R/getDesignProportions.R

Defines functions getDesignRiskRatioExactEquiv getDesignRiskDiffExactEquiv getDesignRiskRatioExact getDesignRiskDiffExact getDesignOneRateExact getDesignAgreement getDesignLogistic getDesignUnorderedMultinom getDesignUnorderedBinom getDesignOrderedBinom getDesignTwoOrdinal getDesignTwoMultinom getDesignOneMultinom BOINTable mTPI2Table ClopperPearsonCI getDesignFisherExact getDesignOddsRatioEquiv getDesignRiskRatioEquiv getDesignRiskDiffEquiv getDesignOddsRatio getDesignRiskRatioFM getDesignRiskRatio getDesignRiskDiff getDesignPairedPropMcNemar getDesignOneProportion

Documented in BOINTable ClopperPearsonCI getDesignAgreement getDesignFisherExact getDesignLogistic getDesignOddsRatio getDesignOddsRatioEquiv getDesignOneMultinom getDesignOneProportion getDesignOneRateExact getDesignOrderedBinom getDesignPairedPropMcNemar getDesignRiskDiff getDesignRiskDiffEquiv getDesignRiskDiffExact getDesignRiskDiffExactEquiv getDesignRiskRatio getDesignRiskRatioEquiv getDesignRiskRatioExact getDesignRiskRatioExactEquiv getDesignRiskRatioFM getDesignTwoMultinom getDesignTwoOrdinal getDesignUnorderedBinom getDesignUnorderedMultinom mTPI2Table

#' @title Group Sequential Design for One-Sample Proportion
#' @description Obtains the power given sample size or obtains the sample
#' size given power for a group sequential design for one-sample proportion.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param piH0 The response probability under the null hypothesis.
#' @param pi The response probability under the alternative hypothesis.
#' @param normalApproximation The type of computation of the p-values.
#'   If \code{TRUE}, the normal approximation will be used, otherwise
#'   the calculations are performed with the binomial distribution. The exact
#'   calculation using the binomial distribution is only implemented for the
#'   fixed design.
#' @param rounding Whether to round up sample size. Defaults to 1 for
#'   sample size rounding.
#' @inheritParams param_kMax
#' @param informationRates The information rates. Fixed prior to the trial.
#'   Defaults to \code{(1:kMax) / kMax} if left unspecified.
#' @inheritParams param_efficacyStopping
#' @inheritParams param_futilityStopping
#' @inheritParams param_criticalValues
#' @inheritParams param_alpha
#' @inheritParams param_typeAlphaSpending
#' @inheritParams param_parameterAlphaSpending
#' @inheritParams param_userAlphaSpending
#' @inheritParams param_futilityBounds
#' @inheritParams param_typeBetaSpending
#' @inheritParams param_parameterBetaSpending
#' @inheritParams param_userBetaSpending
#' @param spendingTime A vector of length \code{kMax} for the error spending
#'   time at each analysis. Defaults to missing, in which case, it is the
#'   same as \code{informationRates}.
#'
#' @return An S3 class \code{designOneProportion} object with three
#' components:
#'
#' * \code{overallResults}: A data frame containing the following variables:
#'
#'     - \code{overallReject}: The overall rejection probability.
#'
#'     - \code{alpha}: The overall significance level.
#'
#'     - \code{attainedAlpha}: The attained significance level, which is
#'       different from the overall significance level in the presence of
#'       futility stopping as well as for the binomial exact test in a fixed
#'       design.
#'
#'     - \code{kMax}: The number of stages.
#'
#'     - \code{theta}: The parameter value.
#'
#'     - \code{information}: The maximum information.
#'
#'     - \code{expectedInformationH1}: The expected information under H1.
#'
#'     - \code{expectedInformationH0}: The expected information under H0.
#'
#'     - \code{drift}: The drift parameter, equal to
#'       \code{theta*sqrt(information)}.
#'
#'     - \code{inflationFactor}: The inflation factor (relative to the
#'       fixed design).
#'
#'     - \code{numberOfSubjects}: The maximum number of subjects.
#'
#'     - \code{expectedNumberOfSubjectsH1}: The expected number of subjects
#'       under H1.
#'
#'     - \code{expectedNumberOfSubjectsH0}: The expected number of subjects
#'       under H0.
#'
#'     - \code{piH0}: The response probability under the null hypothesis.
#'
#'     - \code{pi}: The response probability under the alternative
#'       hypothesis.
#'
#'
#' * \code{byStageResults}: A data frame containing the following variables:
#'
#'     - \code{informationRates}: The information rates.
#'
#'     - \code{efficacyBounds}: The efficacy boundaries on the Z-scale.
#'
#'     - \code{futilityBounds}: The futility boundaries on the Z-scale.
#'
#'     - \code{rejectPerStage}: The probability for efficacy stopping.
#'
#'     - \code{futilityPerStage}: The probability for futility stopping.
#'
#'     - \code{cumulativeRejection}: The cumulative probability for efficacy
#'       stopping.
#'
#'     - \code{cumulativeFutility}: The cumulative probability for futility
#'       stopping.
#'
#'     - \code{cumulativeAlphaSpent}: The cumulative alpha spent.
#'
#'     - \code{efficacyP}: The efficacy boundaries on the p-value scale.
#'
#'     - \code{futilityP}: The futility boundaries on the p-value scale.
#'
#'     - \code{information}: The cumulative information.
#'
#'     - \code{efficacyStopping}: Whether to allow efficacy stopping.
#'
#'     - \code{futilityStopping}: Whether to allow futility stopping.
#'
#'     - \code{rejectPerStageH0}: The probability for efficacy stopping
#'       under H0.
#'
#'     - \code{futilityPerStageH0}: The probability for futility stopping
#'       under H0.
#'
#'     - \code{cumulativeRejectionH0}: The cumulative probability for
#'       efficacy stopping under H0.
#'
#'     - \code{cumulativeFutilityH0}: The cumulative probability for futility
#'       stopping under H0.
#'
#'     - \code{efficacyResponses}: The efficacy boundaries on the number
#'       of responses scale.
#'
#'     - \code{futilityResponses}: The futility boundaries on the number
#'       of responses scale.
#'
#'     - \code{numberOfSubjects}: The number of subjects.
#'
#' * \code{settings}: A list containing the following input parameters:
#'
#'     - \code{typeAlphaSpending}: The type of alpha spending.
#'
#'     - \code{parameterAlphaSpending}: The parameter value for alpha
#'       spending.
#'
#'     - \code{userAlphaSpending}: The user defined alpha spending.
#'
#'     - \code{typeBetaSpending}: The type of beta spending.
#'
#'     - \code{parameterBetaSpending}: The parameter value for beta spending.
#'
#'     - \code{userBetaSpending}: The user defined beta spending.
#'
#'     - \code{spendingTime}: The error spending time at each analysis.
#'
#'     - \code{normalApproximation}: The type of computation of the p-values.
#'       If \code{TRUE}, the variance is assumed to be known, otherwise
#'       the calculations are performed with the binomial distribution.
#'
#'     - \code{rounding}: Whether to round up sample size.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' # Example 1: group sequential trial power calculation
#' (design1 <- getDesignOneProportion(
#'   beta = 0.2, n = NA, piH0 = 0.15, pi = 0.25,
#'   kMax = 3, alpha = 0.05, typeAlphaSpending = "sfOF"))
#'
#' # Example 2: sample size calculation for one-sample binomial exact test
#' (design2 <- getDesignOneProportion(
#'   beta = 0.2, n = NA, piH0 = 0.15, pi = 0.25,
#'   normalApproximation = FALSE, alpha = 0.05))
#'
#' @export
getDesignOneProportion <- function(
    beta = NA_real_,
    n = NA_real_,
    piH0 = 0.1,
    pi = 0.2,
    normalApproximation = TRUE,
    rounding = TRUE,
    kMax = 1L,
    informationRates = NA_real_,
    efficacyStopping = NA_integer_,
    futilityStopping = NA_integer_,
    criticalValues = NA_real_,
    alpha = 0.025,
    typeAlphaSpending = "sfOF",
    parameterAlphaSpending = NA_real_,
    userAlphaSpending = NA_real_,
    futilityBounds = NA_real_,
    typeBetaSpending = "none",
    parameterBetaSpending = NA_real_,
    userBetaSpending = NA_real_,
    spendingTime = NA_real_) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && n <= 0) {
    stop("n must be positive")
  }

  if (piH0 <= 0 || piH0 >= 1) {
    stop("piH0 must lie between 0 and 1")
  }

  if (pi <= 0 || pi >= 1) {
    stop("pi must lie between 0 and 1")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }

  if (any(is.na(informationRates))) {
    informationRates = (1:kMax)/kMax
  }

  directionUpper = pi > piH0

  theta = ifelse(directionUpper, pi - piH0, piH0 - pi)
  v1 = piH0*(1-piH0)

  if (!is.na(n)) { # power calculation
    if (rounding) {
      n = ceiling(n - 1.0e-12)
      informationRates = round(n*informationRates)/n
    }

    des = getDesign(
      beta = NA, IMax = n/v1, theta,
      kMax, informationRates,
      efficacyStopping, futilityStopping,
      criticalValues, alpha, typeAlphaSpending,
      parameterAlphaSpending, userAlphaSpending,
      futilityBounds, typeBetaSpending,
      parameterBetaSpending, userBetaSpending,
      spendingTime)

    if (kMax == 1 && !normalApproximation) { # exact test for fixed design
      if (!any(is.na(criticalValues))) {
        alpha = 1 - pnorm(criticalValues)
      }

      a = powerOnePropExact(n, piH0, pi, alpha)
      r = a$r
      attainedAlpha = a$attainedAlpha
      power = a$power
      n = a$n

      if (directionUpper) {
        b = (r/n - piH0)*sqrt(n/v1)
      } else {
        b = (piH0 - r/n)*sqrt(n/v1)
      }

      des$overallResults$overallReject = power
      des$overallResults$attainedAlpha = attainedAlpha

      des$byStageResults$rejectPerStage = power
      des$byStageResults$futilityPerStage = 1 - power
      des$byStageResults$cumulativeRejection = power
      des$byStageResults$cumulativeFutility = 1 - power
      des$byStageResults$cumulativeAlphaSpent = attainedAlpha
      des$byStageResults$efficacyBounds = b
      des$byStageResults$futilityBounds = b
      des$byStageResults$efficacyP = attainedAlpha
      des$byStageResults$futilityP = attainedAlpha
      des$byStageResults$efficacyResponses = r
      des$byStageResults$futilityResponses = r
      des$byStageResults$rejectPerStageH0 = attainedAlpha
      des$byStageResults$futilityPerStageH0 = 1 - attainedAlpha
      des$byStageResults$cumulativeRejectionH0 = attainedAlpha
      des$byStageResults$cumulativeFutilityH0 = 1 - attainedAlpha
    } else {
      ns = des$byStageResults$informationRates*n

