gamlss.dist-package | R Documentation |
A set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape, Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a 'log' or a 'logit' transformation respectively.
The DESCRIPTION file:
This package was not yet installed at build time.
Index: This package was not yet installed at build time.
Mikis Stasinopoulos [aut, cre, cph] (<https://orcid.org/0000-0003-2407-5704>), Robert Rigby [aut] (<https://orcid.org/0000-0003-3853-1707>), Calliope Akantziliotou [ctb], Vlasios Voudouris [ctb], Gillian Heller [ctb] (<https://orcid.org/0000-0003-1270-1499>), Fernanda De Bastiani [ctb] (<https://orcid.org/0000-0001-8532-639X>), Raydonal Ospina [ctb] (<https://orcid.org/0000-0002-9884-9090>), Nicoletta Motpan [ctb], Fiona McElduff [ctb], Majid Djennad [ctb], Marco Enea [ctb], Alexios Ghalanos [ctb], Christos Argyropoulos [ctb], Almond Stöcker [ctb] (<https://orcid.org/0000-0001-9160-2397>), Jens Lichter [ctb], Stanislaus Stadlmann [ctb] (<https://orcid.org/0000-0001-6542-6342>), Achim Zeileis [ctb] (<https://orcid.org/0000-0003-0918-3766>)
Maintainer: Mikis Stasinopoulos <d.stasinopoulos@gre.ac.uk>
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family
# pdf plot
plot(function(y) dSICHEL(y, mu=10, sigma = 0.1 , nu=1 ),
from=0, to=30, n=30+1, type="h")
# cdf plot
PPP <- par(mfrow=c(2,1))
plot(function(y) pSICHEL(y, mu=10, sigma =0.1, nu=1 ),
from=0, to=30, n=30+1, type="h") # cdf
cdf<-pSICHEL(0:30, mu=10, sigma=0.1, nu=1)
sfun1 <- stepfun(1:30, cdf, f = 0)
plot(sfun1, xlim=c(0,30), main="cdf(x)")
par(PPP)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.