Nothing
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Multigam Distribution ----
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Distribution ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
setClass("Multigam",
contains = "Distribution",
slots = c(shape = "numeric", scale = "numeric"),
prototype = list(shape = 1, scale = 1))
#' @title Multivariate Gamma Distribution
#' @name Multigam
#'
#' @description
#' The multivariate gamma distribution is a multivariate absolute continuous
#' probability distribution, defined as the cumulative sum of independent
#' gamma random variables with possibly different shape parameters
#' \eqn{\alpha_i > 0, i\in\{1, \dots, k\}} and the same scale \eqn{\beta > 0}.
#'
#' @srrstats {G1.0} A list of publications is provided in references.
#' @srrstats {G1.1} This is the first implementation the Multigam SAME in R. The
#' MLE algorithm is considerably improved.
#'
#' @param n number of observations. If `length(n) > 1`, the length is taken to
#' be the number required.
#' @param distr an object of class `Multigam`.
#' @param x For the density function, `x` is a numeric vector of quantiles. For
#' the moments functions, `x` is an object of class `Multigam`. For the
#' log-likelihood and the estimation functions, `x` is the sample of
#' observations.
#' @param shape,scale numeric. The non-negative distribution parameters.
#' @param type character, case ignored. The estimator type (mle, me, or same).
#' @param log logical. Should the logarithm of the probability be
#' returned?
#' @param na.rm logical. Should the `NA` values be removed?
#' @param ... extra arguments.
#' @param par0,method,lower,upper arguments passed to optim for the mle
#' optimization. See Details.
#'
#' @details
#' The probability density function (PDF) of the multivariate gamma distribution
#' is given by:
#' \deqn{ f(x; \alpha, \beta) =
#' \frac{\beta^{-\alpha_0}}{\prod_{i=1}^k\Gamma(\alpha_i)}, e^{-x_k/\beta}
#' x_1^{\alpha_1-1}\prod_{i=1}^k (x_i - x_{i-1})^{(\alpha_i-1)} \quad x > 0. }
#'
#' The MLE of the multigamma distribution parameters is not available in closed
#' form and has to be approximated numerically. This is done with `optim()`.
#' Specifically, instead of solving a \eqn{(k+1)} optimization problem w.r.t
#' \eqn{\alpha, \beta}, the optimization can be performed on the shape parameter
#' sum \eqn{\alpha_0:=\sum_{i=1}^k\alpha \in(0,+\infty)^k}. The default method
#' used is the L-BFGS-B method with lower bound `1e-5` and upper bound `Inf`.
#' The `par0` argument can either be a numeric (satisfying
#' `lower <= par0 <= upper`) or a character specifying the closed-form estimator
#' to be used as initialization for the algorithm (`"me"` or `"same"` - the
#' default value).
#'
#' @inherit distributions return
#'
#' @references
#'
#' - Mathal, A. M., & Moschopoulos, P. G. (1992). A form of multivariate gamma
#' distribution. Annals of the Institute of Statistical Mathematics, 44, 97-106.