      if (directionUpper) {
        des$byStageResults$efficacyResponses =
          ceiling(ns*(des$byStageResults$efficacyTheta + piH0))
        des$byStageResults$futilityResponses =
          ceiling(ns*(des$byStageResults$futilityTheta + piH0))
      } else {
        des$byStageResults$efficacyResponses =
          floor(ns*(-des$byStageResults$efficacyTheta + piH0))
        des$byStageResults$futilityResponses =
          floor(ns*(-des$byStageResults$futilityTheta + piH0))
      }
    }
  } else { # sample size calculation
    if (kMax == 1 && !normalApproximation) { # exact test for fixed design
      if (!any(is.na(criticalValues))) {
        alpha = 1 - pnorm(criticalValues)
      }

      a = samplesizeOnePropExact(beta, piH0, pi, alpha)
      attainedAlpha = a$attainedAlpha
      r = a$r
      power = a$power
      n = a$n

      if (directionUpper) {
        b = (r/n - piH0)*sqrt(n/v1)
      } else {
        b = (piH0 - r/n)*sqrt(n/v1)
      }

      des = getDesign(
        beta = NA, IMax = n/v1, theta,
        kMax, informationRates,
        efficacyStopping, futilityStopping,
        criticalValues, alpha, typeAlphaSpending,
        parameterAlphaSpending, userAlphaSpending,
        futilityBounds, typeBetaSpending,
        parameterBetaSpending, userBetaSpending,
        spendingTime)

      des$overallResults$overallReject = power
      des$overallResults$attainedAlpha = attainedAlpha

      des$byStageResults$rejectPerStage = power
      des$byStageResults$futilityPerStage = 1 - power
      des$byStageResults$cumulativeRejection = power
      des$byStageResults$cumulativeFutility = 1 - power
      des$byStageResults$cumulativeAlphaSpent = attainedAlpha
      des$byStageResults$efficacyBounds = b
      des$byStageResults$futilityBounds = b
      des$byStageResults$efficacyP = attainedAlpha
      des$byStageResults$futilityP = attainedAlpha
      des$byStageResults$efficacyResponses = r
      des$byStageResults$futilityResponses = r
      des$byStageResults$rejectPerStageH0 = attainedAlpha
      des$byStageResults$futilityPerStageH0 = 1 - attainedAlpha
      des$byStageResults$cumulativeRejectionH0 = attainedAlpha
      des$byStageResults$cumulativeFutilityH0 = 1 - attainedAlpha
    } else {
      des = getDesign(
        beta, IMax = NA, theta,
        kMax, informationRates,
        efficacyStopping, futilityStopping,
        criticalValues, alpha, typeAlphaSpending,
        parameterAlphaSpending, userAlphaSpending,
        futilityBounds, typeBetaSpending,
        parameterBetaSpending, userBetaSpending,
        spendingTime)

      n = des$overallResults$information*v1

      if (rounding) {
        n = ceiling(n - 1.0e-12)
        informationRates = des$byStageResults$informationRates
        informationRates = round(n*informationRates)/n

        des = getDesign(
          beta = NA, IMax = n/v1, theta,
          kMax, informationRates,
          efficacyStopping, futilityStopping,
          criticalValues, alpha, typeAlphaSpending,
          parameterAlphaSpending, userAlphaSpending,
          futilityBounds, typeBetaSpending,
          parameterBetaSpending, userBetaSpending,
          spendingTime)
      }

      ns = des$byStageResults$informationRates*n

      if (directionUpper) {
        des$byStageResults$efficacyResponses =
          ceiling(ns*(des$byStageResults$efficacyTheta + piH0))
        des$byStageResults$futilityResponses =
          ceiling(ns*(des$byStageResults$futilityTheta + piH0))
      } else {
        des$byStageResults$efficacyResponses =
          floor(ns*(-des$byStageResults$efficacyTheta + piH0))
        des$byStageResults$futilityResponses =
          floor(ns*(-des$byStageResults$futilityTheta + piH0))
      }
    }
  }

  des$overallResults$theta = theta
  des$overallResults$numberOfSubjects = n
  des$overallResults$expectedNumberOfSubjectsH1 =
    des$overallResults$expectedInformationH1*v1
  des$overallResults$expectedNumberOfSubjectsH0 =
    des$overallResults$expectedInformationH0*v1
  des$overallResults$piH0 = piH0
  des$overallResults$pi = pi

  des$byStageResults$efficacyTheta = NULL
  des$byStageResults$futilityTheta = NULL
  des$byStageResults$numberOfSubjects =
    des$byStageResults$informationRates*n

  des$settings$normalApproximation = normalApproximation
  des$settings$rounding = rounding

  attr(des, "class") = "designOneProportion"

  des
}


#' @title Group Sequential Design for McNemar's Test for Paired
#' Proportions
#' @description Obtains the power given sample size or obtains the sample
#' size given power for a group sequential design for McNemar's test for
#' paired proportions.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param pDiscordant The proportion of discordant pairs
#'   (xi = pi01 + pi10).
#' @param riskDiff The risk difference between the active and control
#'   treatments (delta = pi_t - pi_c = pi01 - pi10)
#' @param nullVariance Whether to use the variance under the null
#'   or the variance under the alternative.
#' @param rounding Whether to round up sample size. Defaults to 1 for
#'   sample size rounding.
#' @inheritParams param_kMax
#' @param informationRates The information rates. Fixed prior to the trial.
#'   Defaults to \code{(1:kMax) / kMax} if left unspecified.
#' @inheritParams param_efficacyStopping
#' @inheritParams param_futilityStopping
#' @inheritParams param_criticalValues
#' @inheritParams param_alpha
#' @inheritParams param_typeAlphaSpending
#' @inheritParams param_parameterAlphaSpending
#' @inheritParams param_userAlphaSpending
#' @inheritParams param_futilityBounds
#' @inheritParams param_typeBetaSpending
#' @inheritParams param_parameterBetaSpending
#' @inheritParams param_userBetaSpending
#' @param spendingTime A vector of length \code{kMax} for the error spending
#'   time at each analysis. Defaults to missing, in which case, it is the
#'   same as \code{informationRates}.
#'
#' @return An S3 class \code{designPairedPropMcNemar} object with three
#' components:
#'
#' * \code{overallResults}: A data frame containing the following variables:
#'
#'     - \code{overallReject}: The overall rejection probability.
#'
#'     - \code{alpha}: The overall significance level.
#'
#'     - \code{attainedAlpha}: The attained significance level, which is
#'       different from the overall significance level in the presence of
#'       futility stopping.
#'
#'     - \code{kMax}: The number of stages.
#'
#'     - \code{theta}: The parameter value.
#'
#'     - \code{information}: The maximum information.
#'
#'     - \code{expectedInformationH1}: The expected information under H1.
#'
#'     - \code{expectedInformationH0}: The expected information under H0.
#'
#'     - \code{drift}: The drift parameter, equal to
#'       \code{theta*sqrt(information)}.
#'
#'     - \code{inflationFactor}: The inflation factor (relative to the
#'       fixed design).
#'
#'     - \code{numberOfSubjects}: The maximum number of subjects.
#'
#'     - \code{expectedNumberOfSubjectsH1}: The expected number of subjects
#'       under H1.
#'
#'     - \code{expectedNumberOfSubjectsH0}: The expected number of subjects
#'       under H0.
#'
#'     - \code{pDiscordant}: The proportion of discordant pairs
#'       (xi = pi01 + pi10).
#'
#'     - \code{riskDiff}: The risk difference between the active and control
#'       treatments (delta = pi_t - pi_c = pi01 - pi10)
#'
#' * \code{byStageResults}: A data frame containing the following variables:
#'
#'     - \code{informationRates}: The information rates.
#'
#'     - \code{efficacyBounds}: The efficacy boundaries on the Z-scale.
#'
#'     - \code{futilityBounds}: The futility boundaries on the Z-scale.
#'
#'     - \code{rejectPerStage}: The probability for efficacy stopping.
#'
#'     - \code{futilityPerStage}: The probability for futility stopping.
#'
#'     - \code{cumulativeRejection}: The cumulative probability for efficacy
#'       stopping.
#'
#'     - \code{cumulativeFutility}: The cumulative probability for futility
#'       stopping.
#'
#'     - \code{cumulativeAlphaSpent}: The cumulative alpha spent.
#'
#'     - \code{efficacyP}: The efficacy boundaries on the p-value scale.
#'
#'     - \code{futilityP}: The futility boundaries on the p-value scale.
#'
#'     - \code{information}: The cumulative information.
#'
#'     - \code{efficacyStopping}: Whether to allow efficacy stopping.
#'
#'     - \code{futilityStopping}: Whether to allow futility stopping.
#'
#'     - \code{rejectPerStageH0}: The probability for efficacy stopping
#'       under H0.
#'
#'     - \code{futilityPerStageH0}: The probability for futility stopping
#'       under H0.
#'
#'     - \code{cumulativeRejectionH0}: The cumulative probability for
#'       efficacy stopping under H0.
#'
#'     - \code{cumulativeFutilityH0}: The cumulative probability for futility
#'       stopping under H0.
#'
#'     - \code{efficacyRiskDiff}: The efficacy boundaries on the risk
#'       difference scale.
#'
#'     - \code{futilityRiskDiff}: The futility boundaries on the risk
#'       difference scale.
#'
#'     - \code{numberOfSubjects}: The number of subjects.
#'
#' * \code{settings}: A list containing the following input parameters:
#'
#'     - \code{typeAlphaSpending}: The type of alpha spending.
#'
#'     - \code{parameterAlphaSpending}: The parameter value for alpha
#'       spending.
#'
#'     - \code{userAlphaSpending}: The user defined alpha spending.
#'
#'     - \code{typeBetaSpending}: The type of beta spending.
#'
#'     - \code{parameterBetaSpending}: The parameter value for beta spending.
#'
#'     - \code{userBetaSpending}: The user defined beta spending.
#'
#'     - \code{spendingTime}: The error spending time at each analysis.
#'
#'     - \code{varianceRatio}: The ratio of the variance under H0 to the
#'       variance under H1.
#'
#'     - \code{rounding}: Whether to round up sample size.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' # Example 1: fixed design
#' (design1 <- getDesignPairedPropMcNemar(
#'   beta = 0.1, n = NA, pDiscordant = 0.16, riskDiff = 0.1,
#'   alpha = 0.025))
#'
#' # Example 2: group sequential design
#' (design2 <- getDesignPairedPropMcNemar(
#'   beta = 0.1, n = NA, pDiscordant = 0.16, riskDiff = 0.1,
#'   alpha = 0.025, kMax = 3, typeAlphaSpending = "sfOF"))
#'
#' @export
getDesignPairedPropMcNemar <- function(
    beta = NA_real_,
    n = NA_real_,
    pDiscordant = NA_real_,
    riskDiff = NA_real_,
    nullVariance = TRUE,
    rounding = TRUE,
    kMax = 1L,
    informationRates = NA_real_,
    efficacyStopping = NA_integer_,
    futilityStopping = NA_integer_,
    criticalValues = NA_real_,
    alpha = 0.025,
    typeAlphaSpending = "sfOF",
    parameterAlphaSpending = NA_real_,
    userAlphaSpending = NA_real_,
    futilityBounds = NA_real_,
    typeBetaSpending = "none",
    parameterBetaSpending = NA_real_,
    userBetaSpending = NA_real_,
    spendingTime = NA_real_) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && n <= 0) {
    stop("n must be positive")
  }

