj$basis
nbasis <- basisobj$nbasis
rangex <- basisobj$rangeval
x <- as.matrix(x)
xdim <- dim(x)
N <- xdim[1]
m <- xdim[2]
if (m > 2 && N > 2)
stop("Argument X must have either one or two columns.")
if ((N == 1 | N == 2) & m > 1) {
x <- t(x)
n <- N
N <- m
m <- n
}
if (m == 1) {
f <- rep(1,N)
} else {
f <- x[,2]
fsum <- sum(f)
f <- f/fsum
x <- x[,1]
}
f = as.matrix(f)
# check for values outside of the range of WFD0
inrng <- (1:N)[x >= rangex[1] & x <= rangex[2]]
if (length(inrng) != N) {
print(c(length(inrng), N))
print(c(rangex[1], rangex[2], min(x), max(x)))
warning("Some values in X out of range and not used.")
}
x <- x[inrng]
f <- f[inrng]
nobs <- length(x)
# set up some arrays
climit <- c(rep(-50,nbasis),rep(400,nbasis))
cvec0 <- Wfdobj$coefs
dbgwrd <- dbglev > 1
zeromat <- zerobasis(nbasis)
# initialize matrix Kmat defining penalty term
lambda <- WfdParobj$lambda
if (lambda > 0) Kmat <- lambda*getbasispenalty(basisobj, Lfdobj)
# evaluate log likelihood
# and its derivatives with respect to these coefficients
result <- loglfnden(x, f, basisobj, cvec0)
logl <- result[[1]]
Dlogl <- result[[2]]
# compute initial badness of fit measures
fun <- -logl
gvec <- -Dlogl
if (lambda > 0) {
gvec <- gvec + 2*(Kmat %*% cvec0)
fun <- fun + t(cvec0) %*% Kmat %*% cvec0
}
Foldstr <- list(f = fun, norm = sqrt(mean(gvec^2)))
gvec0 <- t(zeromat) %*% as.matrix(gvec)
# compute the initial expected Hessian
hmat <- Varfnden(x, basisobj, cvec0)
if (lambda > 0) hmat <- hmat + 2*Kmat
hmat0 = t(zeromat) %*% hmat %*% zeromat
# evaluate the initial update vector for correcting the initial bmat
deltac0 <- -solve(hmat0,gvec0)
deltac <- zeromat %*% as.matrix(deltac0)
cosangle <- -sum(gvec0*deltac0)/sqrt(sum(gvec0^2)*sum(deltac0^2))
# initialize iteration status arrays
iternum <- 0
status <- c(iternum, Foldstr$f, -logl, Foldstr$norm)
if (dbglev > 0) {
cat("Iteration Criterion Neg. Log L Grad. Norm\n")
cat(" ")
cat(format(iternum))
cat(" ")
cat(format(status[2:4]))
cat("\n")
}
iterhist <- matrix(0,iterlim+1,length(status))
iterhist[1,] <- status
# quit if ITERLIM == 0
if (iterlim == 0) {
Flist <- Foldstr
iterhist <- iterhist[1,]
C <- normden.phi(basisobj, cvec0)
return( list(Wfdobj=Wfdobj, C=C, Flist=Flist, iternum=iternum,
iterhist=iterhist) )
}
# ------- Begin iterations -----------
STEPMAX <- 5
MAXSTEP <- 400
trial <- 1
cvec <- cvec0
linemat <- matrix(0,3,5)
for (iter in 1:iterlim) {
iternum <- iternum + 1
# take optimal stepsize
dblwrd <- rep(FALSE,2)
limwrd <- rep(FALSE,2)
stpwrd <- 0
ind <- 0
# compute slope
Flist <- Foldstr
linemat[2,1] <- sum(deltac*gvec)
# normalize search direction vector
sdg <- sqrt(sum(deltac^2))
deltac <- deltac/sdg
dgsum <- sum(deltac)
linemat[2,1] <- linemat[2,1]/sdg
# return with stop condition if (initial slope is nonnegative
if (linemat[2,1] >= 0) {
print("Initial slope nonnegative.")
