DBURR12 | R Documentation |
The DBURR12()
function defines the discrete Burr type XII distribution, a three parameter discrete distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions dDBURR12()
, pDBURR12()
, qDBURR12()
and rDBURR12()
define the density, distribution function, quantile function and random generation for the discrete Burr type XII DBURR12()
, distribution.
DBURR12(mu.link = "log", sigma.link = "log", nu.link = "log")
dDBURR12(x, mu = 5, sigma = 2, nu = 2, log = FALSE)
pDBURR12(q, mu = 5, sigma = 2, nu = 2, lower.tail = TRUE,
log.p = FALSE)
qDBURR12(p, mu = 5, sigma = 2, nu = 2, lower.tail = TRUE,
log.p = FALSE)
rDBURR12(n, mu = 5, sigma = 2, nu = 2)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
p |
vector of probabilities |
q |
vector of quantiles |
mu |
vector of positive |
sigma |
vector of positive dispersion parameter |
nu |
vector of |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
n |
number of random values to return |
The probability function of the discrete Burr XII distribution is given by
f(y|\mu,\sigma,\nu)= (1+(y/\mu)^\sigma)^\nu - (1+((y+1)/\mu)^\sigma)^\nu
for y=0,1,2,...,\infty
, \mu>0
, \sigma>0
and \mu>0
see pp 504-505 of Rigby et al. (2019).
Note that the above parametrization is different from Para and Jan (2016).
The function DBURR12()
Returns a gamlss.family
object which can be used to fit a discrete Burr XII distribution in the gamlss()
function.
The parameters of the distributioins are highly correlated so the argument of gamlss
method=mixed(10,100)
may have to be used.
The distribution can be under/over dispersed and also with long tails.
Rigby, R. A., Stasinopoulos D. M., Fernanda De Bastiani.
Para, B. A. and Jan, T. R. (2016). On discrete three parameter Burr type XII and discrete Lomax distributions and their applications to model count data from medical science. Biometrics and Biostatistics International Journal, 54, part 3, pp 507-554.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 4, pp 1-15.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family
, DPO
DBURR12()#
#plot the pdf using plot
plot(function(y) dDBURR12(y, mu=10, sigma=1, nu=1), from=0, to=100, n=100+1, type="h") # pdf
# plot the cdf
plot(seq(from=0,to=100),pDBURR12(seq(from=0,to=100), mu=10, sigma=1, nu=1), type="h") # cdf
# generate random sample
tN <- table(Ni <- rDBURR12(100, mu=5, sigma=1, nu=1))
r <- barplot(tN, col='lightblue')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.