  if (is.na(pDiscordant)) {
    stop("pDiscordant must be provided")
  }

  if (pDiscordant <= 0 || pDiscordant >= 1) {
    stop("pDiscordant must lie between 0 and 1")
  }

  if (is.na(riskDiff)) {
    stop("riskDiff must be provided")
  }

  if (riskDiff <= -1 || riskDiff >= 1) {
    stop("riskDiff must lie between -1 and 1")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }

  if (any(is.na(informationRates))) {
    informationRates = (1:kMax)/kMax
  }

  directionUpper = riskDiff > 0

  theta = ifelse(directionUpper, riskDiff, -riskDiff)

  # variance for one sampling unit
  v0 = pDiscordant
  v1 = pDiscordant - riskDiff^2
  varianceRatio = ifelse(nullVariance, v0/v1, 1)

  if (!is.na(n)) { # power calculation
    if (rounding) {
      n = ceiling(n - 1.0e-12)
      informationRates = round(n*informationRates)/n
    }

    des = getDesign(
      beta = NA, IMax = n/v1, theta,
      kMax, informationRates,
      efficacyStopping, futilityStopping,
      criticalValues, alpha, typeAlphaSpending,
      parameterAlphaSpending, userAlphaSpending,
      futilityBounds, typeBetaSpending,
      parameterBetaSpending, userBetaSpending,
      spendingTime, varianceRatio)
  } else { # sample size calculation
    des = getDesign(
      beta, IMax = NA, theta,
      kMax, informationRates,
      efficacyStopping, futilityStopping,
      criticalValues, alpha, typeAlphaSpending,
      parameterAlphaSpending, userAlphaSpending,
      futilityBounds, typeBetaSpending,
      parameterBetaSpending, userBetaSpending,
      spendingTime, varianceRatio)

    n = des$overallResults$information*v1

    if (rounding) {
      n = ceiling(n - 1.0e-12)
      informationRates = des$byStageResults$informationRates
      informationRates = round(n*informationRates)/n

      des = getDesign(
        beta = NA, IMax = n/v1, theta,
        kMax, informationRates,
        efficacyStopping, futilityStopping,
        criticalValues, alpha, typeAlphaSpending,
        parameterAlphaSpending, userAlphaSpending,
        futilityBounds, typeBetaSpending,
        parameterBetaSpending, userBetaSpending,
        spendingTime, varianceRatio)
    }
  }

  des$overallResults$numberOfSubjects = n
  des$overallResults$expectedNumberOfSubjectsH1 =
    des$overallResults$expectedInformationH1*v1
  des$overallResults$expectedNumberOfSubjectsH0 =
    des$overallResults$expectedInformationH0*v1
  des$overallResults$pDiscordant = pDiscordant
  des$overallResults$riskDiff = riskDiff

  if (directionUpper) {
    des$byStageResults$efficacyRiskDiff =
      des$byStageResults$efficacyTheta
    des$byStageResults$futilityRiskDiff =
      des$byStageResults$futilityTheta
  } else {
    des$byStageResults$efficacyRiskDiff =
      -des$byStageResults$efficacyTheta
    des$byStageResults$futilityRiskDiff =
      -des$byStageResults$futilityTheta
  }
  des$byStageResults$efficacyTheta = NULL
  des$byStageResults$futilityTheta = NULL
  des$byStageResults$numberOfSubjects =
    des$byStageResults$informationRates*n

  des$settings$nullVariance = nullVariance
  des$settings$rounding = rounding

  attr(des, "class") = "designPairedPropMcNemar"

  des
}


#' @title Group Sequential Design for Two-Sample Risk Difference
#' @description Obtains the power given sample size or obtains the sample
#' size given power for a group sequential design for two-sample risk
#' difference.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param riskDiffH0 The risk difference under the null hypothesis.
#'   Defaults to 0.
#' @param pi1 The assumed probability for the active treatment group.
#' @param pi2 The assumed probability for the control group.
#' @param nullVariance Whether to use the variance under the null or
#'   the empirical variance under the alternative.
#' @param allocationRatioPlanned Allocation ratio for the active treatment
#'   versus control. Defaults to 1 for equal randomization.
#' @param rounding Whether to round up sample size. Defaults to 1 for
#'   sample size rounding.
#' @inheritParams param_kMax
#' @param informationRates The information rates. Fixed prior to the trial.
#'   Defaults to \code{(1:kMax) / kMax} if left unspecified.
#' @inheritParams param_efficacyStopping
#' @inheritParams param_futilityStopping
#' @inheritParams param_criticalValues
#' @inheritParams param_alpha
#' @inheritParams param_typeAlphaSpending
#' @inheritParams param_parameterAlphaSpending
#' @inheritParams param_userAlphaSpending
#' @inheritParams param_futilityBounds
#' @inheritParams param_typeBetaSpending
#' @inheritParams param_parameterBetaSpending
#' @inheritParams param_userBetaSpending
#' @param spendingTime A vector of length \code{kMax} for the error spending
#'   time at each analysis. Defaults to missing, in which case, it is the
#'   same as \code{informationRates}.
#'
#' @return An S3 class \code{designRiskDiff} object with three
#' components:
#'
#' * \code{overallResults}: A data frame containing the following variables:
#'
#'     - \code{overallReject}: The overall rejection probability.
#'
#'     - \code{alpha}: The overall significance level.
#'
#'     - \code{attainedAlpha}: The attained significance level, which is
#'       different from the overall significance level in the presence of
#'       futility stopping.
#'
#'     - \code{kMax}: The number of stages.
#'
#'     - \code{theta}: The parameter value.
#'
#'     - \code{information}: The maximum information.
#'
#'     - \code{expectedInformationH1}: The expected information under H1.
#'
#'     - \code{expectedInformationH0}: The expected information under H0.
#'
#'     - \code{drift}: The drift parameter, equal to
#'       \code{theta*sqrt(information)}.
#'
#'     - \code{inflationFactor}: The inflation factor (relative to the
#'       fixed design).
#'
#'     - \code{numberOfSubjects}: The maximum number of subjects.
#'
#'     - \code{expectedNumberOfSubjectsH1}: The expected number of subjects
#'       under H1.
#'
#'     - \code{expectedNumberOfSubjectsH0}: The expected number of subjects
#'       under H0.
#'
#'     - \code{riskDiffH0}: The risk difference under the null hypothesis.
#'
#'     - \code{pi1}: The assumed probability for the active treatment group.
#'
#'     - \code{pi2}: The assumed probability for the control group.
#'
#' * \code{byStageResults}: A data frame containing the following variables:
#'
#'     - \code{informationRates}: The information rates.
#'
#'     - \code{efficacyBounds}: The efficacy boundaries on the Z-scale.
#'
#'     - \code{futilityBounds}: The futility boundaries on the Z-scale.
#'
#'     - \code{rejectPerStage}: The probability for efficacy stopping.
#'
#'     - \code{futilityPerStage}: The probability for futility stopping.
#'
#'     - \code{cumulativeRejection}: The cumulative probability for efficacy
#'       stopping.
#'
#'     - \code{cumulativeFutility}: The cumulative probability for futility
#'       stopping.
#'
#'     - \code{cumulativeAlphaSpent}: The cumulative alpha spent.
#'
#'     - \code{efficacyRiskDiff}: The efficacy boundaries on the risk
#'       difference scale.
#'
#'     - \code{futilityRiskDiff}: The futility boundaries on the risk
#'       difference scale.
#'
#'     - \code{efficacyP}: The efficacy boundaries on the p-value scale.
#'
#'     - \code{futilityP}: The futility boundaries on the p-value scale.
#'
#'     - \code{information}: The cumulative information.
#'
#'     - \code{efficacyStopping}: Whether to allow efficacy stopping.
#'
#'     - \code{futilityStopping}: Whether to allow futility stopping.
#'
#'     - \code{rejectPerStageH0}: The probability for efficacy stopping
#'       under H0.
#'
#'     - \code{futilityPerStageH0}: The probability for futility stopping
#'       under H0.
#'
#'     - \code{cumulativeRejectionH0}: The cumulative probability for
#'       efficacy stopping under H0.
#'
#'     - \code{cumulativeFutilityH0}: The cumulative probability for futility
#'       stopping under H0.
#'
#'     - \code{numberOfSubjects}: The number of subjects.
#'
#' * \code{settings}: A list containing the following input parameters:
#'
#'     - \code{typeAlphaSpending}: The type of alpha spending.
#'
#'     - \code{parameterAlphaSpending}: The parameter value for alpha
#'       spending.
#'
#'     - \code{userAlphaSpending}: The user defined alpha spending.
#'
#'     - \code{typeBetaSpending}: The type of beta spending.
#'
#'     - \code{parameterBetaSpending}: The parameter value for beta spending.
#'
#'     - \code{userBetaSpending}: The user defined beta spending.
#'
#'     - \code{spendingTime}: The error spending time at each analysis.
#'
#'     - \code{varianceRatio}: The ratio of the variance under H0 to
#'       the variance under H1.
#'
#'     - \code{nullVariance}: Whether to use the variance under the null or
#'       the empirical variance under the alternative.
#'
#'     - \code{allocationRatioPlanned}: Allocation ratio for the active
#'       treatment versus control.
#'
#'     - \code{rounding}: Whether to round up sample size.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' (design1 <- getDesignRiskDiff(
#'   beta = 0.2, n = NA, pi1 = 0.1, pi2 = 0.15,
#'   kMax = 3, alpha = 0.025, typeAlphaSpending = "sfOF",
#'   nullVariance = 0))
#'
#' @export
getDesignRiskDiff <- function(
    beta = NA_real_,
    n = NA_real_,
    riskDiffH0 = 0,
    pi1 = NA_real_,
    pi2 = NA_real_,
    nullVariance = TRUE,
    allocationRatioPlanned = 1,
    rounding = TRUE,
    kMax = 1L,
    informationRates = NA_real_,
    efficacyStopping = NA_integer_,
    futilityStopping = NA_integer_,
    criticalValues = NA_real_,
    alpha = 0.025,
    typeAlphaSpending = "sfOF",
    parameterAlphaSpending = NA_real_,
    userAlphaSpending = NA_real_,
    futilityBounds = NA_real_,
    typeBetaSpending = "none",
    parameterBetaSpending = NA_real_,
    userBetaSpending = NA_real_,
    spendingTime = NA_real_) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && n <= 0) {
    stop("n must be positive")
  }

