BI: Binomial distribution for fitting a GAMLSS

BIR Documentation

Binomial distribution for fitting a GAMLSS

Description

The BI() function defines the binomial distribution, a one parameter family distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dBI, pBI, qBI and rBI define the density, distribution function, quantile function and random generation for the binomial, BI(), distribution.

Usage

BI(mu.link = "logit")
dBI(x, bd = 1, mu = 0.5, log = FALSE)
pBI(q, bd = 1, mu = 0.5, lower.tail = TRUE, log.p = FALSE)
qBI(p, bd = 1, mu = 0.5, lower.tail = TRUE, log.p = FALSE)
rBI(n, bd = 1, mu = 0.5)

Arguments

mu.link

Defines the mu.link, with "logit" link as the default for the mu parameter. Other links are "probit" and "cloglog"'(complementary log-log)

x

vector of (non-negative integer) quantiles

mu

vector of positive probabilities

bd

vector of binomial denominators

p

vector of probabilities

q

vector of quantiles

n

number of random values to return

log, log.p

logical; if TRUE, probabilities p are given as log(p)

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

Definition file for binomial distribution.

f(y|\mu)=\frac{\Gamma(n+1)}{\Gamma(y+1) \Gamma{(n-y+1)}} \mu^y (1-\mu)^{(n-y)}

for y=0,1,2,...,n and 0<\mu< 1 see pp. 521-522 of Rigby et al. (2019).

Value

returns a gamlss.family object which can be used to fit a binomial distribution in the gamlss() function.

Note

The response variable should be a matrix containing two columns, the first with the count of successes and the second with the count of failures. The parameter mu represents a probability parameter with limits 0 < \mu < 1. n\mu is the mean of the distribution where n is the binomial denominator.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}

(see also https://www.gamlss.com/).

See Also

gamlss.family, ZABI, ZIBI

Examples

 BI()# gives information about the default links for the Binomial distribution 
# data(aep)   
# library(gamlss)
# h<-gamlss(y~ward+loglos+year, family=BI, data=aep)  
# plot of the binomial distribution
curve(dBI(x, mu = .5, bd=10), from=0, to=10, n=10+1, type="h")
tN <- table(Ni <- rBI(1000, mu=.2, bd=10))
r <- barplot(tN, col='lightblue')

gamlss.dist documentation built on Aug. 24, 2023, 1:06 a.m.