BCT | R Documentation |
The function BCT()
defines the Box-Cox t distribution, a four parameter distribution,
for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions dBCT
,
pBCT
, qBCT
and rBCT
define the density, distribution function, quantile function and random
generation for the Box-Cox t distribution.
[The function BCTuntr()
is the original version of the function suitable only for the untruncated BCT distribution]. See Rigby and Stasinopoulos (2003) for details.
The function BCTo
is identical to BCT
but with log link for mu.
BCT(mu.link = "identity", sigma.link = "log", nu.link = "identity",
tau.link = "log")
BCTo(mu.link = "log", sigma.link = "log", nu.link = "identity",
tau.link = "log")
BCTuntr(mu.link = "identity", sigma.link = "log", nu.link = "identity",
tau.link = "log")
dBCT(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE)
pBCT(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)
qBCT(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)
rBCT(n, mu = 5, sigma = 0.1, nu = 1, tau = 2)
dBCTo(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE)
pBCTo(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)
qBCTo(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)
rBCTo(n, mu = 5, sigma = 0.1, nu = 1, tau = 2)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of |
tau |
vector of |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The probability density function of the untruncated Box-Cox t distribution, BCTuntr
, is given by
f(y|\mu,\sigma,\nu,\tau)=\frac{y^{\nu-1}}{\mu^{\nu}\sigma} \frac{\Gamma[(\tau+1)/2]}{\Gamma(1/2) \Gamma(\tau/2) \tau^{0.5}} [1+(1/\tau)z^2]^{-(\tau+1)/2}
where if \nu \neq 0
then z=[(y/\mu)^{\nu}-1]/(\nu \sigma)
else z=\log(y/\mu)/\sigma
,
for y>0
, \mu>0
, \sigma>0
, \nu=(-\infty,+\infty)
and \tau>0
see pp. 450-451 of Rigby et al. (2019).
The Box-Cox t distribution, BCT
, adjusts the above density f(y|\mu,\sigma,\nu,\tau)
for the
truncation resulting from the condition y>0
. See Rigby and Stasinopoulos (2003) for details.
BCT()
returns a gamlss.family
object which can be used to fit a Box Cox-t distribution in the gamlss()
function.
dBCT()
gives the density, pBCT()
gives the distribution
function, qBCT()
gives the quantile function, and rBCT()
generates random deviates.
The use BCTuntr
distribution may be unsuitable for some combinations of the parameters (mainly for large \sigma
)
where the integrating constant is less than 0.99. A warning will be given if this is the case.
The BCT
distribution is suitable for all combinations of the parameters within their ranges
[i.e. \mu>0,\sigma>0, \nu=(-\infty,\infty) {\rm and} \tau>0
]
\mu
is the median of the distribution, \sigma(\frac{\tau}{\tau-2})^{0.5}
is approximate the coefficient of variation (for small \sigma
and moderate nu>0
and moderate or large \tau
),
\nu
controls the skewness and \tau
the kurtosis of the distribution
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R.A. Stasinopoulos, D.M. (2006). Using the Box-Cox t distribution in GAMLSS to mode skewnees and and kurtosis. Statistical Modelling 6(3):200. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1191/1471082X06st122oa")}.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family
, BCPE
, BCCG
BCT() # gives information about the default links for the Box Cox t distribution
# library(gamlss)
#data(abdom)
#h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=BCT, data=abdom) #
#plot(h)
plot(function(x)dBCT(x, mu=5,sigma=.5,nu=1, tau=2), 0.0, 20,
main = "The BCT density mu=5,sigma=.5,nu=1, tau=2")
plot(function(x) pBCT(x, mu=5,sigma=.5,nu=1, tau=2), 0.0, 20,
main = "The BCT cdf mu=5, sigma=.5, nu=1, tau=2")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.