  if (riskDiffH0 <= -1 || riskDiffH0 >= 1) {
    stop("riskDiffH0 must lie between -1 and 1")
  }

  if (pi1 <= 0 || pi1 >= 1) {
    stop("pi1 must lie between 0 and 1")
  }

  if (pi2 <= 0 || pi2 >= 1) {
    stop("pi2 must lie between 0 and 1")
  }

  if (allocationRatioPlanned <= 0) {
    stop("allocationRatioPlanned must be positive")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }

  if (any(is.na(informationRates))) {
    informationRates = (1:kMax)/kMax
  }


  r = allocationRatioPlanned/(1 + allocationRatioPlanned)

  riskDiff = pi1 - pi2

  directionUpper = riskDiff > riskDiffH0

  theta = ifelse(directionUpper, riskDiff - riskDiffH0,
                 riskDiffH0 - riskDiff)

  # restricted maximum likelihood estimates
  mr = remlRiskDiff(riskDiffH0, r, r*pi1, 1-r, (1-r)*pi2)
  p1 = mr[1]
  p2 = mr[2]

  # variance for one sampling unit
  v0 = p1*(1-p1)/r + p2*(1-p2)/(1-r)
  v1 = pi1*(1-pi1)/r + pi2*(1-pi2)/(1-r)

  varianceRatio = ifelse(nullVariance, v0/v1, 1)

  if (!is.na(n)) { # power calculation
    if (rounding) {
      n = ceiling(n - 1.0e-12)
      informationRates = round(n*informationRates)/n
    }

    des = getDesign(
      beta = NA, IMax = n/v1, theta,
      kMax, informationRates,
      efficacyStopping, futilityStopping,
      criticalValues, alpha, typeAlphaSpending,
      parameterAlphaSpending, userAlphaSpending,
      futilityBounds, typeBetaSpending,
      parameterBetaSpending, userBetaSpending,
      spendingTime, varianceRatio)
  } else { # sample size calculation
    des = getDesign(
      beta, IMax = NA, theta,
      kMax, informationRates,
      efficacyStopping, futilityStopping,
      criticalValues, alpha, typeAlphaSpending,
      parameterAlphaSpending, userAlphaSpending,
      futilityBounds, typeBetaSpending,
      parameterBetaSpending, userBetaSpending,
      spendingTime, varianceRatio)

    n = des$overallResults$information*v1

    if (rounding) {
      n = ceiling(n - 1.0e-12)
      informationRates = des$byStageResults$informationRates
      informationRates = round(n*informationRates)/n

      des = getDesign(
        beta = NA, IMax = n/v1, theta,
        kMax, informationRates,
        efficacyStopping, futilityStopping,
        criticalValues, alpha, typeAlphaSpending,
        parameterAlphaSpending, userAlphaSpending,
        futilityBounds, typeBetaSpending,
        parameterBetaSpending, userBetaSpending,
        spendingTime, varianceRatio)
    }
  }

  des$overallResults$theta = theta
  des$overallResults$numberOfSubjects = n
  des$overallResults$expectedNumberOfSubjectsH1 =
    des$overallResults$expectedInformationH1*v1
  des$overallResults$expectedNumberOfSubjectsH0 =
    des$overallResults$expectedInformationH0*v1
  des$overallResults$riskDiffH0 = riskDiffH0
  des$overallResults$pi1 = pi1
  des$overallResults$pi2 = pi2

  if (directionUpper) {
    des$byStageResults$efficacyRiskDiff =
      des$byStageResults$efficacyTheta + riskDiffH0
    des$byStageResults$futilityRiskDiff =
      des$byStageResults$futilityTheta + riskDiffH0
  } else {
    des$byStageResults$efficacyRiskDiff =
      -des$byStageResults$efficacyTheta + riskDiffH0
    des$byStageResults$futilityRiskDiff =
      -des$byStageResults$futilityTheta + riskDiffH0
  }

  des$byStageResults$efficacyTheta = NULL
  des$byStageResults$futilityTheta = NULL
  des$byStageResults$numberOfSubjects =
    des$byStageResults$informationRates*n

  des$settings$nullVariance = nullVariance
  des$settings$varianceRatio = varianceRatio
  des$settings$allocationRatioPlanned = allocationRatioPlanned
  des$settings$rounding = rounding

  attr(des, "class") = "designRiskDiff"

  des
}


#' @title Group Sequential Design for Two-Sample Risk Ratio
#' @description Obtains the power given sample size or obtains the sample
#' size given power for a group sequential design for two-sample risk
#' ratio.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param riskRatioH0 The risk ratio under the null hypothesis.
#'   Defaults to 1.
#' @param pi1 The assumed probability for the active treatment group.
#' @param pi2 The assumed probability for the control group.
#' @param nullVariance Whether to use the variance under the null or
#'   the empirical variance under the alternative.
#' @param allocationRatioPlanned Allocation ratio for the active treatment
#'   versus control. Defaults to 1 for equal randomization.
#' @param rounding Whether to round up sample size. Defaults to 1 for
#'   sample size rounding.
#' @inheritParams param_kMax
#' @param informationRates The information rates. Fixed prior to the trial.
#'   Defaults to \code{(1:kMax) / kMax} if left unspecified.
#' @inheritParams param_efficacyStopping
#' @inheritParams param_futilityStopping
#' @inheritParams param_criticalValues
#' @inheritParams param_alpha
#' @inheritParams param_typeAlphaSpending
#' @inheritParams param_parameterAlphaSpending
#' @inheritParams param_userAlphaSpending
#' @inheritParams param_futilityBounds
#' @inheritParams param_typeBetaSpending
#' @inheritParams param_parameterBetaSpending
#' @inheritParams param_userBetaSpending
#' @param spendingTime A vector of length \code{kMax} for the error spending
#'   time at each analysis. Defaults to missing, in which case, it is the
#'   same as \code{informationRates}.
#'
#' @return An S3 class \code{designRiskRatio} object with three components:
#'
#' * \code{overallResults}: A data frame containing the following variables:
#'
#'    - \code{overallReject}: The overall rejection probability.
#'
#'     - \code{alpha}: The overall significance level.
#'
#'     - \code{attainedAlpha}: The attained significance level, which is
#'       different from the overall significance level in the presence of
#'       futility stopping.
#'
#'     - \code{kMax}: The number of stages.
#'
#'     - \code{theta}: The parameter value.
#'
#'     - \code{information}: The maximum information.
#'
#'     - \code{expectedInformationH1}: The expected information under H1.
#'
#'     - \code{expectedInformationH0}: The expected information under H0.
#'
#'     - \code{drift}: The drift parameter, equal to
#'       \code{theta*sqrt(information)}.
#'
#'     - \code{inflationFactor}: The inflation factor (relative to the
#'       fixed design).
#'
#'     - \code{numberOfSubjects}: The maximum number of subjects.
#'
#'     - \code{expectedNumberOfSubjectsH1}: The expected number of subjects
#'       under H1.
#'
#'     - \code{expectedNumberOfSubjectsH0}: The expected number of subjects
#'       under H0.
#'
#'     - \code{riskRatioH0}: The risk ratio under the null hypothesis.
#'
#'     - \code{pi1}: The assumed probability for the active treatment group.
#'
#'     - \code{pi2}: The assumed probability for the control group.
#'
#' * \code{byStageResults}: A data frame containing the following variables:
#'
#'     - \code{informationRates}: The information rates.
#'
#'     - \code{efficacyBounds}: The efficacy boundaries on the Z-scale.
#'
#'     - \code{futilityBounds}: The futility boundaries on the Z-scale.
#'
#'     - \code{rejectPerStage}: The probability for efficacy stopping.
#'
#'     - \code{futilityPerStage}: The probability for futility stopping.
#'
#'     - \code{cumulativeRejection}: The cumulative probability for efficacy
#'       stopping.
#'
#'     - \code{cumulativeFutility}: The cumulative probability for futility
#'       stopping.
#'
#'     - \code{cumulativeAlphaSpent}: The cumulative alpha spent.
#'
#'     - \code{efficacyP}: The efficacy boundaries on the p-value scale.
#'
#'     - \code{futilityP}: The futility boundaries on the p-value scale.
#'
#'     - \code{information}: The cumulative information.
#'
#'     - \code{efficacyStopping}: Whether to allow efficacy stopping.
#'
#'     - \code{futilityStopping}: Whether to allow futility stopping.
#'
#'     - \code{rejectPerStageH0}: The probability for efficacy stopping
#'       under H0.
#'
#'     - \code{futilityPerStageH0}: The probability for futility stopping
#'       under H0.
#'
#'     - \code{cumulativeRejectionH0}: The cumulative probability for
#'       efficacy stopping under H0.
#'
#'     - \code{cumulativeFutilityH0}: The cumulative probability for futility
#'       stopping under H0.
#'
#'     - \code{efficacyRiskRatio}: The efficacy boundaries on the risk
#'       ratio scale.
#'
#'     - \code{futilityRiskRatio}: The futility boundaries on the risk
#'       ratio scale.
#'
#'     - \code{numberOfSubjects}: The number of subjects.
#'
#' * \code{settings}: A list containing the following input parameters:
#'
#'     - \code{typeAlphaSpending}: The type of alpha spending.
#'
#'     - \code{parameterAlphaSpending}: The parameter value for alpha
#'       spending.
#'
#'     - \code{userAlphaSpending}: The user defined alpha spending.
#'
#'     - \code{typeBetaSpending}: The type of beta spending.
#'
#'     - \code{parameterBetaSpending}: The parameter value for beta spending.
#'
#'     - \code{userBetaSpending}: The user defined beta spending.
#'
#'     - \code{spendingTime}: The error spending time at each analysis.
#'
#'     - \code{varianceRatio}: The ratio of the variance under H0 to
#'       the variance under H1.
#'
#'     - \code{nullVariance}: Whether to use the variance under the null or
#'       the empirical variance under the alternative.
#'
#'     - \code{allocationRatioPlanned}: Allocation ratio for the active
#'       treatment versus control.
#'
#'     - \code{rounding}: Whether to round up sample size.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' (design1 <- getDesignRiskRatio(
#'   beta = 0.1, n = NA, pi1 = 0.5, pi2 = 0.3,
#'   alpha = 0.05))
#'
#' @export
getDesignRiskRatio <- function(
    beta = NA_real_,
    n = NA_real_,
    riskRatioH0 = 1,
    pi1 = NA_real_,
    pi2 = NA_real_,
    nullVariance = TRUE,
    allocationRatioPlanned = 1,
    rounding = TRUE,
    kMax = 1L,
    informationRates = NA_real_,
    efficacyStopping = NA_integer_,
    futilityStopping = NA_integer_,
    criticalValues = NA_real_,
    alpha = 0.025,
    typeAlphaSpending = "sfOF",
    parameterAlphaSpending = NA_real_,
    userAlphaSpending = NA_real_,
    futilityBounds = NA_real_,
    typeBetaSpending = "none",
    parameterBetaSpending = NA_real_,
    userBetaSpending = NA_real_,
    spendingTime = NA_real_) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && n <= 0) {
    stop("n must be positive")
  }

