Nothing
#----------------------------------------------#
# Author: Laurent Berge
# Date creation: Fri Jul 10 09:03:06 2020
# ~: package sniff tests
#----------------------------------------------#
# Not everything is currently covered, but I'll improve it over time
# Some functions are not trivial to test properly though
library(fixest)
test = fixest:::test ; chunk = fixest:::chunk
vcovClust = fixest:::vcovClust
stvec = stringmagic::string_vec_alias()
setFixest_notes(FALSE)
if(fixest:::is_r_check()){
if(requireNamespace("data.table", quietly = TRUE)){
library(data.table)
data.table::setDTthreads(1)
}
setFixest_nthreads(1)
}
####
#### ESTIMATIONS ####
####
####
#### ... Main ####
####
chunk("ESTIMATION")
set.seed(0)
base = iris
names(base) = c("y", "x1", "x2", "x3", "species")
base$fe_2 = rep(1:5, 30)
base$fe_3 = sample(15, 150, TRUE)
base$constant = 5
base$y_int = as.integer(base$y)
base$w = as.vector(unclass(base$species) - 0.95)
base$offset_value = unclass(base$species) - 0.95
base$y_01 = 1 * ((scale(base$x1) + rnorm(150)) > 0)
# what follows to avoid removal of fixed-effects (logit is pain in the neck)
base$y_01[1:5 + rep(c(0, 50, 100), each = 5)] = 1
base$y_01[6:10 + rep(c(0, 50, 100), each = 5)] = 0
# We enforce the removal of observations
base$y_int_null = base$y_int
base$y_int_null[base$fe_3 %in% 1:5] = 0
for(model in c("ols", "pois", "logit", "negbin", "Gamma")){
cat("Model: ", format(model, width = 6), sep = "")
for(use_weights in c(FALSE, TRUE)){
my_weight = NULL
if(use_weights) my_weight = base$w
for(use_offset in c(FALSE, TRUE)){
my_offset = NULL
if(use_offset) my_offset = base$offset_value
for(id_fe in 0:9){
cat(".")
tol = switch(model, "negbin" = 1e-2, "logit" = 3e-5, 1e-5)
# Setting up the formula to accommodate FEs
if(id_fe == 0){
fml_fixest = fml_stats = y ~ x1
} else if(id_fe == 1){
fml_fixest = y ~ x1 | species
fml_stats = y ~ x1 + factor(species)
} else if(id_fe == 2){
fml_fixest = y ~ x1 | species + fe_2
fml_stats = y ~ x1 + factor(species) + factor(fe_2)
} else if(id_fe == 3){
# varying slope
fml_fixest = y ~ x1 | species[[x2]]
fml_stats = y ~ x1 + x2:species
} else if(id_fe == 4){
# varying slope -- 1 VS, 1 FE
fml_fixest = y ~ x1 | species[[x2]] + fe_2
fml_stats = y ~ x1 + x2:species + factor(fe_2)
} else if(id_fe == 5){
# varying slope -- 2 VS
fml_fixest = y ~ x1 | species[x2]
fml_stats = y ~ x1 + x2:species + species
} else if(id_fe == 6){
# varying slope -- 2 VS bis
fml_fixest = y ~ x1 | species[[x2]] + fe_2[[x3]]
fml_stats = y ~ x1 + x2:species + x3:factor(fe_2)
} else if(id_fe == 7){
# Combined clusters
fml_fixest = y ~ x1 + x2 | species^fe_2
fml_stats = y ~ x1 + x2 + paste(species, fe_2)
} else if(id_fe == 8){
fml_fixest = y ~ x1 | species[x2] + fe_2[x3] + fe_3
fml_stats = y ~ x1 + species + i(species, x2) + factor(fe_2) + i(fe_2, x3) + factor(fe_3)
} else if(id_fe == 9){
fml_fixest = y ~ x1 | species + fe_2[x2,x3] + fe_3
fml_stats = y ~ x1 + species + factor(fe_2) + i(fe_2, x2) + i(fe_2, x3) + factor(fe_3)
}
# ad hoc modifications of the formula
if(model == "logit"){
fml_fixest = xpd(y_01 ~ ..rhs, ..rhs = fml_fixest[[3]])
fml_stats = xpd(y_01 ~ ..rhs, ..rhs = fml_stats[[3]])
# The estimations are OK, conv differences out of my control
if(id_fe %in% 8:9) tol = 0.5
} else if(model == "pois"){
fml_fixest = xpd(y_int_null ~ ..rhs, ..rhs = fml_fixest[[3]])
fml_stats = xpd(y_int_null ~ ..rhs, ..rhs = fml_stats[[3]])
} else if(model %in% c("negbin", "Gamma")){
fml_fixest = xpd(y_int ~ ..rhs, ..rhs = fml_fixest[[3]])
fml_stats = xpd(y_int ~ ..rhs, ..rhs = fml_stats[[3]])
}
adj = 1
if(model == "ols"){
res = feols(fml_fixest, base, weights = my_weight, offset = my_offset)
res_bis = lm(fml_stats, base, weights = my_weight, offset = my_offset)
} else if(model %in% c("pois", "logit", "Gamma")){
adj = 0
if(model == "Gamma" && use_offset) next
my_family = switch(model, pois = poisson(), logit = binomial(), Gamma = Gamma())
res = feglm(fml_fixest, base, family = my_family, weights = my_weight, offset = my_offset)
if(!is.null(res$obs_selection$obsRemoved)){
qui = res$obs_selection$obsRemoved
# I MUST do that.... => subset does not work...
base_tmp = base[qui, ]
base_tmp$my_offset = my_offset[qui]
base_tmp$my_weight = my_weight[qui]
res_bis = glm(fml_stats, base_tmp, family = my_family, weights = my_weight, offset = my_offset)
} else {
res_bis = glm(fml_stats, data = base, family = my_family, weights = my_weight, offset = my_offset)
}
} else if(model == "negbin"){
# no offset in glm.nb + no VS in fenegbin + no weights in fenegbin
if(use_weights || use_offset || id_fe > 2) next
res = fenegbin(fml_fixest, base, notes = FALSE)
res_bis = MASS::glm.nb(fml_stats, base)
}
test(coef(res)["x1"], coef(res_bis)["x1"], "~", tol)
test(se(res, se = "st", ssc = ssc(adj = adj))["x1"], se(res_bis)["x1"], "~", tol)
test(pvalue(res, se = "st", ssc = ssc(adj = adj))["x1"], pvalue(res_bis)["x1"], "~", tol*10**(model == "negbin"))
# cat("Model: ", model, ", FE: ", id_fe, ", weight: ", use_weights, ", offset: ", use_offset, "\n", sep="")
}
cat("|")
}
}
cat("\n")
}
####
#### ... Corner cases ####
####
chunk("Corner cases")
# We test the absence of bugs
base = iris
names(base) = c("y", "x1", "x2", "x3", "fe1")
base$fe2 = rep(1:5, 30)
base$y[1:5] = NA
base$x1[4:8] = NA
base$x2[4:21] = NA
base$x3[110:111] = NA
base$fe1[110:118] = NA
base$fe2[base$fe2 == 1] = 0
base$fe3 = sample(letters[1:5], 150, TRUE)
base$period = rep(1:50, 3)
base$x_cst = 1
res = feols(y ~ 1 | csw(fe1, fe1^fe2), base)
res = feols(y ~ 1 + csw(x1, i(fe1)) | fe2, base)
res = feols(y ~ csw(f(x1, 1:2), x2) | sw0(fe2, fe2^fe3), base, panel.id = ~ fe1 + period)
res = feols(d(y) ~ -1 + d(x2), base, panel.id = ~ fe1 + period)
test(length(coef(res)), 1)
res = feols(c(y, x1) ~ 1 | fe1 | x2 ~ x3, base)
res = feols(y ~ x1 | fe1[x2] + fe2[x2], base)
#
# NA models (ie all variables are collinear with the FEs)
#
# Should work when warn = FALSE or multiple est
for(i in 1:2){
fun = switch(i, "1" = feols, "2" = feglm)
res = feols(y ~ x_cst | fe1, base, warn = FALSE)
res # => no error
etable(res) # => no error
# error when warn = TRUE
test(feols(y ~ x_cst | fe1, base), "err")
# multiple est => no error
res = feols(c(y, x1) ~ x_cst | fe1, base)
res # => no error
etable(res) # => no error
}
# Removing the intercept!!!
res = feols(y ~ -1 + x1 + i(fe1), base)
test("(Intercept)" %in% names(res$coefficients), FALSE)
res = feols(y ~ -1 + x1 + factor(fe1), base)
test("(Intercept)" %in% names(res$coefficients), FALSE)
res = feols(y ~ -1 + x1 + i(fe1) + i(fe2), base)
test("(Intercept)" %in% names(res$coefficients), FALSE)
test(is.null(res$collin.var), TRUE)
# IV + interacted FEs
res = feols(y ~ x1 | fe1^fe2 | x2 ~ x3, base)
# IVs no exo var
res = feols(y ~ 0 | x2 ~ x3, base)
# Same in stepwise
res = feols(y ~ 0 | sw0(fe1) | x2 ~ x3, base)
# IVs + lags
res = feols(y ~ x1 | fe1^fe2 | l(x2, -1:1) ~ l(x3, -1:1), base, panel.id = ~ fe1 + period)
# functions in interactions
res = feols(y ~ x1 | factor(fe1)^factor(fe2), base)
res = feols(y ~ x1 | round(x2^2), base)
test(feols(y ~ x1 | factor(fe1^fe2), base), "err")
res = feols(y ~ x1 | bin(x2, "bin::1")^fe1 + fe1^fe2, base)
# 1 obs (after FE removal) estimation
base_1obs = data.frame(y = c(1, 0), fe = c(1, 2), x = c(1, 0))
test(fepois(y ~ x | fe, base_1obs), "err")
# no error
res = fepois(y ~ 1 | fe, base_1obs)
# warning when demeaning algo reaches max iterations
data(trade)
test(feols(Euros ~ log(dist_km) | Destination + Origin + Product,
trade, fixef.iter = 1), "warn")
####
#### ... Fit methods ####
####
chunk("Fit methods")
base = iris
names(base) = c("y", "x1", "x2", "x3", "species")
base$y_int = as.integer(base$y)
base$y_log = sample(c(TRUE, FALSE), 150, TRUE)
res = feglm.fit(base$y, base[, 2:4])
res_bis = feglm(y ~ -1 + x1 + x2 + x3, base)
test(coef(res), coef(res_bis))
res = feglm.fit(base$y_int, base[, 2:4])
res_bis = feglm(y_int ~ -1 + x1 + x2 + x3, base)
test(coef(res), coef(res_bis))
res = feglm.fit(base$y_log, base[, 2:4])
res_bis = feglm(y_log ~ -1 + x1 + x2 + x3, base)
test(coef(res), coef(res_bis))
res = feglm.fit(base$y, base[, 2:4], family = "poisson")
res_bis = feglm(y ~ -1 + x1 + x2 + x3, base, family = "poisson")
test(coef(res), coef(res_bis))
res = feglm.fit(base$y_int, base[, 2:4], family = "poisson")
res_bis = feglm(y_int ~ -1 + x1 + x2 + x3, base, family = "poisson")
test(coef(res), coef(res_bis))
res = feglm.fit(base$y_log, base[, 2:4], family = "poisson")
res_bis = feglm(y_log ~ -1 + x1 + x2 + x3, base, family = "poisson")
test(coef(res), coef(res_bis))
####
#### global variables ####
####
chunk("globals")
est_reg = function(df, yvar, xvar, refgrp) {
feols(.[yvar] ~ i(.[xvar], ref = refgrp), data = df)
}
(est = est_reg(iris, "Sepal.Length", "Species", ref = "setosa"))
# checking when it should not work
base = setNames(iris, c("y", "x1", "x2", "x3", "species"))
z = base$x1
test(feols(y ~ z, base), "err")
####
#### ... Collinearity ####
####
chunk("COLLINEARITY")
base = iris
names(base) = c("y", "x1", "x2", "x3", "species")
base$constant = 5
base$y_int = as.integer(base$y)
base$w = as.vector(unclass(base$species) - 0.95)
for(useWeights in c(FALSE, TRUE)){
for(model in c("ols", "pois")){
for(use_fe in c(FALSE, TRUE)){
cat(".")
