Description Usage Arguments Details Value Note Author(s) References See Also Examples

The function `BEOI()`

defines the one-inflated beta distribution, a
three parameter distribution, for a
`gamlss.family`

object to be used in GAMLSS fitting using the function `gamlss()`

.
The one-inflated beta is similar to the beta distribution but allows ones as y values. This distribution
is an extension of the beta distribution using a parameterization of the beta law that is
indexed by mean and precision parameters (Ferrari and Cribari-Neto, 2004).
The extra parameter models the probability at one.
The functions `dBEOI`

, `pBEOI`

, `qBEOI`

and `rBEOI`

define the density,
distribution function, quantile function and random
generation for the `BEOI`

parameterization of the one-inflated beta distribution.
`plotBEOI`

can be used to plot the distribution. `meanBEOI`

calculates the expected value of
the response for a fitted model.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ```
BEOI(mu.link = "logit", sigma.link = "log", nu.link = "logit")
dBEOI(x, mu = 0.5, sigma = 1, nu = 0.1, log = FALSE)
pBEOI(q, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE)
qBEOI(p, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE,
log.p = FALSE)
rBEOI(n, mu = 0.5, sigma = 1, nu = 0.1)
plotBEOI(mu = .5, sigma = 1, nu = 0.1, from = 0.001, to = 1, n = 101,
...)
meanBEOI(obj)
``` |

`mu.link` |
the |

`sigma.link` |
the |

`nu.link` |
the |

`x,q` |
vector of quantiles |

`mu` |
vector of location parameter values |

`sigma` |
vector of precision parameter values |

`nu` |
vector of parameter values modelling the probability at one |

`log, log.p` |
logical; if TRUE, probabilities p are given as log(p). |

`lower.tail` |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |

`p` |
vector of probabilities. |

`n` |
number of observations. If |

`from` |
where to start plotting the distribution from |

`to` |
up to where to plot the distribution |

`obj` |
a fitted |

`...` |
other graphical parameters for plotting |

The one-inflated beta distribution is given as

*f(y)=nu*

if *(y=1)*

*f(y|mu,sigma)=(1-nu)*(Gamma(sigma)/Gamma(mu*sigma)*Gamma((1-mu)*sigma))*y^(mu*sigma-1)*(1-y)^(((1-mu)*sigma)-1)
*

if *y=(0,1)*. The parameters satisfy *0<mu<1*, *sigma>0* and *0<nu<1*.

Here *E(y)=nu+(1-nu)*mu* and
*Var(y)=(1-nu)*(mu*(1-mu))/(sigma+1) + nu*(1-nu)*(1-mu)^2*.

returns a `gamlss.family`

object which can be used to fit a one-inflated beta distribution in the `gamlss()`

function.

This work is part of my PhD project at the University of Sao Paulo under the supervion of Professor Silvia Ferrari. My thesis is concerned with regression modelling of rates and proportions with excess of zeros and/or ones

Raydonal Ospina, Department of Statistics, University of Sao Paulo, Brazil.

Ferrari, S.L.P., Cribari-Neto, F. (2004). Beta regression for
modelling rates and proportions. *Journal of Applied Statistics*,
**31** (1), 799-815.

Ospina R. and Ferrari S. L. P. (2010) Inflated beta distributions, *Statistical Papers*,
**23**, 111-126.

Rigby, R. A. and Stasinopoulos D. M. (2005).
Generalized additive models for location, scale and shape (with discussion).
*Applied Statistics*, **54** (3), 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019)
*Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC. An older version can be found in http://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R.
*Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017)
*Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | ```
BEOI()# gives information about the default links for the BEOI distribution
# plotting the distribution
plotBEOI( mu =0.5 , sigma=5, nu = 0.1, from = 0.001, to=1, n = 101)
# plotting the cdf
plot(function(y) pBEOI(y, mu=.5 ,sigma=5, nu=0.1), 0.001, 0.999)
# plotting the inverse cdf
plot(function(y) qBEOI(y, mu=.5 ,sigma=5, nu=0.1), 0.001, 0.999)
# generate random numbers
dat<-rBEOI(100, mu=.5, sigma=5, nu=0.1)
# fit a model to the data.
# library(gamlss)
#mod1<-gamlss(dat~1,sigma.formula=~1, nu.formula=~1, family=BEOI)
#fitted(mod1)[1]
#summary(mod1)
#fitted(mod1,"mu")[1] #fitted mu
#fitted(mod1,"sigma")[1] #fitted sigma
#fitted(mod1,"nu")[1] #fitted nu
#meanBEOI(mod1)[1] # expected value of the response
``` |

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.