GEOM | R Documentation |
The functions GEOMo()
and GEOM()
define two parametrizations of the geometric distribution. The geometric distribution is a one parameter
distribution, for a gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
. The mean of GEOM()
is equal to the parameter mu
.
The functions dGEOM
, pGEOM
, qGEOM
and rGEOM
define
the density, distribution function, quantile function and random generation for
the GEOM
parameterization of the Geometric distribution.
GEOM(mu.link = "log")
dGEOM(x, mu = 2, log = FALSE)
pGEOM(q, mu = 2, lower.tail = TRUE, log.p = FALSE)
qGEOM(p, mu = 2, lower.tail = TRUE, log.p = FALSE)
rGEOM(n, mu = 2)
GEOMo(mu.link = "logit")
dGEOMo(x, mu = 0.5, log = FALSE)
pGEOMo(q, mu = 0.5, lower.tail = TRUE, log.p = FALSE)
qGEOMo(p, mu = 0.5, lower.tail = TRUE, log.p = FALSE)
rGEOMo(n, mu = 0.5)
mu.link |
Defines the |
x, q |
vector of quantiles |
mu |
vector of location parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x] |
p |
vector of probabilities |
n |
number of observations. If |
The parameterization of the original geometric distribution in the function
GEOM
is:
f(y|\mu) = \mu^y/(\mu+1)^{y+1}
for y=0,1,2,3,...
and \mu>0
, see pp 472-473 of Rigby et al. (2019).
The parameterization of the original geometric distribution, GEOMo
is
f(y|\mu) = (1-\mu)^y\, \mu
for eqny=0,1,2,3,... and \mu>0
, see pp 473-474 of Rigby et al. (2019).
returns a gamlss.family
object which can be used to fit a Geometric distribution in the gamlss()
function.
Fiona McElduff, Bob Rigby and Mikis Stasinopoulos.
Johnson, N. L., Kemp, A. W., and Kotz, S. (2005). Univariate discrete distributions. Wiley.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family
par(mfrow=c(2,2))
y<-seq(0,20,1)
plot(y, dGEOM(y), type="h")
q <- seq(0, 20, 1)
plot(q, pGEOM(q), type="h")
p<-seq(0.0001,0.999,0.05)
plot(p , qGEOM(p), type="s")
dat <- rGEOM(100)
hist(dat)
#summary(gamlss(dat~1, family=GEOM))
par(mfrow=c(2,2))
y<-seq(0,20,1)
plot(y, dGEOMo(y), type="h")
q <- seq(0, 20, 1)
plot(q, pGEOMo(q), type="h")
p<-seq(0.0001,0.999,0.05)
plot(p , qGEOMo(p), type="s")
dat <- rGEOMo(100)
hist(dat)
#summary(gamlss(dat~1, family="GE"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.