my_weight = NULL
if(useWeights) my_weight = base$w
adj = 1
if(model == "ols"){
if(!use_fe){
res = feols(y ~ x1 + constant, base, weights = my_weight)
res_bis = lm(y ~ x1 + constant, base, weights = my_weight)
} else {
res = feols(y ~ x1 + constant | species, base, weights = my_weight)
res_bis = lm(y ~ x1 + constant + species, base, weights = my_weight)
}
} else {
if(!use_fe){
res = fepois(y_int ~ x1 + constant, base, weights = my_weight)
res_bis = glm(y_int ~ x1 + constant, base, weights = my_weight, family = poisson)
} else {
res = fepois(y_int ~ x1 + constant | species, base, weights = my_weight)
res_bis = glm(y_int ~ x1 + constant + species, base, weights = my_weight, family = poisson)
}
adj = 0
}
test(coef(res)["x1"], coef(res_bis)["x1"], "~")
test(se(res, se = "st", ssc = ssc(adj=adj))["x1"], se(res_bis)["x1"], "~")
# cat("Weight: ", useWeights, ", model: ", model, ", FE: ", use_fe, "\n", sep="")
}
}
}
cat("\n")
####
#### ... Non linear tests ####
####
chunk("NON LINEAR")
base = iris
names(base) = c("y", "x1", "x2", "x3", "species")
tab = c("versicolor" = 5, "setosa" = 0, "virginica" = -5)
fun_nl = function(a, b, spec){
res = as.numeric(tab[spec])
a*res + b*res^2
}
est_nl = feNmlm(y ~ x1, base, NL.fml = ~fun_nl(a, b, species), NL.start = 1, family = "gaussian")
base$var_spec = as.numeric(tab[base$species])
est_lin = feols(y ~ x1 + var_spec + I(var_spec^2), base)
test(coef(est_nl), coef(est_lin)[c(3, 4, 1, 2)], "~")
####
#### ... Lagging ####
####
# Different types of lag
# 1) check no error in wide variety of situations
# 2) check consistency
chunk("LAGGING")
data(base_did)
base = base_did
n = nrow(base)
set.seed(0)
base$y_na = base$y ; base$y_na[sample(n, 50)] = NA
base$period_txt = letters[base$period]
ten_dates = c("1960-01-15", "1960-01-16", "1960-03-31", "1960-04-05", "1960-05-12", "1960-05-25", "1960-06-20", "1960-07-30", "1965-01-02", "2002-12-05")
base$period_date = as.Date(ten_dates, "%Y-%m-%d")[base$period]
base$y_0 = base$y**2 ; base$y_0[base$id == 1] = 0
# We compute the lags "by hand"
base = base[order(base$id, base$period), ]
base$x1_lag = c(NA, base$x1[-n]) ; base$x1_lag[base$period == 1] = NA
base$x1_lead = c(base$x1[-1], NA) ; base$x1_lead[base$period == 10] = NA
base$x1_diff = base$x1 - base$x1_lag
# we create holes
base$period_bis = base$period ; base$period_bis[base$period_bis == 5] = 50
base$x1_lag_hole = base$x1_lag ; base$x1_lag_hole[base$period %in% c(5, 6)] = NA
base$x1_lead_hole = base$x1_lead ; base$x1_lead_hole[base$period %in% c(4, 5)] = NA
# we reshuffle the base
base = base[sample(n), ]
#
# Checks consistency
#
cat("consistentcy...")
test(lag(x1 ~ id + period, data = base), base$x1_lag)
test(lag(x1 ~ id + period, -1, data = base), base$x1_lead)
test(lag(x1 ~ id + period_bis, data = base), base$x1_lag_hole)
test(lag(x1 ~ id + period_bis, -1, data = base), base$x1_lead_hole)
test(lag(x1 ~ id + period_txt, data = base), base$x1_lag)
test(lag(x1 ~ id + period_txt, -1, data = base), base$x1_lead)
test(lag(x1 ~ id + period_date, data = base), base$x1_lag)
test(lag(x1 ~ id + period_date, -1, data = base), base$x1_lead)
cat("done.\nEstimations...")
#
# Estimations
#
# Poisson
for(depvar in c("y", "y_na", "y_0")){
for(p in c("period", "period_txt", "period_date")){
base$per = base[[p]]
cat(".")
base$y_dep = base[[depvar]]
pdat = panel(base, ~ id + period)
if(depvar == "y_0"){
estfun = fepois
} else {
estfun = feols
}
est_raw = estfun(y_dep ~ x1 + x1_lag + x1_lead, base)
est = estfun(y_dep ~ x1 + l(x1) + f(x1), base, panel.id = "id,per")
est_pdat = estfun(y_dep ~ x1 + l(x1, 1) + f(x1, 1), pdat)
test(coef(est_raw), coef(est))
test(coef(est_raw), coef(est_pdat))
# Now diff
est_raw = estfun(y_dep ~ x1 + x1_diff, base)
est = estfun(y_dep ~ x1 + d(x1), base, panel.id = "id,per")
est_pdat = estfun(y_dep ~ x1 + d(x1, 1), pdat)
test(coef(est_raw), coef(est))
test(coef(est_raw), coef(est_pdat))
# Now we just check that calls to l/f works without checking coefs
est = estfun(y_dep ~ x1 + l(x1) + f(x1), base, panel.id = "id,per")
est = estfun(y_dep ~ l(x1, -1:1) + f(x1, 2), base, panel.id = c("id", "per"))
est = estfun(y_dep ~ l(x1, -1:1, fill = 1), base, panel.id = ~ id + per)
if(depvar == "y") test(est$nobs, n)
est = estfun(f(y_dep) ~ f(x1, -1:1), base, panel.id = ~ id + per)
}
}
cat("done.\n\n")
#
# Data table
#
cat("data.table...")
# We just check there is no bug (consistency should be OK)
library(data.table)
base_dt = data.table(id = c("A", "A", "B", "B"),
time = c(1, 2, 1, 3),
x = c(5, 6, 7, 8))
base_dt = panel(base_dt, ~id + time)
base_dt[, x_l := l(x)]
test(base_dt$x_l, c(NA, 5, NA, NA))
lag_creator = function(dt) {
dt2 = panel(dt, ~id + time)
dt2[, x_l := l(x)]
return(dt2)
}
base_bis = lag_creator(base_dt)
base_bis[, x_d := d(x)]
cat("done.\n\n")
#
# Panel
#
# We ensure we get the right SEs whether we use the panel() or the panel.id method
data(base_did)
# Setting a data set as a panel...
pdat = panel(base_did, ~id+period)
pdat$fe = sample(15, nrow(pdat), replace = TRUE)
base_panel = unpanel(pdat)
est_pdat = feols(y ~ x1 | fe, pdat)
est_panel = feols(y ~ x1 | fe, base_panel, panel.id = ~id+period)
test(attr(vcov(est_pdat, attr = TRUE), "type"),
attr(vcov(est_panel, attr = TRUE), "type"))
####
#### ... subset ####
####
chunk("SUBSET")
set.seed(5)
base = iris
names(base) = c("y", "x1", "x2", "x3", "species")
base$fe_bis = sample(letters, 150, TRUE)
base$x4 = rnorm(150)
base$x1[sample(150, 5)] = NA
fml = y ~ x1 + x2
# Errors
test(feols(fml, base, subset = ~species), "err")
test(feols(fml, base, subset = -1:15), "err")
test(feols(fml, base, subset = integer(0)), "err")
test(feols(fml, base, subset = c(TRUE, TRUE, FALSE)), "err")
# Valid use
for(id_fun in 1:6){
estfun = switch(as.character(id_fun),
"1" = feols,
"2" = feglm,
"3" = fepois,
"4" = femlm,
"5" = fenegbin,
"6" = feNmlm)
for(id_fe in 1:5){
cat(".")