  if (riskRatioH0 <= 0) {
    stop("riskRatioH0 must be positive")
  }

  if (pi1 <= 0 || pi1 >= 1) {
    stop("pi1 must lie between 0 and 1")
  }

  if (pi2 <= 0 || pi2 >= 1) {
    stop("pi2 must lie between 0 and 1")
  }

  if (allocationRatioPlanned <= 0) {
    stop("allocationRatioPlanned must be positive")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }

  if (any(is.na(informationRates))) {
    informationRates = (1:kMax)/kMax
  }


  r = allocationRatioPlanned/(1 + allocationRatioPlanned)

  riskRatio = pi1/pi2

  directionUpper = riskRatio > riskRatioH0

  theta = ifelse(directionUpper, log(riskRatio) - log(riskRatioH0),
                 log(riskRatioH0) - log(riskRatio))

  # restricted maximum likelihood estimates
  mr = remlRiskRatio(riskRatioH0, r, r*pi1, 1-r, (1-r)*pi2)
  p1 = mr[1]
  p2 = mr[2]

  # variance for one sampling unit
  v0 = (1-p1)/(r*p1) + (1-p2)/((1-r)*p2)
  v1 = (1-pi1)/(r*pi1) + (1-pi2)/((1-r)*pi2)
  varianceRatio = ifelse(nullVariance, v0/v1, 1)

  if (!is.na(n)) { # power calculation
    if (rounding) {
      n = ceiling(n - 1.0e-12)
      informationRates = round(n*informationRates)/n
    }

    des = getDesign(
      beta = NA, IMax = n/v1, theta,
      kMax, informationRates,
      efficacyStopping, futilityStopping,
      criticalValues, alpha, typeAlphaSpending,
      parameterAlphaSpending, userAlphaSpending,
      futilityBounds, typeBetaSpending,
      parameterBetaSpending, userBetaSpending,
      spendingTime, varianceRatio)
  } else { # sample size calculation
    des = getDesign(
      beta, IMax = NA, theta,
      kMax, informationRates,
      efficacyStopping, futilityStopping,
      criticalValues, alpha, typeAlphaSpending,
      parameterAlphaSpending, userAlphaSpending,
      futilityBounds, typeBetaSpending,
      parameterBetaSpending, userBetaSpending,
      spendingTime, varianceRatio)

    n = des$overallResults$information*v1

    if (rounding) {
      n = ceiling(n - 1.0e-12)
      informationRates = des$byStageResults$informationRates
      informationRates = round(n*informationRates)/n

      des = getDesign(
        beta = NA, IMax = n/v1, theta,
        kMax, informationRates,
        efficacyStopping, futilityStopping,
        criticalValues, alpha, typeAlphaSpending,
        parameterAlphaSpending, userAlphaSpending,
        futilityBounds, typeBetaSpending,
        parameterBetaSpending, userBetaSpending,
        spendingTime, varianceRatio)
    }
  }

  des$overallResults$theta = theta
  des$overallResults$numberOfSubjects = n
  des$overallResults$expectedNumberOfSubjectsH1 =
    des$overallResults$expectedInformationH1*v1
  des$overallResults$expectedNumberOfSubjectsH0 =
    des$overallResults$expectedInformationH0*v1
  des$overallResults$riskRatioH0 = riskRatioH0
  des$overallResults$pi1 = pi1
  des$overallResults$pi2 = pi2

  if (directionUpper) {
    des$byStageResults$efficacyRiskRatio =
      exp(des$byStageResults$efficacyTheta)*riskRatioH0
    des$byStageResults$futilityRiskRatio =
      exp(des$byStageResults$futilityTheta)*riskRatioH0
  } else {
    des$byStageResults$efficacyRiskRatio =
      exp(-des$byStageResults$efficacyTheta)*riskRatioH0
    des$byStageResults$futilityRiskRatio =
      exp(-des$byStageResults$futilityTheta)*riskRatioH0
  }

  des$byStageResults$efficacyTheta = NULL
  des$byStageResults$futilityTheta = NULL
  des$byStageResults$numberOfSubjects =
    des$byStageResults$informationRates*n

  des$settings$nullVariance = nullVariance
  des$settings$allocationRatioPlanned = allocationRatioPlanned
  des$settings$rounding = rounding

  attr(des, "class") = "designRiskRatio"

  des
}


#' @title Group Sequential Design for Two-Sample Risk Ratio Based on
#' the Farrington-Manning Score Test
#' @description Obtains the power given sample size or obtains the sample
#' size given power for a group sequential design for two-sample risk
#' ratio based on the Farrington-Manning score test
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param riskRatioH0 The risk ratio under the null hypothesis.
#'   Defaults to 1.
#' @param pi1 The assumed probability for the active treatment group.
#' @param pi2 The assumed probability for the control group.
#' @param nullVariance Whether to use the variance under the null or
#'   the empirical variance under the alternative.
#' @param allocationRatioPlanned Allocation ratio for the active treatment
#'   versus control. Defaults to 1 for equal randomization.
#' @param rounding Whether to round up sample size. Defaults to 1 for
#'   sample size rounding.
#' @inheritParams param_kMax
#' @param informationRates The information rates. Fixed prior to the trial.
#'   Defaults to \code{(1:kMax) / kMax} if left unspecified.
#' @inheritParams param_efficacyStopping
#' @inheritParams param_futilityStopping
#' @inheritParams param_criticalValues
#' @inheritParams param_alpha
#' @inheritParams param_typeAlphaSpending
#' @inheritParams param_parameterAlphaSpending
#' @inheritParams param_userAlphaSpending
#' @inheritParams param_futilityBounds
#' @inheritParams param_typeBetaSpending
#' @inheritParams param_parameterBetaSpending
#' @inheritParams param_userBetaSpending
#' @param spendingTime A vector of length \code{kMax} for the error spending
#'   time at each analysis. Defaults to missing, in which case, it is the
#'   same as \code{informationRates}.
#'
#' @return An S3 class \code{designRiskRatioFM} object with three
#' components:
#'
#' * \code{overallResults}: A data frame containing the following variables:
#'
#'    - \code{overallReject}: The overall rejection probability.
#'
#'     - \code{alpha}: The overall significance level.
#'
#'     - \code{attainedAlpha}: The attained significance level, which is
#'       different from the overall significance level in the presence of
#'       futility stopping.
#'
#'     - \code{kMax}: The number of stages.
#'
#'     - \code{theta}: The parameter value.
#'
#'     - \code{information}: The maximum information.
#'
#'     - \code{expectedInformationH1}: The expected information under H1.
#'
#'     - \code{expectedInformationH0}: The expected information under H0.
#'
#'     - \code{drift}: The drift parameter, equal to
#'       \code{theta*sqrt(information)}.
#'
#'     - \code{inflationFactor}: The inflation factor (relative to the
#'       fixed design).
#'
#'     - \code{numberOfSubjects}: The maximum number of subjects.
#'
#'     - \code{expectedNumberOfSubjectsH1}: The expected number of subjects
#'       under H1.
#'
#'     - \code{expectedNumberOfSubjectsH0}: The expected number of subjects
#'       under H0.
#'
#'     - \code{riskRatioH0}: The risk ratio under the null hypothesis.
#'
#'     - \code{pi1}: The assumed probability for the active treatment group.
#'
#'     - \code{pi2}: The assumed probability for the control group.
#'
#' * \code{byStageResults}: A data frame containing the following variables:
#'
#'     - \code{informationRates}: The information rates.
#'
#'     - \code{efficacyBounds}: The efficacy boundaries on the Z-scale.
#'
#'     - \code{futilityBounds}: The futility boundaries on the Z-scale.
#'
#'     - \code{rejectPerStage}: The probability for efficacy stopping.
#'
#'     - \code{futilityPerStage}: The probability for futility stopping.
#'
#'     - \code{cumulativeRejection}: The cumulative probability for efficacy
#'       stopping.
#'
#'     - \code{cumulativeFutility}: The cumulative probability for futility
#'       stopping.
#'
#'     - \code{cumulativeAlphaSpent}: The cumulative alpha spent.
#'
#'     - \code{efficacyP}: The efficacy boundaries on the p-value scale.
#'
#'     - \code{futilityP}: The futility boundaries on the p-value scale.
#'
#'     - \code{information}: The cumulative information.
#'
#'     - \code{efficacyStopping}: Whether to allow efficacy stopping.
#'
#'     - \code{futilityStopping}: Whether to allow futility stopping.
#'
#'     - \code{rejectPerStageH0}: The probability for efficacy stopping
#'       under H0.
#'
#'     - \code{futilityPerStageH0}: The probability for futility stopping
#'       under H0.
#'
#'     - \code{cumulativeRejectionH0}: The cumulative probability for
#'       efficacy stopping under H0.
#'
#'     - \code{cumulativeFutilityH0}: The cumulative probability for futility
#'       stopping under H0.
#'
#'     - \code{efficacyRiskRatioScore}: The efficacy boundaries on the
#'       score test \code{pi1 - riskRatioH0*pi2} score.
#'
#'     - \code{futilityRiskRatioScore}: The futility boundaries on the
#'       score test \code{pi1 - riskRatioH0*pi2} scale.
#'
#'     - \code{numberOfSubjects}: The number of subjects.
#'
#' * \code{settings}: A list containing the following input parameters:
#'
#'     - \code{typeAlphaSpending}: The type of alpha spending.
#'
#'     - \code{parameterAlphaSpending}: The parameter value for alpha
#'       spending.
#'
#'     - \code{userAlphaSpending}: The user defined alpha spending.
#'
#'     - \code{typeBetaSpending}: The type of beta spending.
#'
#'     - \code{parameterBetaSpending}: The parameter value for beta spending.
#'
#'     - \code{userBetaSpending}: The user defined beta spending.
#'
#'     - \code{spendingTime}: The error spending time at each analysis.
#'
#'     - \code{varianceRatio}: The ratio of the variance under H0 to
#'       the variance under H1.
#'
#'     - \code{nullVariance}: Whether to use the variance under the null or
#'       the empirical variance under the alternative.
#'
#'     - \code{allocationRatioPlanned}: Allocation ratio for the active
#'       treatment versus control.
#'
#'     - \code{rounding}: Whether to round up sample size.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' (design1 <- getDesignRiskRatioFM(
#'   beta = 0.2, riskRatioH0 = 1.3, pi1 = 0.125, pi2 = 0.125,
#'   alpha = 0.05))
#'
#' @export
getDesignRiskRatioFM <- function(
    beta = NA_real_,
    n = NA_real_,
    riskRatioH0 = 1,
    pi1 = NA_real_,
    pi2 = NA_real_,
    nullVariance = TRUE,
    allocationRatioPlanned = 1,
    rounding = TRUE,
    kMax = 1L,
    informationRates = NA_real_,
    efficacyStopping = NA_integer_,
    futilityStopping = NA_integer_,
    criticalValues = NA_real_,
    alpha = 0.025,
    typeAlphaSpending = "sfOF",
    parameterAlphaSpending = NA_real_,
    userAlphaSpending = NA_real_,
    futilityBounds = NA_real_,
    typeBetaSpending = "none",
    parameterBetaSpending = NA_real_,
    userBetaSpending = NA_real_,
    spendingTime = NA_real_) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && n <= 0) {
    stop("n must be positive")
  }

