NBII: Negative Binomial type II distribution for fitting a GAMLSS

NBIIR Documentation

Negative Binomial type II distribution for fitting a GAMLSS

Description

The NBII() function defines the Negative Binomial type II distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dNBII, pNBII, qNBII and rNBII define the density, distribution function, quantile function and random generation for the Negative Binomial type II, NBII(), distribution.

Usage

NBII(mu.link = "log", sigma.link = "log")
dNBII(x, mu = 1, sigma = 1, log = FALSE)
pNBII(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qNBII(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rNBII(n, mu = 1, sigma = 1)

Arguments

mu.link

Defines the mu.link, with "log" link as the default for the mu parameter

sigma.link

Defines the sigma.link, with "log" link as the default for the sigma parameter

x

vector of (non-negative integer) quantiles

mu

vector of positive means

sigma

vector of positive despersion parameter

p

vector of probabilities

q

vector of quantiles

n

number of random values to return

log, log.p

logical; if TRUE, probabilities p are given as log(p)

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

Definition file for Negative Binomial type II distribution.

P(Y=y|\mu,\sigma)= \frac{\Gamma(y+\frac{\mu}{\sigma}) \sigma^y }{\Gamma(\frac{\mu}{\sigma})\Gamma(y+1) (1+\sigma)^{y+\mu/\sigma}}

for y=0,1,2,...,\infty, \mu>0 and \sigma>0. This parameterization was used by Evans (1953) and also by Johnson et al. (1993) p 200, see also pp. 485-487 of Rigby et al. (2019).

Value

returns a gamlss.family object which can be used to fit a Negative Binomial type II distribution in the gamlss() function.

Note

\mu is the mean and [(1+\sigma)\mu]^{0.5} is the standard deviation of the Negative Binomial type II distribution, so \sigma is a dispersion parameter

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

Evans, D. A. (1953). Experimental evidence concerning contagious distributions in ecology. Biometrika, 40: 186-211.

Johnson, N. L., Kotz, S. and Kemp, A. W. (1993). Univariate Discrete Distributions, 2nd edn. Wiley, New York.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}

(see also https://www.gamlss.com/).

See Also

gamlss.family, NBI, PIG, SI

Examples

NBII()  # gives information about the default links for the Negative Binomial type II distribution  
# plotting the distribution
plot(function(y) dNBII(y, mu = 10, sigma = 0.5 ), from=0, to=40, n=40+1, type="h")
# creating random variables and plot them 
tN <- table(Ni <- rNBII(1000, mu=5, sigma=0.5))
r <- barplot(tN, col='lightblue')
# library(gamlss)
# data(aids)
# h<-gamlss(y~cs(x,df=7)+qrt, family=NBII, data=aids) # fits a model 
# plot(h)
# pdf.plot(family=NBII, mu=10, sigma=0.5, min=0, max=40, step=1)

gamlss.dist documentation built on Aug. 24, 2023, 1:06 a.m.