fml = switch(as.character(id_fe),
"1" = y ~ x1 + x2,
"2" = y ~ x1 + x2 | species,
"3" = y ~ x1 + x2 | fe_bis,
"4" = y ~ x1 + x2 + i(fe_bis),
"5" = y ~ x1 + x2 | fe_bis[x3])
if(id_fe == 5 && id_fun %in% 4:6) next
if(id_fun == 6){
res_sub_a = estfun(fml, base, subset = ~species == "setosa", NL.fml = ~ a*x4, NL.start = 0)
res_sub_b = estfun(fml, base, subset = base$species == "setosa", NL.fml = ~ a*x4, NL.start = 0)
res_sub_c = estfun(fml, base, subset = which(base$species == "setosa"), NL.fml = ~ a*x4, NL.start = 0)
res = estfun(fml, base[base$species == "setosa", ], NL.fml = ~ a*x4, NL.start = 0)
} else {
res_sub_a = estfun(fml, base, subset = ~species == "setosa")
res_sub_b = estfun(fml, base, subset = base$species == "setosa")
res_sub_c = estfun(fml, base, subset = which(base$species == "setosa"))
res = estfun(fml, base[base$species == "setosa", ])
}
test(coef(res_sub_a), coef(res))
test(coef(res_sub_b), coef(res))
test(coef(res_sub_c), coef(res))
test(se(res_sub_c, cluster = "fe_bis"), se(res, cluster = "fe_bis"))
}
cat("|")
}
cat("\n")
####
#### ... split ####
####
chunk("split")
base = setNames(iris, c("y", "x1", "x2", "x3", "species"))
# simple: formula
est = feols(y ~ x.[1:3], base, split = ~species %keep% "@^v")
test(length(est), 2)
est = feols(y ~ x.[1:3], base, fsplit = ~species %keep% c("set", "vers"))
test(length(est), 3)
est = feols(y ~ x.[1:3], base, split = ~species %drop% "set")
test(length(est), 2)
# simple: vector
est = feols(y ~ x.[1:3], base, split = base$species %keep% "@^v")
test(length(est), 2)
est = feols(y ~ x.[1:3], base, split = base$species %keep% c("set", "vers"))
test(length(est), 2)
est = feols(y ~ x.[1:3], base, split = base$species %drop% "set")
test(length(est), 2)
# with bin
est = feols(y ~ x.[1:2], base,
split = ~bin(x3, c("cut::5", "saint emilion", "pessac leognan",
"margaux", "saint julien", "entre deux mers")) %keep% c("saint e", "pe"))
test(length(est), 2)
est = feols(y ~ x.[1:2], base,
split = ~bin(x3, c("cut::5", "saint emilion", "pessac leognan", NA)) %drop% "@\\d")
test(length(est), 2)
# with argument
est = feols(y ~ x.[1:3], base, split = ~species, split.keep = "@^v")
test(length(est), 2)
est = feols(y ~ x.[1:3], base, fsplit = ~species, split.keep = c("set", "vers"))
test(length(est), 3)
est = feols(y ~ x.[1:3], base, split = ~species, split.drop = "set")
test(length(est), 2)
####
#### ... Multiple estimations ####
####
chunk("Multiple")
set.seed(2)
base = iris
names(base) = c("y1", "x1", "x2", "x3", "species")
base$y2 = 10 + rnorm(150) + 0.5 * base$x1
base$x4 = rnorm(150) + 0.5 * base$y1
base$fe2 = rep(letters[1:15], 10)
base$fe2[50:51] = NA
base$y2[base$fe2 == "a" & !is.na(base$fe2)] = 0
base$x2[1:5] = NA
base$x3[6] = NA
base$x5 = rnorm(150)
base$x6 = rnorm(150) + base$y1 * 0.25
base$fe3 = rep(letters[1:10], 15)
for(id_fun in 1:5){
estfun = switch(as.character(id_fun),
"1" = feols,
"2" = feglm,
"3" = fepois,
"4" = femlm,
"5" = feNmlm)
# Following weird bug ASAN on CRAN I cannot replicate, check 4/5 not performed on non Windows
if(Sys.info()["sysname"] != "Windows"){
if(id_fun %in% 4:5) next
}
est_multi = estfun(c(y1, y2) ~ x1 + sw(x2, x3), base, split = ~species)
k = 1
for(s in c("setosa", "versicolor", "virginica")){
for(lhs in c("y1", "y2")){
for(rhs in c("x2", "x3")){
res = estfun(.[lhs] ~ x1 + .[rhs], base[base$species == s, ], notes = FALSE)
test(coef(est_multi[[k]]), coef(res))
test(se(est_multi[[k]], cluster = "fe3"), se(res, cluster = "fe3"))
k = k + 1
}
}
}
cat("__")
est_multi = estfun(c(y1, y2) ~ x1 + csw0(x2, x3) + x4 | species + fe2, base, fsplit = ~species)
k = 1
all_rhs = c("", "x2", "x3")
for(s in c("all", "setosa", "versicolor", "virginica")){
for(lhs in c("y1", "y2")){
for(n_rhs in 1:3){
if(s == "all"){
res = estfun(xpd(..lhs ~ x1 + ..rhs + x4 | species + fe2, ..lhs = lhs, ..rhs = all_rhs[1:n_rhs]), base, notes = FALSE)
} else {
res = estfun(xpd(..lhs ~ x1 + ..rhs + x4 | species + fe2, ..lhs = lhs, ..rhs = all_rhs[1:n_rhs]), base[base$species == s, ], notes = FALSE)
}
vname = names(coef(res))
test(coef(est_multi[[k]])[vname], coef(res), "~" , 1e-6)
test(se(est_multi[[k]], cluster = "fe3")[vname], se(res, cluster = "fe3"), "~" , 1e-6)
k = k + 1
}
}
}
cat("|")
}
cat("\n")
# No error tests
# We test with IV + possible corner cases
base$left = rnorm(150)
base$right = rnorm(150)
est_multi = feols(c(y1, y2) ~ sw0(x1) | sw0(species) | x2 ~ x3, base)
# We check a few
est_a = feols(y1 ~ 1 | x2 ~ x3, base)
est_b = feols(y1 ~ x1 | species | x2 ~ x3, base)
est_c = feols(y2 ~ 1 | x2 ~ x3, base)
test(coef(est_multi[lhs = "y1", rhs = "^1", fixef = "1", drop = TRUE]), coef(est_a))
test(coef(est_multi[lhs = "y1", rhs = "x1", fixef = "spe", drop = TRUE]), coef(est_b))
test(coef(est_multi[lhs = "y2", rhs = "^1", fixef = "1", drop = TRUE]), coef(est_c))
# with fixed covariates
est_multi_LR = feols(c(y1, y2) ~ left + sw0(x1*x4) + right | sw0(species) | x2 ~ x3, base)
est_a = feols(y1 ~ left + right | x2 ~ x3, base)
est_b = feols(y1 ~ left + x1*x4 + right | species | x2 ~ x3, base)
est_c = feols(y2 ~ left + right | x2 ~ x3, base)
test(coef(est_multi_LR[lhs = "y1", rhs = "!x1", fixef = "1", drop = TRUE]), coef(est_a))
user_name = c("fit_x2", "left", "x1", "x4", "x1:x4", "right")
test(names(coef(est_multi_LR[lhs = "y1", rhs = "x1", fixef = "spe", drop = TRUE])), user_name)
test(coef(est_multi_LR[lhs = "y1", rhs = "x1", fixef = "spe", drop = TRUE]), coef(est_b)[user_name])
test(coef(est_multi_LR[lhs = "y2", rhs = "!x1", fixef = "1", drop = TRUE]), coef(est_c))
# mvsw
est_mvsw = feols(y1 ~ mvsw(x1, x2), base)
est_mvsw_fe = feols(y1 ~ mvsw(x1, x2) | mvsw(species, fe2), base)
est_mvsw_fe_iv = feols(y1 ~ mvsw(x1, x2) | mvsw(species, fe2) | x3 ~ x4, base)
test(length(est_mvsw), 4)
test(length(as.list(est_mvsw_fe)), 16)
test(length(as.list(est_mvsw_fe_iv)), 16)
# Summary of multiple endo vars
est_multi_iv = feols(c(y1, y2) ~ sw0(x1) | sw0(species) | x3 + x4 ~ x5 + x6, base)
test(length(est_multi_iv), 8)
test(length(summary(est_multi_iv, stage = 1)), 16)
# IV without exo var:
est_mult_no_exo = feols(c(y1, y2) ~ 0 | x3 + x4 ~ x5 + x6, base)
est_no_exo_y2 = feols(y2 ~ 0 | x3 + x4 ~ x5 + x6, base)
test(coef(est_mult_no_exo[[2]]), coef(est_no_exo_y2))
# proper ordering
est_multi = feols(c(y1, y2) ~ sw0(x1) | sw0(fe2), base, split = ~species)
test(names(models(est_multi[fixef = TRUE, sample = FALSE])),
stvec("id, fixef, lhs, rhs, sample.var, sample"))
test(names(models(est_multi[fixef = "fe2", sample = "seto"])),
stvec("id, fixef, sample.var, sample, lhs, rhs"))
test(names(models(est_multi[fixef = "fe2", sample = "seto", reorder = FALSE])),
stvec("id, sample.var, sample, fixef, lhs, rhs"))
# NA models
base$y_0 = base$x1 ** 2 + rnorm(150)
base$y_0[base$species == "setosa"] = 0
est_pois = fepois(y_0 ~ csw(x.[,1:4]), base, split = ~species)
base$x1_bis = base$x1
est_pois = fepois(y_0 ~ x.[1:3] + x1_bis | sw0(species), base)
# Different ways .[]
base = setNames(iris, c("y", "x1", "x2", "x3", "species"))
dep_all = list(stvec("y, x1, x2"), ~y + x1 + x2)
for(dep in dep_all){
m = feols(.[dep] ~ x3, base)
test(length(m), 3)
m = feols(x3 ~ .[dep], base)
test(length(m$coefficients), 4)
m = feols(x3 ~ csw(.[,dep]), base)
test(length(m), 3)
}
# offset in multiple outcomes // no error test
offset_single_ols = feols(am ~ hp, offset = ~ log(qsec), data = mtcars)
offset_mult_ols = feols(c(mpg, am) ~ hp, offset = ~ log(qsec), data = mtcars)
test(coef(offset_mult_ols[[2]]), coef(offset_single_ols))
offset_single_glm = feglm(am ~ hp, offset = ~ log(qsec), data = mtcars)
offset_mult_glm = feglm(c(mpg, am) ~ hp, offset = ~ log(qsec), data = mtcars)
test(coef(offset_mult_glm[[2]]), coef(offset_single_glm))
# LHS expansion with IVs
lhs = c("mpg", "wt")
est_lhs = feols(.[lhs] ~ disp | hp ~ qsec, data = mtcars)
test(length(est_lhs), 2)
est_lhs = feols(..("mpg|wt") ~ disp | hp ~ qsec, data = mtcars)
test(length(est_lhs), 2)
####
#### ... IV ####
####
chunk("IV")
base = iris
names(base) = c("y", "x1", "x_endo_1", "x_inst_1", "fe")
set.seed(2)
base$x_inst_2 = 0.2 * base$y + 0.2 * base$x_endo_1 + rnorm(150, sd = 0.5)
base$x_endo_2 = 0.2 * base$y - 0.2 * base$x_inst_1 + rnorm(150, sd = 0.5)
# Checking a basic estimation
setFixest_vcov(all = "iid")
est_iv = feols(y ~ x1 | x_endo_1 + x_endo_2 ~ x_inst_1 + x_inst_2, base)
res_f1 = feols(x_endo_1 ~ x1 + x_inst_1 + x_inst_2, base)
res_f2 = feols(x_endo_2 ~ x1 + x_inst_1 + x_inst_2, base)
base$fit_x_endo_1 = predict(res_f1)
base$fit_x_endo_2 = predict(res_f2)
res_2nd = feols(y ~ fit_x_endo_1 + fit_x_endo_2 + x1, base)
# the coef
test(coef(est_iv), coef(res_2nd))
# the SE
resid_iv = base$y - predict(res_2nd, data.frame(x1 = base$x1, fit_x_endo_1 = base$x_endo_1, fit_x_endo_2 = base$x_endo_2))
sigma2_iv = sum(resid_iv**2) / (res_2nd$nobs - res_2nd$nparams)
sum_2nd = summary(res_2nd, .vcov = res_2nd$cov.iid / res_2nd$sigma2 * sigma2_iv)