ind <- 3
iterhist <- iterhist[1:(iternum+1),]
break
}
# return successfully if (initial slope is very small
if (linemat[2,1] >= -1e-5) {
if (dbglev>1) print("Initial slope too small")
iterhist <- iterhist[1:(iternum+1),]
break
}
# load up initial search matrix
linemat[1,1:4] <- 0
linemat[2,1:4] <- linemat[2,1]
linemat[3,1:4] <- Foldstr$f
# output initial results for stepsize 0
stepiter <- 0
if (dbglev > 1) {
cat(" ")
cat(format(stepiter))
cat(format(linemat[,1]))
cat("\n")
}
ips <- 0
# first step set to trial
linemat[1,5] <- trial
# Main iteration loop for linesrch
for (stepiter in 1:STEPMAX) {
# ensure that step does not go beyond limits on parameters
limflg <- 0
# check the step size
result <- stepchk(linemat[1,5], cvec, deltac, limwrd, ind,
climit, active, dbgwrd)
linemat[1,5] <- result[[1]]
ind <- result[[2]]
limwrd <- result[[3]]
if (linemat[1,5] <= 1e-9) {
# Current step size too small terminate
Flist <- Foldstr
cvecnew <- cvec
gvecnew <- gvec
if (dbglev > 1) print(paste("Stepsize too small:", linemat[1,5]))
if (limflg) ind <- 1 else ind <- 4
break
}
cvecnew <- cvec + linemat[1,5]*deltac
# compute new function value and gradient
result <- loglfnden(x, f, basisobj, cvecnew)
logl <- result[[1]]
Dlogl <- result[[2]]
Flist$f <- -logl
gvecnew <- -as.matrix(Dlogl)
if (lambda > 0) {
gvecnew <- gvecnew + 2*Kmat %*% cvecnew
Flist$f <- Flist$f + t(cvecnew) %*% Kmat %*% cvecnew
}
gvecnew0 <- t(zeromat) %*% gvecnew
Flist$norm <- sqrt(mean(gvecnew0^2))
# compute new directional derivative
linemat[2,5] <- sum(deltac*gvecnew)
linemat[3,5] <- Flist$f
if (dbglev > 1) {
cat(" ")
cat(format(stepiter))
cat(format(linemat[,5]))
cat("\n")
}
# compute next step
result <- stepit(linemat, ips, dblwrd, MAXSTEP)
linemat <- result$linemat
ips <- result$ips
ind <- result$ind
dblwrd <- result$dblwrd
trial <- linemat[1,5]
# ind == 0 implies convergence
if (ind == 0 | ind == 5) break
# end of line search loop
}
# update current parameter vectors
cvec <- cvecnew
gvec <- gvecnew
gvec0 <- t(zeromat) %*% as.matrix(gvec)
Wfdobj$coefs <- cvec
status <- c(iternum, Flist$f, -logl, Flist$norm)
iterhist[iter+1,] <- status
if (dbglev > 0) {
cat(" ")
cat(format(iternum))
cat(" ")
cat(format(status[2:4]))
cat("\n")
}
# test for convergence
if (abs(Flist$f-Foldstr$f) < conv) {
iterhist <- iterhist[1:(iternum+1),]
C <- normden.phi(basisobj, cvec)
denslist <- list("Wfdobj" = Wfdobj, "C" = C, "Flist" = Flist,
"iternum" = iternum, "iterhist" = iterhist)
return( denslist )
}
if (Flist$f >= Foldstr$f) break
# compute the Hessian
hmat <- Varfnden(x, basisobj, cvec)
if (lambda > 0) hmat <- hmat + 2*Kmat
hmat0 <- t(zeromat) %*% hmat %*% zeromat
# evaluate the update vector
deltac0 <- -solve(hmat0,gvec0)
cosangle <- -sum(gvec0*deltac0)/sqrt(sum(gvec0^2)*sum(deltac0^2))
if (cosangle < 0) {
if (dbglev > 1) print("cos(angle) negative")
deltac0 <- -gvec0
}
deltac <- zeromat %*% as.matrix(deltac0)
Foldstr <- Flist
# end of iterations
}
# compute final normalizing constant
C <- normden.phi(basisobj, cvec)
denslist <- list("Wfdobj" = Wfdobj, "C" = C, "Flist" = Flist,
