IGAMMA | R Documentation |
The function IGAMMA()
defines the Inverse Gamma distribution, a two parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
, with parameters mu
(the mode) and sigma
. The functions dIGAMMA
, pIGAMMA
, qIGAMMA
and rIGAMMA
define the density, distribution function, quantile function and random generation for the IGAMMA
parameterization of the Inverse Gamma distribution.
IGAMMA(mu.link = "log", sigma.link="log")
dIGAMMA(x, mu = 1, sigma = .5, log = FALSE)
pIGAMMA(q, mu = 1, sigma = .5, lower.tail = TRUE, log.p = FALSE)
qIGAMMA(p, mu = 1, sigma = .5, lower.tail = TRUE, log.p = FALSE)
rIGAMMA(n, mu = 1, sigma = .5)
mu.link |
Defines the |
sigma.link |
Defines the |
x, q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x] |
p |
vector of probabilities |
n |
number of observations. If |
The parameterization of the Inverse Gamma distribution in the function IGAMMA
is
f(y|\mu, \sigma) = \frac{\left[\mu\,(\alpha+1)\right]^{\alpha}}{\Gamma(\alpha)} \,y^{-(\alpha+1)}\, \exp{\left[-\frac{\mu\,(\alpha+1)}{y}\right]}
where \alpha = 1/(\sigma^2)
for y>0
, \mu>0
and \sigma>0
see pp. 424-426 of Rigby et al. (2019).
returns a gamlss.family object which can be used to fit an Inverse Gamma distribution in the gamlss()
function.
For the function IGAMMA()
, mu is the mode of the Inverse Gamma distribution.
Fiona McElduff, Bob Rigby and Mikis Stasinopoulos.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family
, GA
par(mfrow=c(2,2))
y<-seq(0.2,20,0.2)
plot(y, dIGAMMA(y), type="l")
q <- seq(0.2, 20, 0.2)
plot(q, pIGAMMA(q), type="l")
p<-seq(0.0001,0.999,0.05)
plot(p , qIGAMMA(p), type="l")
dat <- rIGAMMA(50)
hist(dat)
#summary(gamlss(dat~1, family="IGAMMA"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.