# We only check that on Windows => avoids super odd bug in fedora devel
# The worst is that I just can't debug it.... so that's the way it's done.
if(Sys.info()["sysname"] == "Windows"){
test(se(sum_2nd), se(est_iv))
}
# check no bug when all exogenous vars are removed bc of collinearity
df = data.frame(x = rnorm(8), y = rnorm(8),
z = rnorm(8), fe = rep(0:1, each = 4))
est_iv = feols(y ~ fe | fe | x ~ z, df)
est_iv = feols(y ~ sw(fe, fe) | fe | x ~ z, df)
# check no bug
etable(summary(est_iv, stage = 1:2))
setFixest_vcov(reset = TRUE)
####
#### ... VCOV at estimation ####
####
chunk("vcov at estimation")
base = iris
names(base) = c("y", "x1", "x2", "x3", "species")
base$clu = sample(6, 150, TRUE)
base$clu[1:5] = NA
est = feols(y ~ x1 | species, base, cluster = ~clu, ssc = ssc(adj = FALSE))
# The three should be identical
v1 = est$cov.scaled
v1b = vcov(est)
v1c = summary(est)$cov.scaled
test(v1, v1b)
test(v1, v1c)
# Only ssc change
v2 = summary(est, ssc = ssc())$cov.scaled
v2b = vcov(est, ssc = ssc())
test(v2, v2b)
test(max(abs(v1 - v2)) == 0, FALSE)
# vcov change only
v3 = summary(est, se = "hetero")$cov.scaled
v3b = vcov(est, se = "hetero")
test(v3, v3b)
test(max(abs(v1 - v3)) == 0, FALSE)
test(max(abs(v2 - v3)) == 0, FALSE)
# feols.fit
ymat = base$y
xmat = base[, 2:3]
fe = base$species
for(use_fe in c(TRUE, FALSE)){
all_vcov = stvec("iid, hetero")
if(use_fe){
setFixest_fml(..fe = ~ 1 | species)
all_vcov = c(all_vcov, "cluster")
} else {
setFixest_fml(..fe = ~ 1)
}
for(v in all_vcov){
if(use_fe){
est_fit = feols.fit(ymat, xmat, fe, vcov = v)
} else {
est_fit = feols.fit(ymat, cbind(1, xmat), vcov = v)
}
est = feols(y ~ x1 + x2 + ..fe, base, vcov = v)
test(vcov(est), vcov(est_fit))
}
}
####
#### ... Argument sliding ####
####
chunk("argument sliding")
base = setNames(iris, c("y", "x1", "x2", "x3", "species"))
setFixest_estimation(data = base)
raw = feols(y ~ x1 + x2, base, ~species)
slided = feols(y ~ x1 + x2, ~species)
test(coef(raw), coef(slided))
# Error, with error msg relative to 'data'
test(feols(y ~ x1 + x2, 1:5), "err")
# should be another estimation
other_est = feols(y ~ x1 + x2, head(base, 50))
test(nobs(other_est), 50)
setFixest_estimation(reset = TRUE)
####
#### ... Offset ####
####
chunk("offset")
# we test the different ways to set an offset
base = setNames(iris, c("y", "x1", "x2", "x3", "species"))
o1 = feols(y ~ x1 + offset(x2) + offset(x3^2 + 3), base)
o2 = feols(y ~ x1, base, offset = ~x2 + x3^2 + 3)
test(coef(o1), coef(o2))
test(predict(o1, newdata = head(base)),
predict(o2, newdata = head(base)))
# error
test(feols(y ~ x1 + offset(x2), base, offset = ~x3), "err")
####
#### ... Only Coef ####
####
chunk("only.coef")
base = setNames(iris, c("y", "x1", "x2", "x3", "species"))
base$x4 = base$x1 + 5
m = feols(y ~ x1 + x2 + x4, base, only.coef = TRUE)
test(length(m), 4)
test(sum(is.na(m)), 1)
m = fepois(y ~ x1 + x2 + x4, base, only.coef = TRUE)
test(length(m), 4)
test(sum(is.na(m)), 1)
m = femlm(y ~ x1 + x2, base, only.coef = TRUE)
test(length(m), 3)
test(sum(is.na(m)), 0)
test(feols(y ~ sw(x1, x2), base, only.coef = TRUE), "err")
####
#### Standard-errors ####
####
chunk("STANDARD ERRORS")
#
# Fixed-effects corrections
#
# We create "irregular" FEs
set.seed(0)
base = data.frame(x = rnorm(20))
base$y = base$x + rnorm(20)
base$fe1 = rep(rep(1:3, c(4, 3, 3)), 2)
base$fe2 = rep(rep(1:5, each = 2), 2)
est = feols(y ~ x | fe1 + fe2, base)
# fe1: 3 FEs
# fe2: 5 FEs
#
# Clustered standard-errors: by fe1
#
# Default: fixef.K = "nested"
# => adjustment K = 1 + 5 (i.e. x + fe2)
test(attr(vcov(est, ssc = ssc(fixef.K = "nested"), attr = TRUE), "dof.K"), 6)
# fixef.K = FALSE
# => adjustment K = 1 (i.e. only x)
test(attr(vcov(est, ssc = ssc(fixef.K = "none"), attr = TRUE), "dof.K"), 1)
# fixef.K = TRUE
# => adjustment K = 1 + 3 + 5 - 1 (i.e. x + fe1 + fe2 - 1 restriction)
test(attr(vcov(est, ssc = ssc(fixef.K = "full"), attr = TRUE), "dof.K"), 8)
# fixef.K = TRUE & fixef.exact = TRUE
# => adjustment K = 1 + 3 + 5 - 2 (i.e. x + fe1 + fe2 - 2 restrictions)
test(attr(vcov(est, ssc = ssc(fixef.K = "full", fixef.force_exact = TRUE), attr = TRUE), "dof.K"), 7)
#
# Manual checks of the SEs
#
n = est$nobs
VCOV_raw = est$cov.iid / ((n - 1) / (n - est$nparams))
# standard
for(k_val in c("none", "nested", "full")){
for(adj in c(FALSE, TRUE)){
K = switch(k_val, none = 1, nested = 8, full = 8)
my_adj = ifelse(adj, (n - 1) / (n - K), 1)
test(vcov(est, se = "standard", ssc = ssc(adj = adj, fixef.K = k_val)), VCOV_raw * my_adj)
# cat("adj = ", adj, " ; fixef.K = ", k_val, "\n", sep = "")
}
}
# Clustered, fe1
VCOV_raw = est$cov.iid / est$sigma2
H = vcovClust(est$fixef_id$fe1, VCOV_raw, scores = est$scores, adj = FALSE)
n = nobs(est)
for(tdf in c("conventional", "min")){
for(k_val in c("none", "nested", "full")){
for(c_adj in c(FALSE, TRUE)){
for(adj in c(FALSE, TRUE)){
K = switch(k_val, none = 1, nested = 6, full = 8)
cluster_factor = ifelse(c_adj, 3/2, 1)
df = ifelse(tdf == "min", 2, 20 - K)
my_adj = ifelse(adj, (n - 1) / (n - K), 1)
V = H * cluster_factor
# test SE
test(vcov(est, se = "cluster", ssc = ssc(adj = adj, fixef.K = k_val, cluster.adj = c_adj)), V * my_adj)
# test pvalue
my_tstat = tstat(est, se = "cluster", ssc = ssc(adj = adj, fixef.K = k_val, cluster.adj = c_adj))
test(pvalue(est, se = "cluster", ssc = ssc(adj = adj, fixef.K = k_val, cluster.adj = c_adj, t.df = tdf)), 2*pt(-abs(my_tstat), df))
# cat("adj = ", adj, " ; fixef.K = ", k_val, " ; cluster.adj = ", c_adj, " t.df = ", tdf, "\n", sep = "")
}
}
}
}
# 2-way Clustered, fe1 fe2
VCOV_raw = est$cov.iid / est$sigma2
M_i = vcovClust(est$fixef_id$fe1, VCOV_raw, scores = est$scores, adj = FALSE)
M_t = vcovClust(est$fixef_id$fe2, VCOV_raw, scores = est$scores, adj = FALSE)
M_it = vcovClust(paste(base$fe1, base$fe2), VCOV_raw, scores = est$scores, adj = FALSE, do.unclass = TRUE)
M_i + M_t - M_it
vcov(est, se = "two", ssc = ssc(adj = FALSE, cluster.adj = FALSE))
for(cdf in c("conventional", "min")){
for(tdf in c("conventional", "min")){
for(k_val in c("none", "nested", "full")){
for(c_adj in c(FALSE, TRUE)){
for(adj in c(FALSE, TRUE)){
K = switch(k_val, none = 1, nested = 2, full = 8)
if(c_adj){
if(cdf == "min"){
V = (M_i + M_t - M_it) * 3/2
} else {
V = M_i * 3/2 + M_t * 5/4 - M_it * 6/5
}
} else {
V = M_i + M_t - M_it
}
df = ifelse(tdf == "min", 2, 20 - K)
my_adj = ifelse(adj, (n - 1) / (n - K), 1)
# test SE
test(vcov(est, se = "two", ssc = ssc(adj = adj, fixef.K = k_val, cluster.adj = c_adj, cluster.df = cdf)),
V * my_adj)
# test pvalue
my_tstat = tstat(est, se = "two", ssc = ssc(adj = adj, fixef.K = k_val, cluster.adj = c_adj, cluster.df = cdf))
test(pvalue(est, se = "two", ssc = ssc(adj = adj, fixef.K = k_val, cluster.adj = c_adj, cluster.df = cdf, t.df = tdf)),
2*pt(-abs(my_tstat), df))
# cat("adj = ", adj, " ; fixef.K = ", k_val, " ; cluster.adj = ", c_adj, " t.df = ", tdf, "\n", sep = "")
}
}
}
}
}
#
# Comparison with sandwich and plm
#
library(sandwich)
# Data generation
set.seed(0)
N = 20; G = N/5; T = N/G
d = data.frame( y=rnorm(N), x=rnorm(N), grp=rep(1:G,T), tm=rep(1:T,each=G) )
# Estimations
est_lm = lm(y ~ x + as.factor(grp) + as.factor(tm), data=d)
est_feols = feols(y ~ x | grp + tm, data=d)
#
# Standard
#
test(se(est_feols, se = "st")["x"], se(est_lm)["x"])
#
# Clustered
#
# Clustered by grp
se_CL_grp_lm_HC1 = sqrt(vcovCL(est_lm, cluster = d$grp, type = "HC1")["x", "x"])
se_CL_grp_lm_HC0 = sqrt(vcovCL(est_lm, cluster = d$grp, type = "HC0")["x", "x"])
# How to get the lm
test(se(est_feols, ssc = ssc(fixef.K = "full")), se_CL_grp_lm_HC1)
test(se(est_feols, ssc = ssc(adj = FALSE, fixef.K = "full")), se_CL_grp_lm_HC0)
#
# Heteroskedasticity-robust
#
se_white_lm_HC1 = sqrt(vcovHC(est_lm, type = "HC1")["x", "x"])