"iternum" = iternum, "iterhist" = iterhist)
return( denslist )
}
# -----------------------------------------------------------------------------
loglfnden <- function(x, f, basisobj, cvec=FALSE) {
# Computes the log likelihood and its derivative with
# respect to the coefficients in CVEC
N <- length(x)
nbasis <- basisobj$nbasis
fmat <- outer(f, rep(1,nbasis))
fsum <- sum(f)
nobs <- length(x)
phimat <- getbasismatrix(x, basisobj)
Cval <- normden.phi(basisobj, cvec, )
logl <- sum((phimat %*% cvec) * f - fsum*log(Cval)/N)
EDw <- expectden.phi(basisobj, cvec, Cval)
Dlogl <- apply((phimat - outer(rep(1,nobs),EDw))*fmat,2,sum)
return( list(logl, Dlogl) )
}
# -----------------------------------------------------------------------------
Varfnden <- function(x, basisobj, cvec=FALSE) {
# Computes the expected Hessian
nbasis <- basisobj$nbasis
nobs <- length(x)
Cval <- normden.phi(basisobj, cvec)
EDw <- expectden.phi(basisobj, cvec, Cval)
EDwDwt <- expectden.phiphit(basisobj, cvec, Cval)
Varphi <- nobs*(EDwDwt - outer(EDw,EDw))
return(Varphi)
}
# -----------------------------------------------------------------------------
normden.phi <- function(basisobj, cvec, JMAX=15, EPS=1e-7) {
# Computes integrals of
# p(x) = exp phi"(x) %*% cvec
# by numerical integration using Romberg integration
# check arguments, and convert basis objects to functional data objects
if (!inherits(basisobj, "basisfd") )
stop("First argument must be a basis function object.")
nbasis <- basisobj$nbasis
oneb <- matrix(1,1,nbasis)
rng <- basisobj$rangeval
# set up first iteration
width <- rng[2] - rng[1]
JMAXP <- JMAX + 1
h <- matrix(1,JMAXP,1)
h[2] <- 0.25
# matrix SMAT contains history of discrete approximations to the integral
smat <- matrix(0,JMAXP,1)
# the first iteration uses just the }points
x <- rng
nx <- length(x)
ox <- matrix(1,nx,1)
fx <- getbasismatrix(x, basisobj)
wx <- fx %*% cvec
wx[wx < -50] <- -50
px <- exp(wx)
smat <- matrix(0,JMAXP,1)
smat[1] <- width*sum(px)/2
tnm <- 0.5
j <- 1
# now iterate to convergence
for (j in 2:JMAX) {
tnm <- tnm*2
del <- width/tnm
if (j == 2) {
x <- (rng[1] + rng[2])/2
} else {
x <- seq(rng[1]+del/2, rng[2], del)
}
fx <- getbasismatrix(x, basisobj)
wx <- fx %*% cvec
wx[wx < -50] <- -50
px <- exp(wx)
smat[j] <- (smat[j-1] + width*sum(px)/tnm)/2
if (j >= 5) {
ind <- (j-4):j
result <- polintarray(h[ind],smat[ind],0)
ss <- result[[1]]
dss <- result[[2]]
if (!any(abs(dss) >= EPS*max(abs(ss)))) {
# successful convergence
return(ss)
}
}
smat[j+1] <- smat[j]
h[j+1] <- 0.25*h[j]
}
warning(paste("No convergence after ",JMAX," steps in NORMDEN.PHI"))
return(ss)
}
# -----------------------------------------------------------------------------
expectden.phi <- function(basisobj, cvec, Cval=1, nderiv=0,
JMAX=15, EPS=1e-7) {
# Computes expectations of basis functions with respect to density
# p(x) <- Cval^{-1} exp t(c)*phi(x)
# by numerical integration using Romberg integration
# check arguments, and convert basis objects to functional data objects
if (!inherits(basisobj, "basisfd"))
stop("First argument must be a basis function object.")