#'
#' - Oikonomidis, I. & Trevezas, S. (2025), Moment-Type Estimators for the
#' Dirichlet and the Multivariate Gamma Distributions, arXiv,
#' https://arxiv.org/abs/2311.15025
#'
#' @export
#'
#' @examples
#' # -----------------------------------------------------
#' # Multivariate Gamma Distribution Example
#' # -----------------------------------------------------
#'
#' # Create the distribution
#' a <- c(0.5, 3, 5) ; b <- 5
#' D <- Multigam(a, b)
#'
#' # ------------------
#' # dpqr Functions
#' # ------------------
#'
#' d(D, c(0.3, 2, 10)) # density function
#'
#' # alternative way to use the function
#' df <- d(D) ; df(c(0.3, 2, 10)) # df is a function itself
#'
#' x <- r(D, 100) # random generator function
#'
#' # ------------------
#' # Moments
#' # ------------------
#'
#' mean(D) # Expectation
#' var(D) # Variance
#' finf(D) # Fisher Information Matrix
#'
#' # List of all available moments
#' mom <- moments(D)
#' mom$mean # expectation
#'
#' # ------------------
#' # Point Estimation
#' # ------------------
#'
#' ll(D, x)
#' llmultigam(x, a, b)
#'
#' emultigam(x, type = "mle")
#' emultigam(x, type = "me")
#' emultigam(x, type = "same")
#'
#' mle(D, x)
#' me(D, x)
#' same(D, x)
#' e(D, x, type = "mle")
#'
#' mle("multigam", x) # the distr argument can be a character
#'
#' # ------------------
#' # Estimator Variance
#' # ------------------
#'
#' vmultigam(a, b, type = "mle")
#' vmultigam(a, b, type = "me")
#' vmultigam(a, b, type = "same")
#'
#' avar_mle(D)
#' avar_me(D)
#' avar_same(D)
#'
#' v(D, type = "mle")
Multigam <- function(shape = 1, scale = 1) {
new("Multigam", shape = shape, scale = scale)
}
setValidity("Multigam", function(object) {
if(any(object@shape <= 0)) {
stop("shape has to be a vector with positive elements")
}
if(length(object@scale) != 1) {
stop("scale has to be a numeric of length 1")
}
if(object@scale <= 0) {
stop("scale has to be positive")
}
TRUE
})
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## d, p, q, r ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @rdname Multigam
#' @export
dmultigam <- function(x, shape, scale, log = FALSE) {
if (is.vector(x)) {
x <- matrix(x, nrow = 1)
}
if (ncol(x) != length(shape)) {
stop("the columns of x must be equal to the length of shape")
}
if (any(shape <= 0) || scale <= 0) {
stop("shape and scale must be positive")
}
y <- apply(x, 1,
FUN = function(x) {
if (any(x <= 0)) {
-Inf
} else {
sum(shape * log(fd(x))) - sum(shape) * log(scale) -
sum(lgamma(shape)) - x[length(x)] / scale
}
})
if (!log) {
return(exp(y))
} else {
return(y)
}
}
#' @rdname Multigam
#' @export
rmultigam <- function(n, shape, scale) {
k <- length(shape)
x <- matrix(nrow = n, ncol = k)
for (j in 1:k) {
x[, j] <- stats::rgamma(n, shape[j], scale = scale)
}
t(apply(x, 1, cumsum))
}
#' @rdname Multigam
setMethod("d", signature = c(distr = "Multigam", x = "numeric"),
function(distr, x, log = FALSE) {
dmultigam(x, shape = distr@shape, scale = distr@scale, log = log)
})
#' @rdname Multigam
setMethod("d", signature = c(distr = "Multigam", x = "matrix"),
function(distr, x, log = FALSE) {
dmultigam(x, shape = distr@shape, scale = distr@scale, log = log)
})
#' @rdname Multigam
setMethod("r", signature = c(distr = "Multigam", n = "numeric"),
function(distr, n) {
rmultigam(n, shape = distr@shape, scale = distr@scale)