  if (riskRatioH0 <= 0) {
    stop("riskRatioH0 must be positive")
  }

  if (pi1 <= 0 || pi1 >= 1) {
    stop("pi1 must lie between 0 and 1")
  }

  if (pi2 <= 0 || pi2 >= 1) {
    stop("pi2 must lie between 0 and 1")
  }

  if (allocationRatioPlanned <= 0) {
    stop("allocationRatioPlanned must be positive")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }

  if (any(is.na(informationRates))) {
    informationRates = (1:kMax)/kMax
  }


  r = allocationRatioPlanned/(1 + allocationRatioPlanned)

  riskRatio = pi1/pi2

  directionUpper = riskRatio > riskRatioH0

  theta = ifelse(directionUpper, pi1 - riskRatioH0*pi2,
                 -pi1 + riskRatioH0*pi2)

  # restricted maximum likelihood estimates
  mr = remlRiskRatio(riskRatioH0, r, r*pi1, 1-r, (1-r)*pi2)
  p1 = mr[1]
  p2 = mr[2]

  # variance for one sampling unit
  v0 = p1*(1-p1)/r + riskRatioH0^2*p2*(1-p2)/(1-r)
  v1 = pi1*(1-pi1)/r + riskRatioH0^2*pi2*(1-pi2)/(1-r)

  varianceRatio = ifelse(nullVariance, v0/v1, 1)

  if (!is.na(n)) { # power calculation
    if (rounding) {
      n = ceiling(n - 1.0e-12)
      informationRates = round(n*informationRates)/n
    }

    des = getDesign(
      beta = NA, IMax = n/v1, theta,
      kMax, informationRates,
      efficacyStopping, futilityStopping,
      criticalValues, alpha, typeAlphaSpending,
      parameterAlphaSpending, userAlphaSpending,
      futilityBounds, typeBetaSpending,
      parameterBetaSpending, userBetaSpending,
      spendingTime, varianceRatio)
  } else { # sample size calculation
    des = getDesign(
      beta, IMax = NA, theta,
      kMax, informationRates,
      efficacyStopping, futilityStopping,
      criticalValues, alpha, typeAlphaSpending,
      parameterAlphaSpending, userAlphaSpending,
      futilityBounds, typeBetaSpending,
      parameterBetaSpending, userBetaSpending,
      spendingTime, varianceRatio)

    n = des$overallResults$information*v1

    if (rounding) {
      n = ceiling(n - 1.0e-12)
      informationRates = des$byStageResults$informationRates
      informationRates = round(n*informationRates)/n

      des = getDesign(
        beta = NA, IMax = n/v1, theta,
        kMax, informationRates,
        efficacyStopping, futilityStopping,
        criticalValues, alpha, typeAlphaSpending,
        parameterAlphaSpending, userAlphaSpending,
        futilityBounds, typeBetaSpending,
        parameterBetaSpending, userBetaSpending,
        spendingTime, varianceRatio)
    }
  }

  des$overallResults$theta = theta
  des$overallResults$numberOfSubjects = n
  des$overallResults$expectedNumberOfSubjectsH1 =
    des$overallResults$expectedInformationH1*v1
  des$overallResults$expectedNumberOfSubjectsH0 =
    des$overallResults$expectedInformationH0*v1
  des$overallResults$riskRatioH0 = riskRatioH0
  des$overallResults$pi1 = pi1
  des$overallResults$pi2 = pi2

  if (directionUpper) {
    des$byStageResults$efficacyRiskRatioScore =
      des$byStageResults$efficacyTheta
    des$byStageResults$futilityRiskRatioScore =
      des$byStageResults$futilityTheta
  } else {
    des$byStageResults$efficacyRiskRatioScore =
      -des$byStageResults$efficacyTheta
    des$byStageResults$futilityRiskRatioScore =
      -des$byStageResults$futilityTheta
  }

  des$byStageResults$efficacyTheta = NULL
  des$byStageResults$futilityTheta = NULL
  des$byStageResults$numberOfSubjects =
    des$byStageResults$informationRates*n

  des$settings$nullVariance = nullVariance
  des$settings$allocationRatioPlanned = allocationRatioPlanned
  des$settings$rounding = rounding

  attr(des, "class") = "designRiskRatioFM"

  des
}


#' @title Group Sequential Design for Two-Sample Odds Ratio
#' @description Obtains the power given sample size or obtains the sample
#' size given power for a group sequential design for two-sample odds
#' ratio.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param oddsRatioH0 The odds ratio under the null hypothesis.
#'   Defaults to 1.
#' @param pi1 The assumed probability for the active treatment group.
#' @param pi2 The assumed probability for the control group.
#' @param nullVariance Whether to use the variance under the null
#'   or the empirical variance under the alternative.
#' @param allocationRatioPlanned Allocation ratio for the active treatment
#'   versus control. Defaults to 1 for equal randomization.
#' @param rounding Whether to round up sample size. Defaults to 1 for
#'   sample size rounding.
#' @inheritParams param_kMax
#' @param informationRates The information rates. Fixed prior to the trial.
#'   Defaults to \code{(1:kMax) / kMax} if left unspecified.
#' @inheritParams param_efficacyStopping
#' @inheritParams param_futilityStopping
#' @inheritParams param_criticalValues
#' @inheritParams param_alpha
#' @inheritParams param_typeAlphaSpending
#' @inheritParams param_parameterAlphaSpending
#' @inheritParams param_userAlphaSpending
#' @inheritParams param_futilityBounds
#' @inheritParams param_typeBetaSpending
#' @inheritParams param_parameterBetaSpending
#' @inheritParams param_userBetaSpending
#' @param spendingTime A vector of length \code{kMax} for the error spending
#'   time at each analysis. Defaults to missing, in which case, it is the
#'   same as \code{informationRates}.
#'
#' @return An S3 class \code{designOddsRatio} object with three components:
#'
#' * \code{overallResults}: A data frame containing the following variables:
#'
#'     - \code{overallReject}: The overall rejection probability.
#'
#'     - \code{alpha}: The overall significance level.
#'
#'     - \code{attainedAlpha}: The attained significance level, which is
#'       different from the overall significance level in the presence of
#'       futility stopping.
#'
#'     - \code{kMax}: The number of stages.
#'
#'     - \code{theta}: The parameter value.
#'
#'     - \code{information}: The maximum information.
#'
#'     - \code{expectedInformationH1}: The expected information under H1.
#'
#'     - \code{expectedInformationH0}: The expected information under H0.
#'
#'     - \code{drift}: The drift parameter, equal to
#'       \code{theta*sqrt(information)}.
#'
#'     - \code{inflationFactor}: The inflation factor (relative to the
#'       fixed design).
#'
#'     - \code{numberOfSubjects}: The maximum number of subjects.
#'
#'     - \code{expectedNumberOfSubjectsH1}: The expected number of subjects
#'       under H1.
#'
#'     - \code{expectedNumberOfSubjectsH0}: The expected number of subjects
#'       under H0.
#'
#'     - \code{oddsRatioH0}: The odds ratio under the null hypothesis.
#'
#'     - \code{pi1}: The assumed probability for the active treatment group.
#'
#'     - \code{pi2}: The assumed probability for the control group.
#'
#' * \code{byStageResults}: A data frame containing the following variables:
#'
#'     - \code{informationRates}: The information rates.
#'
#'     - \code{efficacyBounds}: The efficacy boundaries on the Z-scale.
#'
#'     - \code{futilityBounds}: The futility boundaries on the Z-scale.
#'
#'     - \code{rejectPerStage}: The probability for efficacy stopping.
#'
#'     - \code{futilityPerStage}: The probability for futility stopping.
#'
#'     - \code{cumulativeRejection}: The cumulative probability for efficacy
#'       stopping.
#'
#'     - \code{cumulativeFutility}: The cumulative probability for futility
#'       stopping.
#'
#'     - \code{cumulativeAlphaSpent}: The cumulative alpha spent.
#'
#'     - \code{efficacyP}: The efficacy boundaries on the p-value scale.
#'
#'     - \code{futilityP}: The futility boundaries on the p-value scale.
#'
#'     - \code{information}: The cumulative information.
#'
#'     - \code{efficacyStopping}: Whether to allow efficacy stopping.
#'
#'     - \code{futilityStopping}: Whether to allow futility stopping.
#'
#'     - \code{rejectPerStageH0}: The probability for efficacy stopping
#'       under H0.
#'
#'     - \code{futilityPerStageH0}: The probability for futility stopping
#'       under H0.
#'
#'     - \code{cumulativeRejectionH0}: The cumulative probability for
#'       efficacy stopping under H0.
#'
#'     - \code{cumulativeFutilityH0}: The cumulative probability for futility
#'       stopping under H0.
#'
#'     - \code{efficacyOdddsRatio}: The efficacy boundaries on the odds
#'       ratio scale.
#'
#'     - \code{futilityOddsRatio}: The futility boundaries on the odds
#'       ratio scale.
#'
#'     - \code{numberOfSubjects}: The number of subjects.
#'
#' * \code{settings}: A list containing the following input parameters:
#'
#'     - \code{typeAlphaSpending}: The type of alpha spending.
#'
#'     - \code{parameterAlphaSpending}: The parameter value for alpha
#'       spending.
#'
#'     - \code{userAlphaSpending}: The user defined alpha spending.
#'
#'     - \code{typeBetaSpending}: The type of beta spending.
#'
#'     - \code{parameterBetaSpending}: The parameter value for beta spending.
#'
#'     - \code{userBetaSpending}: The user defined beta spending.
#'
#'     - \code{spendingTime}: The error spending time at each analysis.
#'
#'     - \code{varianceRatio}: The ratio of the variance under H0 to
#'       the variance under H1.
#'
#'     - \code{nullVariance}: Whether to use the variance under the null
#'       or the empirical variance under the alternative.
#'
#'     - \code{allocationRatioPlanned}: Allocation ratio for the active
#'       treatment versus control.
#'
#'     - \code{rounding}: Whether to round up sample size.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' (design1 <- getDesignOddsRatio(
#'   beta = 0.1, n = NA, pi1 = 0.5, pi2 = 0.3,
#'   alpha = 0.05))
#'
#' @export
getDesignOddsRatio <- function(
    beta = NA_real_,
    n = NA_real_,
    oddsRatioH0 = 1,
    pi1 = NA_real_,
    pi2 = NA_real_,
    nullVariance = FALSE,
    allocationRatioPlanned = 1,
    rounding = TRUE,
    kMax = 1L,
    informationRates = NA_real_,
    efficacyStopping = NA_integer_,
    futilityStopping = NA_integer_,
    criticalValues = NA_real_,
    alpha = 0.025,
    typeAlphaSpending = "sfOF",
    parameterAlphaSpending = NA_real_,
    userAlphaSpending = NA_real_,
    futilityBounds = NA_real_,
    typeBetaSpending = "none",
    parameterBetaSpending = NA_real_,
    userBetaSpending = NA_real_,
    spendingTime = NA_real_) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && n <= 0) {
    stop("n must be positive")
  }

