BB | R Documentation |
This function defines the beta binomial distribution, a two parameter distribution, for a gamlss.family
object to be used in a
GAMLSS fitting using the function gamlss()
BB(mu.link = "logit", sigma.link = "log")
dBB(x, mu = 0.5, sigma = 1, bd = 10, log = FALSE)
pBB(q, mu = 0.5, sigma = 1, bd = 10, lower.tail = TRUE,
log.p = FALSE)
qBB(p, mu = 0.5, sigma = 1, bd = 10, lower.tail = TRUE,
log.p = FALSE, fast = FALSE)
rBB(n, mu = 0.5, sigma = 1, bd = 10, fast = FALSE)
mu.link |
Defines the |
sigma.link |
Defines the |
mu |
vector of positive probabilities |
sigma |
the dispersion parameter |
bd |
vector of binomial denominators |
p |
vector of probabilities |
x,q |
vector of quantiles |
n |
number of random values to return |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
fast |
a logical variable if |
Definition file for beta binomial distribution.
f(y|\mu,\sigma)=\frac{\Gamma(n+1)} {\Gamma(y+1)\Gamma(n-y+1)} \frac{\Gamma(\frac{1}{\sigma}) \Gamma(y+\frac{\mu}{\sigma}) \Gamma[n+\frac{(1-\mu)}{\sigma}-y]}{\Gamma(n+\frac{1}{\sigma}) \Gamma(\frac{\mu}{\sigma}) \Gamma(\frac{1-\mu}{\sigma})}
for y=0,1,2,\ldots,n
, 0<\mu<1
and \sigma>0
, see pp. 523-524 of Rigby et al. (2019). . For \mu=0.5
and \sigma=0.5
the distribution is uniform.
Returns a gamlss.family
object which can be used to fit a Beta Binomial distribution in the gamlss()
function.
The functions pBB
and qBB
are calculated using a laborious procedure so they are relatively slow.
The response variable should be a matrix containing two columns, the first with the count of successes and the second with the count of failures.
The parameter mu
represents a probability parameter with limits 0 < \mu < 1
.
n \mu
is the mean of the distribution where n is the binomial denominator.
\{n \mu (1-\mu)[1+(n-1) \sigma/(\sigma+1)]\}^{0.5}
is the standard deviation of the
Beta Binomial distribution. Hence \sigma
is a dispersion type parameter
Mikis Stasinopoulos, Bob Rigby and Kalliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family
, BI
,
# BB()# gives information about the default links for the Beta Binomial distribution
#plot the pdf
plot(function(y) dBB(y, mu = .5, sigma = 1, bd =40), from=0, to=40, n=40+1, type="h")
#calculate the cdf and plotting it
ppBB <- pBB(seq(from=0, to=40), mu=.2 , sigma=3, bd=40)
plot(0:40,ppBB, type="h")
#calculating quantiles and plotting them
qqBB <- qBB(ppBB, mu=.2 , sigma=3, bd=40)
plot(qqBB~ ppBB)
# when the argument fast is useful
p <- pBB(c(0,1,2,3,4,5), mu=.01 , sigma=1, bd=5)
qBB(p, mu=.01 , sigma=1, bd=5, fast=TRUE)
# 0 1 1 2 3 5
qBB(p, mu=.01 , sigma=1, bd=5, fast=FALSE)
# 0 1 2 3 4 5
# generate random sample
tN <- table(Ni <- rBB(1000, mu=.2, sigma=1, bd=20))
r <- barplot(tN, col='lightblue')
# fitting a model
# library(gamlss)
#data(aep)
# fits a Beta-Binomial model
#h<-gamlss(y~ward+loglos+year, sigma.formula=~year+ward, family=BB, data=aep)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.