})
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Moments ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @rdname Multigam
setMethod("mean",
signature = c(x = "Multigam"),
definition = function(x) {
cumsum(x@shape * x@scale)
})
#' @rdname Multigam
setMethod("var",
signature = c(x = "Multigam"),
definition = function(x) {
cumsum(x@shape * x@scale ^ 2)
})
#' @rdname Multigam
setMethod("finf",
signature = c(x = "Multigam"),
definition = function(x) {
# Preliminaries
a <- x@shape
b <- x@scale
k <- length(a)
a0 <- sum(a)
D <- rbind(cbind(diag(trigamma(a)),
matrix(1 / b, nrow = k, ncol = 1)),
c(rep(1 / b, k), a0 / b ^ 2))
rownames(D) <- c(paste0("shape", seq_along(a)), "scale")
colnames(D) <- c(paste0("shape", seq_along(a)), "scale")
D
})
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Likelihood ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @rdname Multigam
#' @export
llmultigam <- function(x, shape, scale) {
ll(Multigam(shape, scale), x)
}
#' @rdname Multigam
setMethod("ll",
signature = c(distr = "Multigam", x = "matrix"),
definition = function(distr, x) {
k <- length(distr@shape)
sum(apply(x, MARGIN = 1, FUN = dmultigam,
shape = distr@shape, scale = distr@scale, log = TRUE))
})
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Score ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
setMethod("lloptim",
signature = c(par = "numeric", tx = "numeric", distr = "Multigam"),
definition = function(par, tx, distr) {
k <- length(tx) - 1
logz <- tx[1:k]
xk <- tx[k + 1]
b <- xk / par
a <- idigamma(logz - log(b))
- sum(a) * log(b) - sum(lgamma(a)) - xk / b + sum((a - 1) * logz)
})
setMethod("dlloptim",
signature = c(par = "numeric", tx = "numeric", distr = "Multigam"),
definition = function(par, tx, distr) {
k <- length(tx) - 1
logz <- tx[1:k]
xk <- tx[k + 1]
b <- xk / par
a <- idigamma(logz - log(b))
db <- - xk / par ^ 2
da <- 1 / (par * trigamma(a))
- sum(da) * log(b) - sum(a) * db / b - sum(digamma(a) * da) +
xk * db / b ^ 2 + sum(logz * da)
})
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Estimation ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @rdname Multigam
#' @export
emultigam <- function(x, type = "mle", ...) {
type <- match.arg(tolower(type), choices = c("mle", "me", "same"))
distr <- Multigam()
do.call(type, list(distr = distr, x = x, ...))
}
#' @rdname Multigam
setMethod("mle",
signature = c(distr = "Multigam", x = "matrix"),
definition = function(distr, x,
par0 = "same",
method = "L-BFGS-B",
lower = 1e-5,
upper = Inf, na.rm = FALSE) {
x <- check_data(x, na.rm = na.rm)
par0 <- check_optim(par0, method, lower, upper,
choices = c("me", "same"), len = 1)
if (is.character(par0)) {
par0 <- sum(unlist(emultigam(x, type = par0)$shape))
}
k <- ncol(x)
logz <- colMeans(log(fd(x)))
xk <- mean(x[, k])
tx <- c(logz, xk)
par <- optim(par = par0,
fn = lloptim,
gr = dlloptim,
tx = tx,
distr = distr,
method = method,
lower = lower,
upper = upper,
control = list(fnscale = -1))$par
b <- xk / par
a <- idigamma(logz - log(b))
list(shape = a, scale = b)
})
#' @rdname Multigam
setMethod("me",
signature = c(distr = "Multigam", x = "matrix"),
definition = function(distr, x, na.rm = FALSE) {
x <- check_data(x, na.rm = na.rm)
z <- fd(x)
mz <- colMeans(z)
scale <- mean(colVar(z) / mz)
shape <- mz / scale
list(shape = shape, scale = scale)
