BE | R Documentation |
The functions BE()
and BEo()
define the beta distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
. BE()
has mean equal to the parameter mu
and sigma
as scale parameter, see below. BEo()
is the original parameterizations of the beta distribution as in dbeta()
with
shape1
=mu and shape2
=sigma.
The functions dBE
and dBEo
, pBE
and pBEo
, qBE
and qBEo
and finally rBE
and rBE
define the density, distribution function, quantile function and random
generation for the BE
and BEo
parameterizations respectively of the beta distribution.
BE(mu.link = "logit", sigma.link = "logit")
dBE(x, mu = 0.5, sigma = 0.2, log = FALSE)
pBE(q, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
qBE(p, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
rBE(n, mu = 0.5, sigma = 0.2)
BEo(mu.link = "log", sigma.link = "log")
dBEo(x, mu = 0.5, sigma = 0.2, log = FALSE)
pBEo(q, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
qBEo(p, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
mu.link |
the |
sigma.link |
the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The standard parametrization of the beta distribution is given as:
f(y|\alpha,\beta)=\frac{1}{B(\alpha, \beta)} y^{\alpha-1}(1-y)^{\beta-1}
for y=(0,1)
, \alpha>0
and \beta>0
.
The first gamlss
implementation the beta distribution is called BEo
, and it is identical to the standard parametrization with
\alpha=\mu
and \beta = \sigma
, see pp. 460-461 of Rigby et al. (2019):
f(y|\mu,\sigma)=\frac{1}{B(\mu, \sigma)} y^{\mu-1}(1-y)^{\sigma-1}
for y=(0,1)
, \mu>0
and \sigma>0
. The problem with this parametrization is that with mean E(y)=\mu/(\mu+\sigma)
it is not convenient for modelling the response y as function of the explanatory variables. The second parametrization, BE
see pp. 461-463 of Rigby et al. (2019), is using
\mu=\frac{\alpha}{\alpha+\beta}
\sigma= \frac{1}{\alpha+\beta+1)^{1/2}}
(of the standard parametrization) and it is more convenient because
\mu
now is the mean with variance equal to Var(y)=\sigma^2 \mu (1-\mu)
. Note however that 0<\mu<1
and 0<\sigma<1
.
BE()
and BEo()
return a gamlss.family
object which can be used to fit a beta distribution in the gamlss()
function.
Note that for BE
, mu
is the mean and sigma
a scale parameter contributing to the variance of y
Bob Rigby and Mikis Stasinopoulos
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also https://www.gamlss.com/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family
, BE
, LOGITNO
, GB1
, BEINF
BE()# gives information about the default links for the beta distribution
dat1<-rBE(100, mu=.3, sigma=.5)
hist(dat1)
#library(gamlss)
# mod1<-gamlss(dat1~1,family=BE) # fits a constant for mu and sigma
#fitted(mod1)[1]
#fitted(mod1,"sigma")[1]
plot(function(y) dBE(y, mu=.1 ,sigma=.5), 0.001, .999)
plot(function(y) pBE(y, mu=.1 ,sigma=.5), 0.001, 0.999)
plot(function(y) qBE(y, mu=.1 ,sigma=.5), 0.001, 0.999)
plot(function(y) qBE(y, mu=.1 ,sigma=.5, lower.tail=FALSE), 0.001, .999)
dat2<-rBEo(100, mu=1, sigma=2)
#mod2<-gamlss(dat2~1,family=BEo) # fits a constant for mu and sigma
#fitted(mod2)[1]
#fitted(mod2,"sigma")[1]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.