DEL | R Documentation |
The DEL()
function defines the Delaporte distribution, a three parameter discrete distribution, for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
.
The functions dDEL
, pDEL
, qDEL
and rDEL
define the density, distribution function, quantile function and random
generation for the Delaporte DEL()
, distribution.
DEL(mu.link = "log", sigma.link = "log", nu.link = "logit")
dDEL(x, mu=1, sigma=1, nu=0.5, log=FALSE)
pDEL(q, mu=1, sigma=1, nu=0.5, lower.tail = TRUE,
log.p = FALSE)
qDEL(p, mu=1, sigma=1, nu=0.5, lower.tail = TRUE,
log.p = FALSE, max.value = 10000)
rDEL(n, mu=1, sigma=1, nu=0.5, max.value = 10000)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive mu |
sigma |
vector of positive dispersion parameter |
nu |
vector of nu |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
max.value |
a constant, set to the default value of 10000 for how far the algorithm should look for q |
The probability function of the Delaporte distribution is given by
f(y|\mu,\sigma,\nu)= \frac{e^{-\mu \nu}}{\Gamma(1/\sigma)}\left[ 1+\mu \sigma (1-\nu)\right]^{-1/\sigma} S
where
S= \sum_{j=0}^{y} \left( { y \choose j } \right) \frac{\mu^y \nu^{y-j}}{y!}\left[\mu + \frac{1}{\sigma(1-\nu)}\right]^{-j} \Gamma\left(\frac{1}{\sigma}+j\right)
for y=0,1,2,...,\infty
where \mu>0
, \sigma>0
and 0 <
\nu<1
.
This distribution is a parametrization of the distribution given by Wimmer and Altmann (1999) p 515-516 where
\alpha=\mu \nu
, k=1/\sigma
and \rho=[1+\mu\sigma(1-\nu)]^{-1}
.
For more details see pp 506-507 of Rigby et al. (2019).
Returns a gamlss.family
object which can be used to fit a Delaporte distribution in the gamlss()
function.
The mean of Y
is given by E(Y)=\mu
and the variance by V(Y)=\mu+\mu^2 \sigma \left( 1-\nu\right)^2
.
Rigby, R. A., Stasinopoulos D. M. and Marco Enea
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC,\Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
Wimmer, G. and Altmann, G (1999). Thesaurus of univariate discrete probability distributions . Stamn Verlag, Essen, Germany
(see also https://www.gamlss.com/).
gamlss.family
, SI
, SICHEL
DEL()# gives information about the default links for the Delaporte distribution
#plot the pdf using plot
plot(function(y) dDEL(y, mu=10, sigma=1, nu=.5), from=0, to=100, n=100+1, type="h") # pdf
# plot the cdf
plot(seq(from=0,to=100),pDEL(seq(from=0,to=100), mu=10, sigma=1, nu=0.5), type="h") # cdf
# generate random sample
tN <- table(Ni <- rDEL(100, mu=10, sigma=1, nu=0.5))
r <- barplot(tN, col='lightblue')
# fit a model to the data
# libary(gamlss)
# gamlss(Ni~1,family=DEL, control=gamlss.control(n.cyc=50))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.