nbasis <- basisobj$nbasis
rng <- basisobj$rangeval
oneb <- matrix(1,1,nbasis)
# set up first iteration
width <- rng[2] - rng[1]
JMAXP <- JMAX + 1
h <- matrix(1,JMAXP,1)
h[2] <- 0.25
# matrix SMAT contains the history of discrete approximations to the integral
sumj <- matrix(0,1,nbasis)
# the first iteration uses just the }points
x <- rng
nx <- length(x)
ox <- matrix(1,nx,nx)
fx <- getbasismatrix(x, basisobj, 0)
wx <- fx %*% cvec
wx[wx < -50] <- -50
px <- exp(wx)/Cval
if (nderiv == 0) {
Dfx <- fx
} else {
Dfx <- getbasismatrix(x, basisobj, 1)
}
sumj <- t(Dfx) %*% px
smat <- matrix(0,JMAXP,nbasis)
smat[1,] <- width*as.vector(sumj)/2
tnm <- 0.5
j <- 1
# now iterate to convergence
for (j in 2:JMAX) {
tnm <- tnm*2
del <- width/tnm
if (j == 2) {
x <- (rng[1] + rng[2])/2
} else {
x <- seq(rng[1]+del/2, rng[2], del)
}
nx <- length(x)
fx <- getbasismatrix(x, basisobj, 0)
wx <- fx %*% cvec
wx[wx < -50] <- -50
px <- exp(wx)/Cval
if (nderiv == 0) {
Dfx <- fx
} else {
Dfx <- getbasismatrix(x, basisobj, 1)
}
sumj <- t(Dfx) %*% px
smat[j,] <- (smat[j-1,] + width*as.vector(sumj)/tnm)/2
if (j >= 5) {
ind <- (j-4):j
temp <- smat[ind,]
result <- polintarray(h[ind],temp,0)
ss <- result[[1]]
dss <- result[[2]]
if (!any(abs(dss) > EPS*max(abs(ss)))) {
# successful convergence
return(ss)
}
}
smat[j+1,] <- smat[j,]
h[j+1] <- 0.25*h[j]
}
warning(paste("No convergence after ",JMAX," steps in EXPECTDEN.PHI"))
return(ss)
}
# -----------------------------------------------------------------------------
expectden.phiphit <- function(basisobj, cvec, Cval=1, nderiv1=0, nderiv2=0,
JMAX=15, EPS=1e-7) {
# Computes expectations of cross product of basis functions with
# respect to density
# p(x) = Cval^{-1} int [exp t(c) %*% phi(x)] phi(x) t(phi(x)) dx
# by numerical integration using Romberg integration
# check arguments, and convert basis objects to functional data objects
if (!inherits(basisobj, "basisfd"))
stop("First argument must be a basis function object.")
