BI | R Documentation |
The BI()
function defines the binomial distribution, a one parameter family distribution, for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
.
The functions dBI
, pBI
, qBI
and rBI
define the density, distribution function, quantile function and random
generation for the binomial, BI()
, distribution.
BI(mu.link = "logit")
dBI(x, bd = 1, mu = 0.5, log = FALSE)
pBI(q, bd = 1, mu = 0.5, lower.tail = TRUE, log.p = FALSE)
qBI(p, bd = 1, mu = 0.5, lower.tail = TRUE, log.p = FALSE)
rBI(n, bd = 1, mu = 0.5)
mu.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive probabilities |
bd |
vector of binomial denominators |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
Definition file for binomial distribution.
f(y|\mu)=\frac{\Gamma(n+1)}{\Gamma(y+1) \Gamma{(n-y+1)}} \mu^y (1-\mu)^{(n-y)}
for y=0,1,2,...,n
and 0<\mu< 1
see pp. 521-522 of Rigby et al. (2019).
returns a gamlss.family
object which can be used to fit a binomial distribution in the gamlss()
function.
The response variable should be a matrix containing two columns, the first with the count of successes and the second with the count of failures.
The parameter mu
represents a probability parameter with limits 0 < \mu < 1
.
n\mu
is the mean of the distribution where n is the binomial denominator.
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family
, ZABI
, ZIBI
BI()# gives information about the default links for the Binomial distribution
# data(aep)
# library(gamlss)
# h<-gamlss(y~ward+loglos+year, family=BI, data=aep)
# plot of the binomial distribution
curve(dBI(x, mu = .5, bd=10), from=0, to=10, n=10+1, type="h")
tN <- table(Ni <- rBI(1000, mu=.2, bd=10))
r <- barplot(tN, col='lightblue')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.