})
#' @rdname Multigam
setMethod("same",
signature = c(distr = "Multigam", x = "matrix"),
definition = function(distr, x, na.rm = FALSE) {
x <- check_data(x, na.rm = na.rm)
z <- fd(x)
scale <- mean(diag(stats::cov(z, log(z))))
shape <- colMeans(z) / scale
list(shape = shape, scale = scale)
})
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Variance ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @rdname Multigam
#' @export
vmultigam <- function(shape, scale, type = "mle") {
type <- match.arg(tolower(type), choices = c("mle", "me", "same"))
distr <- Multigam(shape, scale)
do.call(paste0("avar_", type), list(distr = distr))
}
#' @rdname Multigam
setMethod("avar_mle",
signature = c(distr = "Multigam"),
definition = function(distr) {
# Preliminaries
a <- distr@shape
b <- distr@scale
k <- length(a)
a0 <- sum(a)
trinv <- 1 / trigamma(a)
cons <- a0 - sum(trinv)
D <- diag(cons * trinv) + Matrix(trinv, k, 1) %*% Matrix(trinv, 1, k)
D <- cbind(D, - b * trinv)
D <- rbind(D, t(c(- b * trinv, b ^ 2))) / cons
D <- as.matrix(nearPD(D))
rownames(D) <- c(paste0("shape", seq_along(a)), "scale")
colnames(D) <- c(paste0("shape", seq_along(a)), "scale")
D
})
#' @rdname Multigam
setMethod("avar_me",
signature = c(distr = "Multigam"),
definition = function(distr) {
# Preliminaries
a <- distr@shape
b <- distr@scale
k <- length(a)
a0 <- sum(a)
# Matrix A
A11 <- (Matrix(a, k, 1) %*% Matrix(2 + 1 / a, 1, k) / k + diag(1, k, k)) / b
A12 <- - Matrix(a, k, 1) %*% Matrix(1 / a, 1, k) / (k * b ^ 2)
A21 <- - (2 + 1 / a) / k
A22 <- 1 / (a * k * b)
A <- rbind(cbind(A11, A12), Matrix(c(A21, A22), 1, 2 * k))
# Matrix B
B11 <- a * b ^ 2
B22 <- 2 * a * (a + 1) * b ^ 4 * ( 2 * a + 3)
B12 <- 2 * a * (a + 1) * b ^ 3
B <- rbind(cbind(diag(B11), diag(B12)),
cbind(diag(B12), diag(B22)))
B <- nearPD(B)
# Matrix D
D <- nearPD(A %*% B %*% Matrix::t(A))
D <- as.matrix(D)
rownames(D) <- c(paste0("shape", seq_along(a)), "scale")
colnames(D) <- c(paste0("shape", seq_along(a)), "scale")
D
})
#' @rdname Multigam
setMethod("avar_same",
signature = c(distr = "Multigam"),
definition = function(distr) {
# Preliminaries
a <- distr@shape
b <- distr@scale
k <- length(a)
a0 <- sum(a)
# Matrix A
A12 <- Matrix(a, k, 1) %*% Matrix(a, 1, k) / k
A13 <- - Matrix(a, k, 1) %*% Matrix(1, 1, k) / (k * b)
A21 <- - (digamma(a) + log(b)) / k
A22 <- - a * b / k
A23 <- rep(1 / k, k)
A11 <- (- Matrix(a, k, 1) %*% Matrix(A21, 1, k) + diag(1, k, k)) / b
A <- rbind(cbind(A11, A12, A13), Matrix(c(A21, A22, A23), 1, 3 * k))
# Matrix B
B11 <- a * b ^ 2
B22 <- trigamma(a)
B33 <- a * (a + 1) * b ^ 2 *
(trigamma(a + 2) + (digamma(a + 2) + log(b)) ^ 2) -
(a * b) ^ 2 * (digamma(a + 1) + log(b)) ^ 2
B12 <- rep(b, k)
B13 <- a * (a + 1) * b ^ 2 * (digamma(a + 2) + log(b)) -
(a * b) ^ 2 * (digamma(a + 1) + log(b))
B23 <- a * b * (trigamma(a + 1) + (digamma(a + 1) + log(b)) ^ 2) -
a * b * (digamma(a) + log(b)) * (digamma(a + 1) + log(b))
B <- rbind(cbind(diag(B11), diag(B12), diag(B13)),
cbind(diag(B12), diag(B22), diag(B23)),
cbind(diag(B13), diag(B23), diag(B33)))
B <- nearPD(B)
# Matrix D
D <- nearPD(A %*% B %*% Matrix::t(A))
D <- as.matrix(D)
rownames(D) <- c(paste0("shape", seq_along(a)), "scale")
colnames(D) <- c(paste0("shape", seq_along(a)), "scale")
D
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.