IG | R Documentation |
The function IG()
, or equivalently Inverse.Gaussian()
, defines the inverse Gaussian distribution,
a two parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
.
The functions dIG
, pIG
, qIG
and rIG
define the density, distribution function, quantile function and random
generation for the specific parameterization of the Inverse Gaussian distribution defined by function IG
.
IG(mu.link = "log", sigma.link = "log")
dIG(x, mu = 1, sigma = 1, log = FALSE)
pIG(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qIG(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rIG(n, mu = 1, sigma = 1, ...)
mu.link |
Defines the |
sigma.link |
Defines the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
... |
|
Definition file for inverse Gaussian distribution.
f(y|\mu,\sigma)= \frac{1}{\sqrt{2 \pi \sigma^2 y^3}} \hspace{1mm}
\exp\left\{-\frac{1}{2 \mu^2 \sigma^2
y}\hspace{1mm}(y-\mu)^2\right\}
for y>0
, \mu>0
and \sigma>0
see pp. 426-427 of Rigby et al. (2019).
returns a gamlss.family
object which can be used to fit a inverse Gaussian distribution in the gamlss()
function.
\mu
is the mean and \sigma^2 \mu^3
is the variance of the inverse Gaussian
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \doi10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family
, GA
, GIG
IG()# gives information about the default links for the normal distribution
# library(gamlss)
# data(rent)
# gamlss(R~cs(Fl),family=IG, data=rent) #
plot(function(x)dIG(x, mu=1,sigma=.5), 0.01, 6,
main = "{Inverse Gaussian density mu=1,sigma=0.5}")
plot(function(x)pIG(x, mu=1,sigma=.5), 0.01, 6,
main = "{Inverse Gaussian cdf mu=1,sigma=0.5}")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.