se_white_lm_HC0 = sqrt(vcovHC(est_lm, type = "HC0")["x", "x"])
test(se(est_feols, se = "hetero"), se_white_lm_HC1)
test(se(est_feols, se = "hetero", ssc = ssc(adj = FALSE, cluster.adj = FALSE)), se_white_lm_HC0)
#
# Two way
#
# Clustered by grp & tm
se_CL_2w_lm = sqrt(vcovCL(est_lm, cluster = ~ grp + tm, type = "HC1")["x", "x"])
se_CL_2w_feols = se(est_feols, se = "twoway")
test(se(est_feols, se = "twoway", ssc = ssc(fixef.K = "full", cluster.df = "conv")), se_CL_2w_lm)
#
# Checking the calls work properly
#
data(trade)
est_pois = femlm(Euros ~ log(dist_km)|Origin+Destination, trade)
se_clust = se(est_pois, se = "cluster", cluster = "Product")
test(se(est_pois, cluster = trade$Product), se_clust)
test(se(est_pois, cluster = ~Product), se_clust)
se_two = se(est_pois, se = "twoway", cluster = trade[, c("Product", "Destination")])
test(se_two, se(est_pois, cluster = c("Product", "Destination")))
test(se_two, se(est_pois, cluster = ~Product+Destination))
se_clu_comb = se(est_pois, cluster = "Product^Destination")
test(se_clu_comb, se(est_pois, cluster = paste(trade$Product, trade$Destination)))
test(se_clu_comb, se(est_pois, cluster = ~Product^Destination))
se_two_comb = se(est_pois, cluster = c("Origin^Destination", "Product"))
test(se_two_comb, se(est_pois, cluster = list(paste(trade$Origin, trade$Destination), trade$Product)))
test(se_two_comb, se(est_pois, cluster = ~Origin^Destination + Product))
# With cluster removed
base = trade
base$Euros[base$Origin == "FR"] = 0
est_pois = femlm(Euros ~ log(dist_km)|Origin+Destination, base)
se_clust = se(est_pois, se = "cluster", cluster = "Product")
test(se(est_pois, cluster = base$Product), se_clust)
test(se(est_pois, cluster = ~Product), se_clust)
se_two = se(est_pois, se = "twoway", cluster = base[, c("Product", "Destination")])
test(se_two, se(est_pois, cluster = c("Product", "Destination")))
test(se_two, se(est_pois, cluster = ~Product+Destination))
se_clu_comb = se(est_pois, cluster = "Product^Destination")
test(se_clu_comb, se(est_pois, cluster = paste(base$Product, base$Destination)))
test(se_clu_comb, se(est_pois, cluster = ~Product^Destination))
se_two_comb = se(est_pois, cluster = c("Origin^Destination", "Product"))
test(se_two_comb, se(est_pois, cluster = list(paste(base$Origin, base$Destination), base$Product)))
test(se_two_comb, se(est_pois, cluster = ~Origin^Destination + Product))
# With cluster removed and NAs
base = trade
base$Euros[base$Origin == "FR"] = 0
base$Euros_na = base$Euros ; base$Euros_na[sample(nrow(base), 50)] = NA
base$Destination_na = base$Destination ; base$Destination_na[sample(nrow(base), 50)] = NA
base$Origin_na = base$Origin ; base$Origin_na[sample(nrow(base), 50)] = NA
base$Product_na = base$Product ; base$Product_na[sample(nrow(base), 50)] = NA
est_pois = femlm(Euros ~ log(dist_km)|Origin+Destination_na, base)
se_clust = se(est_pois, se = "cluster", cluster = "Product")
test(se(est_pois, cluster = base$Product), se_clust)
test(se(est_pois, cluster = ~Product), se_clust)
se_two = se(est_pois, se = "twoway", cluster = base[, c("Product", "Destination")])
test(se_two, se(est_pois, cluster = c("Product", "Destination")))
test(se_two, se(est_pois, cluster = ~Product+Destination))
se_clu_comb = se(est_pois, cluster = "Product^Destination")
test(se_clu_comb, se(est_pois, cluster = paste(base$Product, base$Destination)))
test(se_clu_comb, se(est_pois, cluster = ~Product^Destination))
se_two_comb = se(est_pois, cluster = c("Origin^Destination", "Product"))
test(se_two_comb, se(est_pois, cluster = list(paste(base$Origin, base$Destination), base$Product)))
test(se_two_comb, se(est_pois, cluster = ~Origin^Destination + Product))
#
# Checking errors
#
# Should report error
test(se(est_pois, cluster = "Origin_na"), "err")
test(se(est_pois, cluster = base$Origin_na), "err")
test(se(est_pois, cluster = list(base$Origin_na)), "err")
test(se(est_pois, cluster = ~Origin_na^Destination), "err")
test(se(est_pois, se = "cluster", cluster = ~Origin_na^not_there), "err")
#
# Checking that the aliases work fine
#
se_hetero = se(est_pois, se = "hetero")
se_hc1 = se(est_pois, se = "hc1")
se_white = se(est_pois, se = "white")
test(se_hetero, se_hc1)
test(se_hetero, se_white)
#
# New argument vcov
#
# We mostly check the absence of errors
data(base_did)
est_panel = feols(y ~ x1, base_did, panel.id = ~id + period, subset = 1:500)
se_est = se(est_panel)
test(se(est_panel, ~id), se_est)
# changing ssc argument
test(se(est_panel, ssc = ssc(adj = FALSE)), se(est_panel, ~id + ssc(adj = FALSE)))
# using vcov_cluster
test(se_est, se(est_panel, vcov_cluster("id")))
test(se_est, se(vcov_cluster(est_panel, "id")))
# NW
se_NW = se(est_panel, "NW")
test(se_NW, se(est_panel, NW ~ id + period))
test(se_NW, se(est_panel, newey ~ id + period))
test(se_NW, se(est_panel, vcov_NW("id", "period")))
test(se_NW, se(est_panel, vcov_NW(time = "period"))) # here unit is deduced
se_NW2 = se(est_panel, NW(2))
test(se_NW2, se(est_panel, NW(2) ~ id + period))
test(se_NW2, se(est_panel, vcov_NW(lag = 2)))
# errors
est = feols(y ~ x1, base_did)
test(se(est, NW ~ period), "err")
# DK
se_DK = se(est_panel, "DK")
test(se_DK, se(est_panel, DK ~ period))
test(se_DK, se(est_panel, dris ~ period))
test(se_DK, se(est_panel, vcov_DK("period")))
se_DK2 = se(est_panel, DK(2))
test(se_DK2, se(est_panel, DK(2) ~ period))
test(se_DK2, se(est_panel, vcov_DK(lag = 2)))
# Conley
data(quakes)
est = feols(depth ~ mag, quakes, "conley")
se_conley = se(est)
test(se_conley, se(est, conley(90) ~ 1))
test(se_conley, se(est, conley(90) ~ lat + long))
se_conley200 = se(est, conley(200) ~ lat + long)
test(se_conley200, se(est, vcov_conley(cutoff = 200)))
test(se_conley200, se(est, vcov_conley("lat", "long", cutoff = 200)))
se_conleyExtra = se(est, conley(pixel = 20, distance = "spherical"))
test(se_conleyExtra, se(vcov_conley(est, pixel = 20, distance = "spherical")))
# Checking the value of Conley SEs with equivalences
# we generate data that leads to simple values
base = iris
names(base) = c("y", "x1", "x2", "x3", "species")
# scattered along 111km
base$lat = rep(seq(-0.5, 0.5, length.out = 50), 3)
# scattered across very long distances
base$lon = rep(c(0, 80, 160), each = 50)
est = feols(y ~ x1, base)
# Equivalence 1 -- clustered SEs
se_clu = se(est, ~lon + ssc(adj = FALSE, cluster.adj = FALSE))
test(se_clu, se(est, conley(200) ~ ssc(adj = FALSE)))
# Equivalence 2 -- White SEs
se_hc1 = se(est, hetero ~ ssc(adj = FALSE, cluster.adj = FALSE))
test(se_hc1, se(est, conley(1) ~ ssc(adj = FALSE)))
#
# ssc with custom t.df values
#
est = feols(y ~ x1 + x2, base)
m = summary(est, ssc = ssc(t.df = 5))
test(m$coeftable[, 4], 2*pt(-abs(m$coeftable[, 3]), 5))
#
# feols.fit
#
base = setNames(iris, c("y", "x1", "x2", "x3", "species"))
est = feols(y ~ x1 | species, base, vcov = "hete")
est_fit = feols.fit(base$y, base$x1, base$species, vcov = "hete")
test(se(est), se(est_fit))
est = feols(y ~ x1 | species, base, cluster = base$species)
est_fit = feols.fit(base$y, base$x1, base$species, cluster = base$species)
test(se(est), se(est_fit))
est = feols(y ~ x1 | species, base, vcov = "cluster")
est_fit = feols.fit(base$y, base$x1, base$species, vcov = "cluster")
test(se(est), se(est_fit))
# error for the other VCOVs
test(feols.fit(base$y, base$x1, base$species, vcov = "hac"), "err")
test(feols.fit(base$y, base$x1, base$species, vcov = "conley"), "err")
####
#### Residuals ####
####
chunk("RESIDUALS")
base = iris
names(base) = c("y", "x1", "x2", "x3", "species")
base$y_int = as.integer(base$y) + 1
# OLS + GLM + FENMLM
for(method in c("ols", "feglm", "femlm", "fenegbin")){
cat("Method: ", format(method, width = 8))
for(do_weight in c(FALSE, TRUE)){
cat(".")
