DBI | R Documentation |
The function DBI()
defines the double binomial distribution, a two parameters distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
. The functions dDBI
, pDBI
, qDBI
and rDBI
define the density, distribution function, quantile function and random generation for the double binomial, DBI()
, distribution. The function GetBI_C
calculates numericaly the constant of proportionality needed for the pdf to sum up to 1.
DBI(mu.link = "logit", sigma.link = "log")
dDBI(x, mu = 0.5, sigma = 1, bd = 2, log = FALSE)
pDBI(q, mu = 0.5, sigma = 1, bd = 2, lower.tail = TRUE,
log.p = FALSE)
qDBI(p, mu = 0.5, sigma = 1, bd = 2, lower.tail = TRUE,
log.p = FALSE)
rDBI(n, mu = 0.5, sigma = 1, bd = 2)
GetBI_C(mu, sigma, bd)
mu.link |
the link function for |
sigma.link |
the link function for |
x, q |
vector of (non-negative integer) quantiles |
bd |
vector of binomial denominator |
p |
vector of probabilities |
mu |
the |
sigma |
the |
lower.tail |
logical; if |
log, log.p |
logical; if |
n |
how many random values to generate |
The definition for the Double Poisson distribution first introduced by Efron (1986) is:
p_Y(y|n, \mu,\sigma)= \frac{1}{C(n,\mu,\sigma)} \frac{\Gamma(n+1)}{\Gamma(y+1)\Gamma(n-y+1)} \frac{y^y \left(n-y \right)^{n-y}}{n^n}
\frac{n^{n/\sigma} \mu^{y/\sigma} \left( 1-\mu\right)^{(n-y)/\sigma}}
{y^{y/\sigma} \left( n-y\right)^{(n-y)/\sigma}}
for y=0,1,2,\ldots,\infty
, \mu>0
and \sigma>0
where C
is the constant of proportinality which is calculated numerically using the function GetBI_C()
, see pp. 524-525 of Rigby et al. (2019).
The function DBI
returns a gamlss.family
object which can be used to fit a double binomial distribution in the gamlss()
function.
Mikis Stasinopoulos, Bob Rigby, Marco Enea and Fernanda de Bastiani
Efron, B., 1986. Double exponential families and their use in generalized linear Regression. Journal of the American Statistical Association 81 (395), 709-721.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
BI
,BB
DBI()
x <- 0:20
# underdispersed DBI
plot(x, dDBI(x, mu=.5, sigma=.2, bd=20), type="h", col="green", lwd=2)
# binomial
lines(x+0.1, dDBI(x, mu=.5, sigma=1, bd=20), type="h", col="black", lwd=2)
# overdispersed DBI
lines(x+.2, dDBI(x, mu=.5, sigma=2, bd=20), type="h", col="red",lwd=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.