NBI | R Documentation |
The NBI()
function defines the Negative Binomial type I distribution, a two parameter distribution, for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
.
The functions dNBI
, pNBI
, qNBI
and rNBI
define the density, distribution function, quantile function and random
generation for the Negative Binomial type I, NBI()
, distribution.
NBI(mu.link = "log", sigma.link = "log")
dNBI(x, mu = 1, sigma = 1, log = FALSE)
pNBI(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qNBI(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rNBI(n, mu = 1, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive means |
sigma |
vector of positive despersion parameter |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
Definition file for Negative Binomial type I distribution.
P(Y=y|\mu, \sigma)=
\frac{\Gamma(y+\frac{1}{\sigma})}{\Gamma(\frac{1}{\sigma})
\Gamma(y+1)}\hspace{1mm}\left( \frac{\sigma \mu}{1+\sigma
\mu}\right)^y \hspace{1mm}\left( \frac{1}{1+\sigma \mu}
\right)^{1/\sigma}
for y=0,1,2,\ldots,\infty
, \mu>0
and \sigma>0
. This
parameterization is equivalent to that used by Anscombe (1950) except he used \alpha=1/\sigma
instead of \sigma
, see also pp. 483-485 of Rigby et al. (2019).
returns a gamlss.family
object which can be used to fit a Negative Binomial type I distribution in the gamlss()
function.
For values of \sigma<0.0001
the d,p,q,r functions switch to the Poisson distribution
\mu
is the mean and (\mu+\sigma \mu^2)^{0.5}
is the standard deviation of the Negative Binomial
type I distribution (so \sigma
is the dispersion parameter in the usual GLM for the negative binomial type I distribution)
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Anscombe, F. J. (1950) Sampling theory of the negative bimomial and logarithmic distributiona, Biometrika, 37, 358-382.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family
, NBII
, PIG
, SI
NBI() # gives information about the default links for the Negative Binomial type I distribution
# plotting the distribution
plot(function(y) dNBI(y, mu = 10, sigma = 0.5 ), from=0, to=40, n=40+1, type="h")
# creating random variables and plot them
tN <- table(Ni <- rNBI(1000, mu=5, sigma=0.5))
r <- barplot(tN, col='lightblue')
# library(gamlss)
# data(aids)
# h<-gamlss(y~cs(x,df=7)+qrt, family=NBI, data=aids) # fits the model
# plot(h)
# pdf.plot(family=NBI, mu=10, sigma=0.5, min=0, max=40, step=1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.