if(do_weight){
w = unclass(as.factor(base$species))
} else {
w = NULL
}
if(method == "ols"){
m = feols(y_int ~ x1 | species, base, weights = w)
mm = lm(y_int ~ x1 + species, base, weights = w)
} else if(method == "feglm"){
m = feglm(y_int ~ x1 | species, base, weights = w, family = "poisson")
mm = glm(y_int ~ x1 + species, base, weights = w, family = poisson())
} else if(method == "femlm"){
if(!is.null(w)) next
m = femlm(y_int ~ x1 | species, base)
mm = glm(y_int ~ x1 + species, base, family = poisson())
} else if(method == "fenegbin"){
if(!is.null(w)) next
m = fenegbin(y_int ~ x1 | species, base, notes = FALSE)
mm = MASS::glm.nb(y_int ~ x1 + species, base)
}
tol = ifelse(method == "fenegbin", 1e-2, 1e-6)
test(resid(m, "r"), resid(mm, "resp"), "~", tol = tol)
test(resid(m, "d"), resid(mm, "d"), "~", tol = tol)
test(resid(m, "p"), resid(mm, "pearson"), "~", tol = tol)
test(deviance(m), deviance(mm), "~", tol = tol)
}
cat("\n")
}
cat("\n")
####
#### fixef ####
####
chunk("FIXEF")
set.seed(0)
base = iris
names(base) = c("y", "x1", "x2", "x3", "species")
base$x4 = rnorm(150) + 0.25*base$y
base$fe_bis = sample(10, 150, TRUE)
base$fe_ter = sample(15, 150, TRUE)
get_coef = function(all_coef, x){
res = all_coef[grepl(x, names(all_coef), perl = TRUE)]
names(res) = gsub(x, "", names(res), perl = TRUE)
res
}
#
# With 2 x 1 FE
#
m = feols(y ~ x1 + x2 | species + fe_bis, base)
all_coef = coef(feols(y ~ -1 + x1 + x2 + species + factor(fe_bis), base))
m_fe = fixef(m)
c1 = get_coef(all_coef, "species")
test(var(c1 - m_fe$species[names(c1)]), 0)
c2 = get_coef(all_coef, "factor\\(fe_bis\\)")
test(var(c2 - m_fe$fe_bis[names(c2)]), 0)
#
# With 1 FE + 1 FE 1 VS
#
m = feols(y ~ x1 + x2 | species + fe_bis[x3], base)
all_coef = coef(feols(y ~ -1 + x1 + x2 + species + factor(fe_bis) + i(fe_bis, x3), base))
m_fe = fixef(m)
c1 = get_coef(all_coef, "species")
test(var(c1 - m_fe$species[names(c1)]), 0, "~")
c2 = get_coef(all_coef, "factor\\(fe_bis\\)")
test(var(c2 - m_fe$fe_bis[names(c2)]), 0, "~")
c3 = get_coef(all_coef, "fe_bis::|:x3")
test(c3, m_fe[["fe_bis[[x3]]"]][names(c3)], "~", tol = 1e-5)
# This test does not pass in R 3.5.0.... why?
# diff: 6.56851425546723e-05
#
# With 2 x (1 FE + 1 VS) + 1 FE
#
m = feols(y ~ x1 | species[x2] + fe_bis[x3] + fe_ter, base)
all_coef = coef(feols(y ~ -1 + x1 + species + i(species, x2) + factor(fe_bis) + i(fe_bis, x3) + factor(fe_ter), base))
m_fe = fixef(m)
c1 = get_coef(all_coef, "^species(?=[^:])")
test(var(c1 - m_fe$species[names(c1)]), 0, "~")
c2 = get_coef(all_coef, "^factor\\(fe_bis\\)")
test(var(c2 - m_fe$fe_bis[names(c2)]), 0, "~")
c3 = get_coef(all_coef, "fe_bis::|:x3")
test(c3, m_fe[["fe_bis[[x3]]"]][names(c3)], "~", tol = 2e-4)
c4 = get_coef(all_coef, "species::|:x2")
test(c4, m_fe[["species[[x2]]"]][names(c4)], "~", tol = 2e-4)
#
# With 2 x (1 FE) + 1 FE 2 VS
#
m = feols(y ~ x1 | species + fe_bis[x2,x3] + fe_ter, base)
all_coef = coef(feols(y ~ x1 + species + factor(fe_bis) + i(fe_bis, x2) + i(fe_bis, x3) + factor(fe_ter), base))
m_fe = fixef(m)
c1 = get_coef(all_coef, "^species")
test(var(c1 - m_fe$species[names(c1)]), 0, "~")
c2 = get_coef(all_coef, "^factor\\(fe_bis\\)")
test(var(c2 - m_fe$fe_bis[names(c2)]), 0, "~")
c3 = get_coef(all_coef, "fe_bis::(?=.+x2)|:x2")
test(c3, m_fe[["fe_bis[[x2]]"]][names(c3)], "~", tol = 2e-4)
c4 = get_coef(all_coef, "fe_bis::(?=.+x3)|:x3")
test(c4, m_fe[["fe_bis[[x3]]"]][names(c4)], "~", tol = 2e-4)
# This test does not pass in R 3.5.0.... why?
# diff: 0.000239702137861342
#
# With weights
#
w = 3 * (as.integer(base$species) - 0.95)
m = feols(y ~ x1 | species + fe_bis[x2,x3] + fe_ter, base, weights = w)
all_coef = coef(feols(y ~ x1 + species + factor(fe_bis) + i(fe_bis, x2) + i(fe_bis, x3) + factor(fe_ter), base, weights = w))
m_fe = fixef(m)
c1 = get_coef(all_coef, "^species")
test(var(c1 - m_fe$species[names(c1)]), 0, "~")
c2 = get_coef(all_coef, "^factor\\(fe_bis\\)")
test(var(c2 - m_fe$fe_bis[names(c2)]), 0, "~")
c3 = get_coef(all_coef, "fe_bis::(?=.+x2)|:x2")
test(c3, m_fe[["fe_bis[[x2]]"]][names(c3)], "~", tol = 2e-4)
c4 = get_coef(all_coef, "fe_bis::(?=.+x3)|:x3")
test(c4, m_fe[["fe_bis[[x3]]"]][names(c4)], "~", tol = 2e-4)
####
#### To Integer ####
####
chunk("TO_INTEGER")
base = iris
names(base) = c("y", "x1", "x2", "x3", "species")
base$z = sample(5, 150, TRUE)
# Normal
m = to_integer(base$species)
test(length(unique(m)), 3)
m = to_integer(base$species, base$z)
test(length(unique(m)), 15)
# with NA
base$species_na = base$species
base$species_na[base$species == "setosa"] = NA
m = to_integer(base$species_na, base$z)
test(length(unique(m)), 11)
m = to_integer(base$species_na, base$z, add_items = TRUE, items.list = TRUE)
test(length(m$items), 10)
####
#### Interact ####
####
chunk("Interact")
base = setNames(iris, c("y", "x1", "x2", "x3", "species"))
base$fe_2 = round(seq(-5, 5, length.out = 150))
#
# We just ensure it works without error
#
m = feols(y ~ x1 + i(fe_2), base)
coefplot(m)
etable(m, dict = c("0" = "zero"))
m = feols(y ~ x1 + i(fe_2) + i(fe_2, x2), base)
coefplot(m)
etable(m, dict = c("0" = "zero"))
a = i(base$fe_2)
b = i(base$fe_2, ref = 0:1)
d = i(base$fe_2, keep = 0:1)
test(ncol(a), ncol(b) + 2)
test(ncol(d), 2)
#
# binning
#
m = feols(y ~ x1 + i(fe_2, bin = list("0" = -1:1)), base)
test(length(coef(m)), 12 - 2)
# SA
data(base_stagg)
res_sunab = feols(y ~ x1 + sunab(year_treated, year, bin = "bin::2"), base_stagg)
iplot(res_sunab)
test(length(coef(res_sunab)), 15)
res_sunab = feols(y ~ x1 + sunab(year_treated, year, bin.rel = "bin::2"), base_stagg)
iplot(res_sunab)
test(length(coef(res_sunab)), 12)
####
#### bin ####
####
chunk("BIN")
plen = iris$Petal.Length
years = round(rnorm(1000, 2000, 5))
my_cuts = c("cut::3", "cut::2]5]", "cut::q1]q2]q3]", "cut::p20]p50]p70]p90]", "cut::2[q2]p90]")
for(type in 1:2){
x = switch(type, "1" = plen, "2" = years)
for(cut in my_cuts){
my_bin = bin(x, cut)
bin_char = as.character(my_bin)
if(grepl("[", bin_char[1], fixed = TRUE)){
all_min = as.numeric(gsub("(^\\[)|(;.+)", "", bin_char))
all_max = as.numeric(gsub(".+; |\\]", "", bin_char))
} else {
all_min = as.numeric(gsub("-.+", "", bin_char))
all_max = as.numeric(gsub(".+-", "", bin_char))
}
test(all(x >= all_min), TRUE)
test(all(x <= all_max), TRUE)
}
}
####
#### demean ####
####
chunk("DEMEAN")
data(trade)
base = trade
base$ln_euros = log(base$Euros)
base$ln_dist = log(base$dist_km)
X = base[, c("ln_euros", "ln_dist")]
fe = base[, c("Origin", "Destination")]
base_new = demean(X, fe)
a = feols(ln_euros ~ ln_dist, base_new)
b = feols(ln_euros ~ ln_dist | Origin + Destination, base, demeaned = TRUE)
test(coef(a)[-1], coef(b), "~", 1e-12)
test(base_new$ln_euros, b$y_demeaned)
test(base_new$ln_dist, b$X_demeaned)
# Now we just check there's no error
# NAs
X_NA = X
fe_NA = fe
X_NA[1:5, 1] = NA
fe_NA[6:10, 1] = NA
X_demean = demean(X_NA, fe_NA, na.rm = FALSE)
test(nrow(X_demean), nrow(X))
# integer
X_int = X
X_int[[1]] = as.integer(X_int[[1]])
X_demean = demean(X_int, fe)
# matrix/DF
X_demean = demean(X_int, fe, as.matrix = TRUE)
test(is.matrix(X_demean), TRUE)
X_demean = demean(as.matrix(X_int), fe, as.matrix = FALSE)
test(is.matrix(X_demean), FALSE)
# slopes
X_dm_slopes = demean(ln_dist ~ Origin + Destination[ln_euros], data = base)
X_dm_slopes_bis = demean(base$ln_dist, fe, slope.vars = base$ln_euros, slope.flag = c(0, 1))
test(X_dm_slopes[[1]], X_dm_slopes_bis)
# with data table + formula call
trade_dt = as.data.table(trade)
trade_dt$ln_dist = log(trade_dt$dist_km)
dist_dm_dt = demean(ln_dist ~ Origin + Destination, data = trade_dt)
dist_dm_df = demean(ln_dist ~ Origin + Destination, data = base)
####
#### hatvalues ####
####
chunk("HATVALUES")
base = setNames(iris, c("y", "x1", "x2", "x3", "species"))
base$y_int = as.integer(base$y)
base$y_bin = 1 * (base$y > mean(base$y))
fm = lm(y ~ x1 + x2, base)
ffm = feols(y ~ x1 + x2, base)
test(hatvalues(ffm), hatvalues(fm))
glm_poi = glm(y_int ~ x1 + x2, family = poisson(), base)
feglm_poi = fepois(y_int ~ x1 + x2, base)
test(hatvalues(feglm_poi), hatvalues(glm_poi))
glm_logit = glm(y_bin ~ x1 + x2, family = binomial(), base)
feglm_logit = feglm(y_bin ~ x1 + x2, base, binomial())
test(hatvalues(feglm_logit), hatvalues(glm_logit))
glm_probit = glm(y_bin ~ x1 + x2, family = binomial("probit"), base)
