NBII | R Documentation |
The NBII()
function defines the Negative Binomial type II distribution, a two parameter distribution, for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
.
The functions dNBII
, pNBII
, qNBII
and rNBII
define the density, distribution function, quantile function and random
generation for the Negative Binomial type II, NBII()
, distribution.
NBII(mu.link = "log", sigma.link = "log")
dNBII(x, mu = 1, sigma = 1, log = FALSE)
pNBII(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qNBII(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rNBII(n, mu = 1, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive means |
sigma |
vector of positive despersion parameter |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
Definition file for Negative Binomial type II distribution.
P(Y=y|\mu,\sigma)=
\frac{\Gamma(y+\frac{\mu}{\sigma}) \sigma^y }{\Gamma(\frac{\mu}{\sigma})\Gamma(y+1) (1+\sigma)^{y+\mu/\sigma}}
for y=0,1,2,...,\infty
, \mu>0
and \sigma>0
.
This parameterization was used by Evans (1953) and also by Johnson et al. (1993) p 200, see also pp. 485-487 of Rigby et al. (2019).
returns a gamlss.family
object which can be used to fit a Negative Binomial type II distribution in the gamlss()
function.
\mu
is the mean and [(1+\sigma)\mu]^{0.5}
is the standard deviation of the Negative Binomial type II distribution, so
\sigma
is a dispersion parameter
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Evans, D. A. (1953). Experimental evidence concerning contagious distributions in ecology. Biometrika, 40: 186-211.
Johnson, N. L., Kotz, S. and Kemp, A. W. (1993). Univariate Discrete Distributions, 2nd edn. Wiley, New York.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family
, NBI
, PIG
,
SI
NBII() # gives information about the default links for the Negative Binomial type II distribution
# plotting the distribution
plot(function(y) dNBII(y, mu = 10, sigma = 0.5 ), from=0, to=40, n=40+1, type="h")
# creating random variables and plot them
tN <- table(Ni <- rNBII(1000, mu=5, sigma=0.5))
r <- barplot(tN, col='lightblue')
# library(gamlss)
# data(aids)
# h<-gamlss(y~cs(x,df=7)+qrt, family=NBII, data=aids) # fits a model
# plot(h)
# pdf.plot(family=NBII, mu=10, sigma=0.5, min=0, max=40, step=1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.