  if (oddsRatioH0 <= 0) {
    stop("oddsRatioH0 must be positive")
  }

  if (pi1 <= 0 || pi1 >= 1) {
    stop("pi1 must lie between 0 and 1")
  }

  if (pi2 <= 0 || pi2 >= 1) {
    stop("pi2 must lie between 0 and 1")
  }

  if (allocationRatioPlanned <= 0) {
    stop("allocationRatioPlanned must be positive")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }

  if (any(is.na(informationRates))) {
    informationRates = (1:kMax)/kMax
  }


  r = allocationRatioPlanned/(1 + allocationRatioPlanned)

  oddsRatio = pi1*(1-pi2)/((1-pi1)*pi2)

  directionUpper = oddsRatio > oddsRatioH0

  theta = ifelse(directionUpper, log(oddsRatio) - log(oddsRatioH0),
                 log(oddsRatioH0) - log(oddsRatio))

  # restricted maximum likelihood estimates
  mr = remlOddsRatio(oddsRatioH0, r, r*pi1, 1-r, (1-r)*pi2)
  p1 = mr[1]
  p2 = mr[2]

  # variance for one sampling unit
  v0 = 1/(r*p1*(1-p1)) + 1/((1-r)*p2*(1-p2))
  v1 = 1/(r*pi1*(1-pi1)) + 1/((1-r)*pi2*(1-pi2))

  varianceRatio = ifelse(nullVariance, v0/v1, 1)

  if (!is.na(n)) { # power calculation
    if (rounding) {
      n = ceiling(n - 1.0e-12)
      informationRates = round(n*informationRates)/n
    }

    des = getDesign(
      beta = NA, IMax = n/v1, theta,
      kMax, informationRates,
      efficacyStopping, futilityStopping,
      criticalValues, alpha, typeAlphaSpending,
      parameterAlphaSpending, userAlphaSpending,
      futilityBounds, typeBetaSpending,
      parameterBetaSpending, userBetaSpending,
      spendingTime, varianceRatio)
  } else { # sample size calculation
    des = getDesign(
      beta, IMax = NA, theta,
      kMax, informationRates,
      efficacyStopping, futilityStopping,
      criticalValues, alpha, typeAlphaSpending,
      parameterAlphaSpending, userAlphaSpending,
      futilityBounds, typeBetaSpending,
      parameterBetaSpending, userBetaSpending,
      spendingTime, varianceRatio)

    n = des$overallResults$information*v1

    if (rounding) {
      n = ceiling(n - 1.0e-12)
      informationRates = des$byStageResults$informationRates
      informationRates = round(n*informationRates)/n

      des = getDesign(
        beta = NA, IMax = n/v1, theta,
        kMax, informationRates,
        efficacyStopping, futilityStopping,
        criticalValues, alpha, typeAlphaSpending,
        parameterAlphaSpending, userAlphaSpending,
        futilityBounds, typeBetaSpending,
        parameterBetaSpending, userBetaSpending,
        spendingTime, varianceRatio)
    }
  }

  des$overallResults$theta = theta
  des$overallResults$numberOfSubjects = n
  des$overallResults$expectedNumberOfSubjectsH1 =
    des$overallResults$expectedInformationH1*v1
  des$overallResults$expectedNumberOfSubjectsH0 =
    des$overallResults$expectedInformationH0*v1
  des$overallResults$oddsRatioH0 = oddsRatioH0
  des$overallResults$pi1 = pi1
  des$overallResults$pi2 = pi2

  if (directionUpper) {
    des$byStageResults$efficacyOddsRatio =
      exp(des$byStageResults$efficacyTheta)*oddsRatioH0
    des$byStageResults$futilityOddsRatio =
      exp(des$byStageResults$futilityTheta)*oddsRatioH0
  } else {
    des$byStageResults$efficacyOddsRatio =
      exp(-des$byStageResults$efficacyTheta)*oddsRatioH0
    des$byStageResults$futilityOddsRatio =
      exp(-des$byStageResults$futilityTheta)*oddsRatioH0
  }

  des$byStageResults$efficacyTheta = NULL
  des$byStageResults$futilityTheta = NULL
  des$byStageResults$numberOfSubjects =
    des$byStageResults$informationRates*n

  des$settings$nullVariance = nullVariance
  des$settings$allocationRatioPlanned = allocationRatioPlanned
  des$settings$rounding = rounding

  attr(des, "class") = "designOddsRatio"