feglm_probit = feglm(y_bin ~ x1 + x2, base, binomial("probit"))
test(hatvalues(feglm_probit), hatvalues(glm_probit))
####
#### sandwich ####
####
chunk("SANDWICH")
# Compatibility with sandwich
library(sandwich)
data(base_did)
est = feols(y ~ x1 + I(x1**2) + factor(id), base_did)
test(vcov(est, cluster = ~id), vcovCL(est, cluster = ~id, type = "HC1"))
est_pois = fepois(as.integer(y) + 20 ~ x1 + I(x1**2) + factor(id), base_did)
test(vcov(est_pois, cluster = ~id), vcovCL(est_pois, cluster = ~id, type = "HC1"))
# With FEs
est = feols(y ~ x1 + I(x1**2) | id, base_did)
test(vcov(est, cluster = ~id, ssc = ssc(adj = FALSE)), vcovCL(est, cluster = ~id))
est_pois = fepois(as.integer(y) + 20 ~ x1 + I(x1**2) | id, base_did)
test(vcov(est_pois, cluster = ~id, ssc = ssc(adj = FALSE)), vcovCL(est_pois, cluster = ~id))
####
#### only.env ####
####
# We check that there's no problem when using the environment
chunk("ONLY ENV")
base = iris
names(base) = c("y", "x1", "x2", "x3", "species")
env = feols(y ~ x1 + x2 | species, base, only.env = TRUE)
feols(env = env)
env = feglm(y ~ x1 + x2 | species, base, only.env = TRUE)
feglm(env = env)
env = fepois(y ~ x1 + x2 | species, base, only.env = TRUE)
fepois(env = env)
env = fenegbin(y ~ x1 + x2 | species, base, only.env = TRUE)
fenegbin(env = env)
env = femlm(y ~ x1 + x2 | species, base, only.env = TRUE)
femlm(env = env)
env = feNmlm(y ~ x1 + x2 | species, base, only.env = TRUE)
feNmlm(env = env)
# Now we check that modifications work as expected
env = fepois(y ~ x1 + x2 | species, base, only.env = TRUE)
est_w = fepois(y ~ x1 + x2 | species, base, weights = ~x3)
assign("weights.value", base$x3, env)
est_env_w = est_env(env = env)
test(coef(est_w), coef(est_env_w))
####
#### xpd ####
####
chunk("xpd")
deparse_long = function(x) deparse(x, width.cutoff = 500)
fml = xpd(y ~ x.[1:5] + z.[2:3])
test(deparse_long(fml),
"y ~ x1 + x2 + x3 + x4 + x5 + z2 + z3")
var = "a"
fml = xpd(y ~ x.[var])
test(deparse_long(fml),
"y ~ xa")
vars = letters[1:5]
fml = xpd(y ~ x.[vars] | fe1[[e, f]] + fe2[g])
test(deparse_long(fml),
"y ~ xa + xb + xc + xd + xe | fe1[[e, f]] + fe2[g]")
fml = xpd(y ~ ..x, ..x = "x.[vars]_sq")
test(deparse_long(fml),
"y ~ xa_sq + xb_sq + xc_sq + xd_sq + xe_sq")
# Now we check it works in estimations
base = setNames(iris, c("y", "x1", "x2", "x3", "species"))
i = 1:2
fml = formula(feols(y ~ x.[i] | species[x3], base))
test(deparse_long(fml),
"y ~ x1 + x2 | species + species[[x3]]")
####
#### predict ####
####
chunk("PREDICT")
base = iris
names(base) = c("y", "x1", "x2", "x3", "species")
base$fe_bis = sample(letters, 150, TRUE)
#
# Same generative data
#
# Predict with fixed-effects
res = feols(y ~ x1 | species + fe_bis, base)
test(predict(res), predict(res, base))
res = fepois(y ~ x1 | species + fe_bis, base)
test(predict(res), predict(res, base))
res = femlm(y ~ x1 | species + fe_bis, base)
test(predict(res), predict(res, base))
# Predict with varying slopes -- That's normal that tolerance is high (because FEs are computed with low precision)
res = feols(y ~ x1 | species + fe_bis[x3], base)
test(predict(res), predict(res, base), "~", tol = 1e-4)
res = fepois(y ~ x1 | species + fe_bis[x3], base)
test(predict(res), predict(res, base), "~", tol = 1e-3)
# Prediction with factors
res = feols(y ~ x1 + i(species), base)
test(predict(res), predict(res, base))
res = feols(y ~ x1 + i(species) + i(fe_bis), base)
test(predict(res), predict(res, base))
quoi = head(base[, c("y", "x1", "species", "fe_bis")])
test(head(predict(res)), predict(res, quoi))
quoi$species = as.character(quoi$species)
quoi$species[1:3] = "zz"
test(predict(res, quoi), "err")
# combine FEs
res = feols(y ~ x1 | species^fe_bis, base)
test(predict(res), predict(res, base))
# Handling NAs properly
base_NA = data.frame(a = 1:5, b = c(3:6, NA),
c = as.factor(c("a", "b", "a", "b", "a")))
res = feols(a ~ b + c, base_NA)
test(length(predict(res, newdata = base_NA)), 5)
#
# prediction with lags
#
data(base_did)
res = feols(y ~ x1 + l(x1), base_did, panel.id = ~ id + period)
test(predict(res, sample = "original"), predict(res, base_did))
qui = sample(which(base_did$id %in% 1:5))
base_bis = base_did[qui, ]
test(predict(res, sample = "original")[qui], predict(res, base_bis))
#
# prediction with poly
#
res_poly = feols(y ~ poly(x1, 2), base)
pred_all = predict(res_poly)
pred_head = predict(res_poly, head(base, 20))
pred_tail = predict(res_poly, tail(base, 20))
test(head(pred_all, 20), pred_head)
test(tail(pred_all, 20), pred_tail)
#
# "Predicting" fixed-effects
#
res = feols(y ~ x1 | species^fe_bis[x2], base, combine.quick = FALSE)
obs_fe = predict(res, fixef = TRUE)
fe_coef_all = fixef(res, sorted = FALSE)
coef_fe = fe_coef_all[[1]]
coef_vs = fe_coef_all[[2]]
fe_names = paste0(base$species, "_", base$fe_bis)
test(coef_fe[fe_names], obs_fe[, 1])
test(coef_vs[fe_names] * base$x2, obs_fe[, 2])
# with coef only
obs_fe_coef = predict(res, fixef = TRUE, vs.coef = TRUE)
test(coef_vs[fe_names], obs_fe_coef[, 2])
#
# when new data contain single valued factors
#
est_singleF = feols(y ~ x1 + species, base)
est_singleF_lm = lm(y ~ x1 + species, base)
new_data = data.frame(x1 = 12:13, species = factor("setosa"))
test(predict(est_singleF, newdata = new_data),
predict(est_singleF_lm, newdata = new_data))
#
# SE of prediction
#
a = lm(y ~ x1 + species, base)
b = feols(y ~ x1 + species, base)
test(predict(a, se.fit = TRUE)$se.fit, predict(b, se.fit = TRUE)$se.fit)
test(predict(a, se.fit = TRUE, interval = "con")$fit[, 2],
predict(b, se.fit = TRUE, interval = "con")$ci_low)
test(suppressWarnings(predict(a, se.fit = TRUE, interval = "pre")$fit[, 2]),
predict(b, se.fit = TRUE, interval = "pre")$ci_low)
# With weights
base$my_w = seq(0.01, 1, length.out = 150)
aw = lm(y ~ x1 + species, base, weights = base$my_w)
bw = feols(y ~ x1 + species, base, weights = ~my_w)
test(predict(aw, se.fit = TRUE)$se.fit, predict(bw, se.fit = TRUE)$se.fit)
test(predict(aw, se.fit = TRUE, interval = "con")$fit[, 2],
predict(bw, se.fit = TRUE, interval = "con")$ci_low)
test(suppressWarnings(predict(aw, se.fit = TRUE, interval = "pre")$fit[, 2]),
predict(bw, se.fit = TRUE, interval = "pre")$ci_low)
#
# data contains poly/factor
#
est = feols(y ~ poly(x1, 2) + i(period, treat, 5) | id, data = base_did)
new_data = base_did
new_data$treat = 0
poly_x1 = poly(new_data$x1, 2)
new_data$px1_1 = poly_x1[, 1]
new_data$px1_2 = poly_x1[, 2]
value = poly_x1 %*% coef(est)[1:2] + fixef(est)$id[as.character(new_data$id)]
test(predict(est, newdata = new_data), value)
# should work => same results as before
new_data = base_did
new_data$period = 5
test(predict(est, newdata = new_data), value)
# should also work (differently from factor which raises an error)
new_data = base_did
new_data$period = 1955
test(predict(est, newdata = new_data), value)
####
#### model.matrix ####
####
chunk("Model matrix")
base = iris
names(base) = c("y1", "x1", "x2", "x3", "species")
base$y2 = 10 + rnorm(150) + 0.5 * base$x1
base$x4 = rnorm(150) + 0.5 * base$y1
base$fe2 = rep(letters[1:15], 10)
base$fe2[50:51] = NA
base$y2[base$fe2 == "a" & !is.na(base$fe2)] = 0
base$x2[1:5] = NA
base$x3[6] = NA
base$fe3 = rep(letters[1:10], 15)
base$id = rep(1:15, each = 10)
base$time = rep(1:10, 15)
base_bis = base[1:50, ]
base_bis$id = rep(1:5, each = 10)
base_bis$time = rep(1:10, 5)
# NA removed
res = feols(y1 ~ x1 + x2 + x3, base)
m1 = model.matrix(res, type = "lhs")
test(length(m1), res$nobs)
# we check this is identical
m1_na = model.matrix(res, type = "lhs", na.rm = FALSE)
test(length(m1_na), res$nobs_origin)
test(max(abs(m1_na - base$y1), na.rm = TRUE), 0)
y = model.matrix(res, type = "lhs", data = base, na.rm = FALSE)
X = model.matrix(res, type = "rhs", data = base, na.rm = FALSE)
obs_rm = res$obs_selection$obsRemoved
res_bis = lm.fit(X[obs_rm, ], y[obs_rm])
test(res_bis$coefficients, res$coefficients)
# Lag
res_lag = feols(y1 ~ l(x1, 1:2) + x2 + x3, base, panel = ~id + time)
m_lag = model.matrix(res_lag)
test(nrow(m_lag), nobs(res_lag))
# lag with subset
m_lag_x1 = model.matrix(res_lag, subset = "x1")
test(ncol(m_lag_x1), 2)
# lag with subset, new data
mbis_lag_x1 = model.matrix(res_lag, base_bis[, c("x1", "x2", "id", "time")], subset = TRUE)
# l(x1, 1) + l(x1, 2) + x2
test(ncol(mbis_lag_x1), 3)