nbasis <- basisobj$nbasis
rng <- basisobj$rangeval
oneb <- matrix(1,1,nbasis)
# set up first iteration
width <- rng[2] - rng[1]
JMAXP <- JMAX + 1
h <- matrix(1,JMAXP,1)
h[2] <- 0.25
# matrix SMAT contains history of discrete approximations to the integral
# the first iteration uses just the }points
x <- rng
nx <- length(x)
fx <- getbasismatrix(x, basisobj, 0)
wx <- fx %*% cvec
wx[wx < -50] <- -50
px <- exp(wx)/Cval
if (nderiv1 == 0) {
Dfx1 <- fx
} else {
Dfx1 <- getbasismatrix(x, basisobj, 1)
}
if (nderiv2 == 0) {
Dfx2 <- fx
} else {
Dfx2 <- getbasismatrix(x, basisobj, 2)
}
oneb <- matrix(1,1,nbasis)
sumj <- t(Dfx1) %*% ((px %*% oneb) * Dfx2)
smat <- array(0,c(JMAXP,nbasis,nbasis))
smat[1,,] <- width*as.matrix(sumj)/2
tnm <- 0.5
j <- 1
# now iterate to convergence
for (j in 2:JMAX) {
tnm <- tnm*2
del <- width/tnm
if (j == 2) {
x <- (rng[1] + rng[2])/2
} else {
x <- seq(rng[1]+del/2, rng[2], del)
}
nx <- length(x)
fx <- getbasismatrix(x, basisobj, 0)
wx <- fx %*% cvec
wx[wx < -50] <- -50
px <- exp(wx)/Cval
if (nderiv1 == 0) {
Dfx1 <- fx
} else {
Dfx1 <- getbasismatrix(x, basisobj, 1)
}
if (nderiv2 == 0) {
Dfx2 <- fx
} else {
Dfx2 <- getbasismatrix(x, basisobj, 2)
}
sumj <- t(Dfx1) %*% ((px %*% oneb) * Dfx2)
smat[j,,] <- (smat[j-1,,] + width*as.matrix(sumj)/tnm)/2
if (j >= 5) {
ind <- (j-4):j
temp <- smat[ind,,]
result <- polintarray(h[ind],temp,0)
ss <- result[[1]]
dss <- result[[2]]
if (!any(abs(dss) > EPS*max(max(abs(ss))))) {
# successful convergence
return(ss)
}
}
smat[j+1,,] <- smat[j,,]
h[j+1] <- 0.25*h[j]
}
warning(paste("No convergence after ",JMAX," steps in EXPECTDEN.PHIPHIT"))
return(ss)
}
# -----------------------------------------------------------------------------
polintarray <- function(xa, ya, x0) {
# YA is an array with up to 4 dimensions
# with 1st dim the same length same as the vector XA
n <- length(xa)
yadim <- dim(ya)
if (is.null(yadim)) {
yadim <- n
nydim <- 1
} else {
nydim <- length(yadim)
}
if (yadim[1] != n) stop("First dimension of YA must match XA")
difx <- xa - x0
absxmxa <- abs(difx)
ns <- min((1:n)[absxmxa == min(absxmxa)])
cs <- ya
ds <- ya
if (nydim == 1) y <- ya[ns]
if (nydim == 2) y <- ya[ns,]
if (nydim == 3) y <- ya[ns,,]
if (nydim == 4) y <- ya[ns,,,]
ns <- ns - 1
for (m in 1:(n-1)) {
if (nydim == 1) {
for (i in 1:(n-m)) {
ho <- difx[i]
hp <- difx[i+m]
w <- (cs[i+1] - ds[i])/(ho - hp)
ds[i] <- hp*w
cs[i] <- ho*w
}
if (2*ns < n-m) {
dy <- cs[ns+1]
} else {
dy <- ds[ns]
ns <- ns - 1
}
}
if (nydim == 2) {
for (i in 1:(n-m)) {
ho <- difx[i]
hp <- difx[i+m]
w <- (cs[i+1,] - ds[i,])/(ho - hp)
ds[i,] <- hp*w
cs[i,] <- ho*w
}
if (2*ns < n-m) {
dy <- cs[ns+1,]
} else {
dy <- ds[ns,]
ns <- ns - 1
}
}
if (nydim == 3) {
for (i in 1:(n-m)) {
ho <- difx[i]
hp <- difx[i+m]
w <- (cs[i+1,,] - ds[i,,])/(ho - hp)
ds[i,,] <- hp*w
cs[i,,] <- ho*w
}
if (2*ns < n-m) {
dy <- cs[ns+1,,]
} else {
dy <- ds[ns,,]
ns <- ns - 1
}
}
if (nydim == 4) {
for (i in 1:(n-m)) {
ho <- difx[i]
hp <- difx[i+m]
w <- (cs[i+1,,,] - ds[i,,,])/(ho - hp)
ds[i,,,] <- hp*w
cs[i,,,] <- ho*w
}
if (2*ns < n-m) {
dy <- cs[ns+1,,,]
} else {
dy <- ds[ns,,,]
ns <- ns - 1
}
}
y <- y + dy
}
return( list(y, dy) )
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.