| BE | R Documentation | 
The functions BE() and BEo() define the beta distribution, a two parameter distribution, for a 
gamlss.family object to be used in GAMLSS fitting 
using the function gamlss(). BE() has  mean equal to the parameter mu
and sigma as scale parameter, see below. BEo() is the original parameterizations  of the beta distribution as in dbeta() with 
shape1=mu and shape2=sigma. 
The functions dBE and dBEo, pBE and pBEo, qBE and qBEo  and finally rBE and rBE  
define the density, distribution function, quantile function and random
generation for the BE and BEo parameterizations respectively of the beta distribution.      
BE(mu.link = "logit", sigma.link = "logit")
dBE(x, mu = 0.5, sigma = 0.2, log = FALSE)
pBE(q, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
qBE(p, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
rBE(n, mu = 0.5, sigma = 0.2)
BEo(mu.link = "log", sigma.link = "log")
dBEo(x, mu = 0.5, sigma = 0.2, log = FALSE)
pBEo(q, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
qBEo(p, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
| mu.link | the  | 
| sigma.link | the  | 
| x,q | vector of quantiles | 
| mu | vector of location parameter values | 
| sigma | vector of scale parameter values | 
| log, log.p | logical; if TRUE, probabilities p are given as log(p). | 
| lower.tail | logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] | 
| p | vector of probabilities. | 
| n |  number of observations. If  | 
The standard parametrization of the beta distribution is given as:
f(y|\alpha,\beta)=\frac{1}{B(\alpha, \beta)} y^{\alpha-1}(1-y)^{\beta-1}
for y=(0,1), \alpha>0 and \beta>0. 
The first gamlss implementation the  beta distribution is called  BEo, and it is identical  to the standard parametrization  with  
\alpha=\mu and \beta = \sigma, see pp. 460-461 of Rigby et al. (2019): 
f(y|\mu,\sigma)=\frac{1}{B(\mu, \sigma)} y^{\mu-1}(1-y)^{\sigma-1}
for y=(0,1), \mu>0 and \sigma>0.  The problem with this parametrization is that with mean E(y)=\mu/(\mu+\sigma) it is not  convenient for modelling the response y as function of the explanatory variables. The second parametrization, BE  see pp. 461-463 of Rigby et al. (2019), is using 
\mu=\frac{\alpha}{\alpha+\beta}
\sigma= \frac{1}{\alpha+\beta+1)^{1/2}} 
(of the   standard parametrization) and it is more convenient because 
\mu now is the mean with variance equal to Var(y)=\sigma^2 \mu (1-\mu). Note however that 0<\mu<1 and 0<\sigma<1. 
BE() and BEo() return a gamlss.family object which can be used to fit a beta distribution in the gamlss() function. 
Note that for BE, mu is the mean and sigma a scale parameter contributing to the variance of y
Bob Rigby and Mikis Stasinopoulos
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also https://www.gamlss.com/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family, BE, LOGITNO, GB1, BEINF 
BE()# gives information about the default links for the beta distribution
dat1<-rBE(100, mu=.3, sigma=.5)
hist(dat1)        
#library(gamlss)
# mod1<-gamlss(dat1~1,family=BE) # fits a constant for mu and sigma 
#fitted(mod1)[1]
#fitted(mod1,"sigma")[1]
plot(function(y) dBE(y, mu=.1 ,sigma=.5), 0.001, .999)
plot(function(y) pBE(y, mu=.1 ,sigma=.5), 0.001, 0.999)
plot(function(y) qBE(y, mu=.1 ,sigma=.5), 0.001, 0.999)
plot(function(y) qBE(y, mu=.1 ,sigma=.5, lower.tail=FALSE), 0.001, .999)
dat2<-rBEo(100, mu=1, sigma=2)
#mod2<-gamlss(dat2~1,family=BEo) # fits a constant for mu and sigma 
#fitted(mod2)[1]
#fitted(mod2,"sigma")[1]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.