# 13 NAs: 2 per ID for the lags, 3 for x2
test(nrow(mbis_lag_x1), 37)
# With poly
res_poly = feols(y1 ~ poly(x1, 2), base)
m_poly_old = model.matrix(res_poly)
m_poly_new = model.matrix(res_poly, base_bis)
test(m_poly_old[1:50, 3], m_poly_new[, 3])
# fixef
res = feols(y1 ~ x1 + x2 + x3 | species + fe2, base)
m_fe = model.matrix(res, type = "fixef")
test(ncol(m_fe), 2)
# lhs
m_lhs = model.matrix(res, type = "lhs", na.rm = FALSE)
test(m_lhs, base$y1)
# IV
res_iv = feols(y1 ~ x1 | x2 ~ x3, base)
m_rhs1 = model.matrix(res_iv, type = "iv.rhs1")
test(colnames(m_rhs1)[-1], c("x3", "x1"))
m_rhs2 = model.matrix(res_iv, type = "iv.rhs2")
test(colnames(m_rhs2)[-1], c("fit_x2", "x1"))
m_endo = model.matrix(res_iv, type = "iv.endo")
test(colnames(m_endo), "x2")
m_exo = model.matrix(res_iv, type = "iv.exo")
test(colnames(m_exo)[-1], "x1")
m_inst = model.matrix(res_iv, type = "iv.inst")
test(colnames(m_inst), "x3")
# several
res_mult = feols(y1 ~ x1 | species | x2 ~ x3, base)
m_lhs_rhs_fixef = model.matrix(res_mult, type = c("lhs", "iv.rhs2", "fixef"), na.rm = FALSE)
test(names(m_lhs_rhs_fixef), c("y1", "fit_x2", "x1", "species"))
####
#### update ####
####
chunk("update")
base = setNames(iris, c("y", "x1", "x2", "x3", "species"))
base$fe = rep(1:30, 5)
# regular estimation
est = feols(y ~ x1, base)
# add variable
est_add_x2 = update(est, . ~ . + x2)
est_add_x2_noup = feols(y ~ x1 + x2, base)
test(coef(est_add_x2), coef(est_add_x2_noup))
# replace the var slot
est_x2 = update(est, . ~ x2)
est_x2_noup = feols(y ~ x2, base)
test(coef(est_x2), coef(est_x2_noup))
# add fixed-effect
est_add_fe = update(est, . ~ . | species)
est_add_fe_noup = feols(y ~ x1 | species, base)
test(coef(est_add_fe), coef(est_add_fe_noup))
# add IV
est_add_iv = update(est, . ~ . | x2 ~ x3)
est_add_iv_noup = feols(y ~ x1 | x2 ~ x3, base)
test(coef(est_add_iv), coef(est_add_iv_noup))
# cluster the SEs
est_clu = update(est, vcov = ~species)
est_clu = feols(y ~ x1 | species, base)
test(se(est_add_fe), se(est_add_fe_noup))
#
# FE estimation
#
est_fe = feols(y ~ x1 | fe, base)
# add variable
est_add_x2 = update(est_fe, . ~ . + x2)
est_add_x2_noup = feols(y ~ x1 + x2 | fe, base)
test(coef(est_add_x2), coef(est_add_x2_noup))
# replace the var slot
est_x2 = update(est_fe, . ~ x2)
est_x2_noup = feols(y ~ x2 | fe, base)
test(coef(est_x2), coef(est_x2_noup))
# replace the fixed-effect
est_replace_fe = update(est_fe, . ~ . | species)
est_replace_fe_noup = feols(y ~ x1 | species, base)
test(coef(est_replace_fe), coef(est_replace_fe_noup))
# add a FE
est_add_fe = update(est_fe, . ~ . | . + species)
est_add_fe_noup = feols(y ~ x1 | fe + species, base)
test(coef(est_add_fe), coef(est_add_fe_noup))
# add IV
est_add_iv = update(est_fe, . ~ . | x2 ~ x3)
est_add_iv_noup = feols(y ~ x1 | fe | x2 ~ x3, base)
test(coef(est_add_iv), coef(est_add_iv_noup))
# remove FE
est_no_fe = update(est_fe, . ~ . | 0)
est_no_fe_noup = feols(y ~ x1, base)
test(coef(est_no_fe), coef(est_no_fe_noup))
#
# Single estimation from multiple estimation
#
base_mult = setNames(iris, c("y1", "y2", "x1", "x2", "species"))
base_mult$fe = rep(1:30, 5)
# multiple estimation
est_mult = feols(c(y1, y2) ~ x1, base_mult)
# add variable
est_x2 = update(est_mult[[1]], . ~ . + x2)
est_x2_noup = feols(y1 ~ x1 + x2, base_mult)
test(coef(est_x2), coef(est_x2_noup))
est_x2 = update(est_mult[[2]], . ~ . + x2)
est_x2_noup = feols(y2 ~ x1 + x2, base_mult)
test(coef(est_x2), coef(est_x2_noup))
# add fe
est_fe = update(est_mult[[1]], . ~ . | fe)
est_fe_noup = feols(y1 ~ x1 | fe, base_mult)
test(coef(est_fe), coef(est_fe_noup))
#
# Multiple estimations
#
# add variable
est_x2 = update(est_mult, . ~ . + x2)
est_x2_noup = feols(c(y1, y2) ~ x1 + x2, base_mult)
test(unlist(coef(est_x2)), unlist(coef(est_x2_noup)))
# add split
est_split = update(est_mult, split = ~species)
est_split_noup = feols(c(y1, y2) ~ x1, base_mult, split = ~species)
test(unlist(coef(est_split)), unlist(coef(est_split_noup)))
# add fe
est_fe = update(est_mult, . ~ . | fe)
est_fe_noup = feols(c(y1, y2) ~ x1 | fe, base_mult)
test(unlist(coef(est_fe)), unlist(coef(est_fe_noup)))
####
#### fitstat ####
####
chunk("fitstat")
base = iris
names(base) = c("y", "x1", "x_endo_1", "x_inst_1", "fe")
set.seed(2)
base$x_inst_2 = 0.2 * base$y + 0.2 * base$x_endo_1 + rnorm(150, sd = 0.5)
base$x_endo_2 = 0.2 * base$y - 0.2 * base$x_inst_1 + rnorm(150, sd = 0.5)
# Checking a basic estimation
est_iv = feols(y ~ x1 | x_endo_1 + x_endo_2 ~ x_inst_1 + x_inst_2, base)
fitstat(est_iv, ~ f + ivf + ivf2 + wald + ivwald + ivwald2 + wh + sargan + rmse + g + n + ll + sq.cor + r2)
est_fe = feols(y ~ x1 | fe, base)
fitstat(est_fe, ~ wf)
####
#### confint ####
####
chunk("confint")
base = setNames(iris, c("y", "x1", "x2", "x3", "species"))
est = feols(y ~ x1 + x2 | species, base)
test(nrow(confint(est)), 2)
test(nrow(confint(est, "x1")), 1)
est_pois = fepois(y ~ x1 | species, base)
test(nrow(confint(est_pois)), 1)
est_iv = feols(y ~ x1 | species | x2 ~ x3, base)
test(nrow(confint(est_iv)), 2)
#
# coefplot confidence intervals
#
est_coefplot_prms = coefplot(est, only.params = TRUE)$prms[, 2:3]
test(confint(est), est_coefplot_prms)
est_pois_coefplot_prms = coefplot(est_pois, only.params = TRUE)$prms[, 2:3]
test(confint(est_pois), est_pois_coefplot_prms)
est_iv_coefplot_prms = coefplot(est_iv, only.params = TRUE)$prms[, 2:3]
test(confint(est_iv), est_iv_coefplot_prms)
# ... changing the df.t argument
est = feols(y ~ x1 + x2, base)
est_coefplot_prms_larger = coefplot(est, df.t = 5, only.params = TRUE)$prms[, 2:3]
test(all(confint(est)[, 1] > est_coefplot_prms_larger[, 1]), TRUE)
est_coefplot_prms_smaller = coefplot(est, df.t = Inf, only.params = TRUE)$prms[, 2:3]
test(all(confint(est)[, 1] < est_coefplot_prms_smaller[, 1]), TRUE)
# ... checking with non fixest objects
est = feols(y ~ x1 + x2, base)
mat_default = coefplot(coeftable(est), only.params = TRUE)$prms[, 2:3]
est_inf = coefplot(est, df.t = Inf, only.params = TRUE)$prms[, 2:3]
test(mat_default, est_inf)
mat_custom = coefplot(coeftable(est), df.t = 5, only.params = TRUE)$prms[, 2:3]
est_custom = coefplot(est, df.t = 5, only.params = TRUE)$prms[, 2:3]
test(mat_custom, est_custom)
####
#### etable ####
####
chunk("etable")
# VERY hard to make proper tests...
base = setNames(iris, c("y", "x1", "x2", "x3", "species"))
est_onlyFE = feols(y ~ 1 | species, base)
est = feols(y ~ x.[1:3], base)
et0 = etable(est_onlyFE)
test(nrow(et0), 7)
et1 = etable(est_onlyFE, est)
test(nrow(et1), 12)
et2 = etable(est_onlyFE, est, se.below = TRUE)
test(nrow(et2), 16)
# Latex escaping
cpp_escape_markup = fixest:::cpp_escape_markup
# MD markup
test(cpp_escape_markup("**bonjour** *les* ***gens * \\***heureux***"),
"\\textbf{bonjour} \\textit{les} \\textbf{\\textit{gens * ***heureux}}")
# Escaping + markup in equations
test(cpp_escape_markup("$x_5*3^2$ est **different** de x_5*3^2"),
"$x_5*3^2$ est \\textbf{different} de x\\_5*3\\^2")
# single $ escaping + # %
test(cpp_escape_markup("Rule #1: this $ should be escaped! this % too!"),
"Rule \\#1: this \\$ should be escaped! this \\% too!")
# dirty $ => user mistake
test(cpp_escape_markup("$there$ are *too many $ here*!"),
"$there$ are \\textit{too many \\$ here}!")
# random, stacking
test(cpp_escape_markup("#%_&^*hi$*$ *there**"),
"\\#\\%\\_\\&\\^\\textit{hi$*$ }there**")
# values already escaped
test(cpp_escape_markup("\\$this_is **not** an\\^equation\\$. But $this&one, \\$, * is *$ *is*."),
"\\$this\\_is \\textbf{not} an\\^equation\\$. But $this&one, \\$, * is *$ \\textit{is}.")
####
#### data.save and fixest_data ####
####
chunk("save data")
base_small = data.frame(x = iris$Sepal.Length,
y = iris$Sepal.Width,
fe = iris$Species)
est_save = feols(y ~ x, base_small, data.save = TRUE)
est_noSave = feols(y ~ x, base_small)
se_target = se(est_noSave, vcov = ~fe)
rm(base_small)
test(se_target, se(est_save, vcov = ~fe))
test(se(est_noSave, vcov = ~fe), "err")
# fixest data
base = setNames(iris, c("y", "x1", "x2", "x3", "species"))
base$y[1:5] = NA
est = feols(y ~ x1 + x2, base)
test(dim(fixest_data(est)), dim(base))
test(nrow(fixest_data(est, "esti")), 145)
est_mult = feols(y ~ x1 + x2, base, split = ~species)
test(dim(fixest_data(est_mult)), dim(base))
test(nrow(fixest_data(est_mult, "esti")), 45)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.