  des
}


#' @title Group Sequential Design for Equivalence in Two-Sample
#' Risk Difference
#' @description Obtains the power given sample size or obtains the sample
#' size given power for a group sequential design for equivalence in
#' two-sample risk difference.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param riskDiffLower The lower equivalence limit of risk difference.
#' @param riskDiffUpper The upper equivalence limit of risk difference.
#' @param pi1 The assumed probability for the active treatment group.
#' @param pi2 The assumed probability for the control group.
#' @param nullVariance Whether to use the variance under the null or
#'   the empirical variance under the alternative.
#' @param allocationRatioPlanned Allocation ratio for the active treatment
#'   versus control. Defaults to 1 for equal randomization.
#' @param rounding Whether to round up sample size. Defaults to 1 for
#'   sample size rounding.
#' @inheritParams param_kMax
#' @param informationRates The information rates. Fixed prior to the trial.
#'   Defaults to \code{(1:kMax) / kMax} if left unspecified.
#' @inheritParams param_criticalValues
#' @param alpha The significance level for each of the two one-sided
#'   tests. Defaults to 0.05.
#' @inheritParams param_typeAlphaSpending
#' @inheritParams param_parameterAlphaSpending
#' @inheritParams param_userAlphaSpending
#' @param spendingTime A vector of length \code{kMax} for the error spending
#'   time at each analysis. Defaults to missing, in which case, it is the
#'   same as \code{informationRates}.
#'
#' @return An S3 class \code{designRiskDiffEquiv} object with three
#' components:
#'
#' * \code{overallResults}: A data frame containing the following variables:
#'
#'     - \code{overallReject}: The overall rejection probability.
#'
#'     - \code{alpha}: The significance level for each of the two one-sided
#'       tests. Defaults to 0.05.
#'
#'     - \code{attainedAlphaH10}: The attained significance level under H10.
#'
#'     - \code{attainedAlphaH20}: The attained significance level under H20.
#'
#'     - \code{kMax}: The number of stages.
#'
#'     - \code{information}: The maximum information.
#'
#'     - \code{expectedInformationH1}: The expected information under H1.
#'
#'     - \code{expectedInformationH10}: The expected information under H10.
#'
#'     - \code{expectedInformationH20}: The expected information under H20.
#'
#'     - \code{numberOfSubjects}: The maximum number of subjects.
#'
#'     - \code{expectedNumberOfSubjectsH1}: The expected number of subjects
#'       under H1.
#'
#'     - \code{expectedNumberOfSubjectsH10}: The expected number of subjects
#'       under H10.
#'
#'     - \code{expectedNumberOfSubjectsH20}: The expected number of subjects
#'       under H20.
#'
#'     - \code{riskDiffLower}: The lower equivalence limit of risk
#'       difference.
#'
#'     - \code{riskDiffUpper}: The upper equivalence limit of risk
#'       difference.
#'
#'     - \code{pi1}: The assumed probability for the active treatment group.
#'
#'     - \code{pi2}: The assumed probability for the control group.
#'
#'     - \code{riskDiff}: The risk difference.
#'
#' * \code{byStageResults}: A data frame containing the following variables:
#'
#'     - \code{informationRates}: The information rates.
#'
#'     - \code{efficacyBounds}: The efficacy boundaries on the Z-scale for
#'       each of the two one-sided tests.
#'
#'     - \code{rejectPerStage}: The probability for efficacy stopping.
#'
#'     - \code{cumulativeRejection}: The cumulative probability for efficacy
#'       stopping.
#'
#'     - \code{cumulativeAlphaSpent}: The cumulative alpha for each of
#'       the two one-sided tests.
#'
#'     - \code{cumulativeAttainedAlphaH10}: The cumulative alpha attained
#'       under H10.
#'
#'     - \code{cumulativeAttainedAlphaH20}: The cumulative alpha attained
#'       under H20.
#'
#'     - \code{efficacyP}: The efficacy bounds on the p-value scale for
#'       each of the two one-sided tests.
#'
#'     - \code{information}: The cumulative information.
#'
#'     - \code{efficacyRiskDiffLower}: The efficacy boundaries on the
#'       risk difference scale for the one-sided null hypothesis on the
#'       lower equivalence limit.
#'
#'     - \code{efficacyRiskDiffUpper}: The efficacy boundaries on the
#'       risk difference scale for the one-sided null hypothesis on the
#'       upper equivalence limit.
#'
#'     - \code{numberOfSubjects}: The number of subjects.
#'
#' * \code{settings}: A list containing the following input parameters:
#'
#'     - \code{typeAlphaSpending}: The type of alpha spending.
#'
#'     - \code{parameterAlphaSpending}: The parameter value for alpha
#'       spending.
#'
#'     - \code{userAlphaSpending}: The user defined alpha spending.
#'
#'     - \code{spendingTime}: The error spending time at each analysis.
#'
#'     - \code{nullVariance}: Whether to use the variance under the null or
#'       the empirical variance under the alternative.
#'
#'     - \code{varianceRatioH10}: The ratio of the variance under H10 to
#'       the variance under H1.
#'
#'     - \code{varianceRatioH20}: The ratio of the variance under H20 to
#'       the variance under H1.
#'
#'     - \code{varianceRatioH12}: The ratio of the variance under H10 to
#'       the variance under H20.
#'
#'     - \code{varianceRatioH21}: The ratio of the variance under H20 to
#'       the variance under H10.
#'
#'     - \code{allocationRatioPlanned}: Allocation ratio for the active
#'       treatment versus control.
#'
#'     - \code{rounding}: Whether to round up sample size.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' (design1 <- getDesignRiskDiffEquiv(
#'   beta = 0.2, n = NA, riskDiffLower = -0.1,
#'   riskDiffUpper = 0.1, pi1 = 0.12, pi2 = 0.12,
#'   nullVariance = 1,
#'   kMax = 3, alpha = 0.05, typeAlphaSpending = "sfOF"))
#'
#' @export
getDesignRiskDiffEquiv <- function(
    beta = NA_real_,
    n = NA_real_,
    riskDiffLower = NA_real_,
    riskDiffUpper = NA_real_,
    pi1 = NA_real_,
    pi2 = NA_real_,
    nullVariance = FALSE,
    allocationRatioPlanned = 1,
    rounding = TRUE,
    kMax = 1L,
    informationRates = NA_real_,
    criticalValues = NA_real_,
    alpha = 0.05,
    typeAlphaSpending = "sfOF",
    parameterAlphaSpending = NA_real_,
    userAlphaSpending = NA_real_,
    spendingTime = NA_real_) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && n <= 0) {
    stop("n must be positive")
  }

  if (is.na(riskDiffLower)) {
    stop("riskDiffLower must be provided")
  }

  if (is.na(riskDiffUpper)) {
    stop("riskDiffUpper must be provided")
  }

  if (riskDiffLower <= -1) {
    stop("riskDiffLower must be greater than -1")
  }

  if (riskDiffUpper >= 1) {
    stop("riskDiffUpper must be less than 1")
  }

  if (is.na(pi1)) {
    stop("pi1 must be provided")
  }

  if (is.na(pi2)) {
    stop("pi2 must be provided")
  }

  if (pi1 <= 0 || pi1 >= 1) {
    stop("pi1 must lie between 0 and 1")
  }

  if (pi2 <= 0 || pi2 >= 1) {
    stop("pi2 must lie between 0 and 1")
  }

  riskDiff = pi1 - pi2

  if (riskDiffLower >= riskDiff) {
    stop("riskDiffLower must be less than pi1 - pi2")
  }

  if (riskDiffUpper <= riskDiff) {
    stop("riskDiffUpper must be greater than pi1 - pi2")
  }

  if (allocationRatioPlanned <= 0) {
    stop("allocationRatioPlanned must be positive")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }

  if (any(is.na(informationRates))) {
    informationRates = (1:kMax)/kMax
  }


  r = allocationRatioPlanned/(1 + allocationRatioPlanned)

  # variance for one sampling unit under H1
  vH1 = pi1*(1-pi1)/r + pi2*(1-pi2)/(1-r)

  if (nullVariance) {
    # variance for one sampling unit under H10
    pi1H10 = pi2 + riskDiffLower
    vH10 = pi1H10*(1-pi1H10)/r + pi2*(1-pi2)/(1-r)

    # variance for one sampling unit under H20
    pi1H20 = pi2 + riskDiffUpper
    vH20 = pi1H20*(1-pi1H20)/r + pi2*(1-pi2)/(1-r)

    # restricted maximum likelihood estimates under H10 w.r.t. H1
    mr = remlRiskDiff(riskDiffLower, r, r*pi1, 1-r, (1-r)*pi2)
    vH10H1 = mr[1]*(1-mr[1])/r + mr[2]*(1-mr[2])/(1-r)

    # restricted maximum likelihood estimates under H20 w.r.t. H1
    mr = remlRiskDiff(riskDiffUpper, r, r*pi1, 1-r, (1-r)*pi2)
    vH20H1 = mr[1]*(1-mr[1])/r + mr[2]*(1-mr[2])/(1-r)

    # restricted maximum likelihood estimates under H10 w.r.t. H20
    mr = remlRiskDiff(riskDiffLower, r, r*pi1H20, 1-r, (1-r)*pi2)
    vH10H20 = mr[1]*(1-mr[1])/r + mr[2]*(1-mr[2])/(1-r)

    # restricted maximum likelihood estimates under H20 w.r.t. H10
    mr = remlRiskDiff(riskDiffUpper, r, r*pi1H10, 1-r, (1-r)*pi2)
    vH20H10 = mr[1]*(1-mr[1])/r + mr[2]*(1-mr[2])/(1-r)

    # calculate the variance ratios
    varianceRatioH10 = vH10H1/vH1
    varianceRatioH20 = vH20H1/vH1
    varianceRatioH12 = vH10H20/vH20
    varianceRatioH21 = vH20H10/vH10
  } else {
    varianceRatioH10 = varianceRatioH20 = 1
    varianceRatioH12 = varianceRatioH21 = 1
  }


  # sample size calculation
  if (is.na(n)) {
    des = getDesignEquiv(
      beta = beta, IMax = NA, thetaLower = riskDiffLower,
      thetaUpper = riskDiffUpper, theta = riskDiff,
      kMax = kMax, informationRates = informationRates,
      alpha = alpha, typeAlphaSpending = typeAlphaSpending,
      parameterAlphaSpending = parameterAlphaSpending,
      userAlphaSpending = userAlphaSpending,
      spendingTime = spendingTime,
      varianceRatioH10 = varianceRatioH10,
      varianceRatioH20 = varianceRatioH20,
      varianceRatioH12 = varianceRatioH12,
      varianceRatioH21 = varianceRatioH21)

    n = des$overallResults$information*vH1
  }

  if (rounding) {
    n = ceiling(n - 1.0e-12)
    informationRates = round(n*informationRates)/n
  }

  if (is.na(beta) || rounding) { # calculate power
    des = getDesignEquiv(
      beta = NA, IMax = n/vH1, thetaLower = riskDiffLower,
      thetaUpper = riskDiffUpper, theta = riskDiff,
      kMax = kMax, informationRates = informationRates,
      alpha = alpha, typeAlphaSpending = typeAlphaSpending,
      parameterAlphaSpending = parameterAlphaSpending,
      userAlphaSpending = userAlphaSpending,
      spendingTime = spendingTime,
      varianceRatioH10 = varianceRatioH10,
      varianceRatioH20 = varianceRatioH20,
      varianceRatioH12 = varianceRatioH12,
      varianceRatioH21 = varianceRatioH21)
  }

  des$overallResults$numberOfSubjects = n
  des$overallResults$expectedNumberOfSubjectsH1 =
    des$overallResults$expectedInformationH1*vH1
  des$overallResults$expectedNumberOfSubjectsH10 =
    des$overallResults$expectedInformationH10*vH1
  des$overallResults$expectedNumberOfSubjectsH20 =
    des$overallResults$expectedInformationH20*vH1
  des$overallResults$riskDiffLower = riskDiffLower
  des$overallResults$riskDiffUpper = riskDiffUpper
  des$overallResults$pi1 = pi1
  des$overallResults$pi2 = pi2
  des$overallResults$riskDiff = pi1 - pi2
  des$overallResults <-
    des$overallResults[, c("overallReject", "alpha",
                           "attainedAlphaH10", "attainedAlphaH20",
                           "kMax", "information",
                           "expectedInformationH1",
                           "expectedInformationH10",
                           "expectedInformationH20",
                           "numberOfSubjects",
                           "expectedNumberOfSubjectsH1",
                           "expectedNumberOfSubjectsH10",
                           "expectedNumberOfSubjectsH20",
                           "riskDiffLower", "riskDiffUpper",
                           "pi1", "pi2", "riskDiff")]

  des$byStageResults$efficacyRiskDiffLower =
    des$byStageResults$efficacyThetaLower
  des$byStageResults$efficacyRiskDiffUpper =
    des$byStageResults$efficacyThetaUpper
  des$byStageResults$numberOfSubjects = n*informationRates
  des$byStageResults <-
    des$byStageResults[, c("informationRates", "efficacyBounds",
                           "rejectPerStage", "cumulativeRejection",
                           "cumulativeAlphaSpent",
                           "cumulativeAttainedAlphaH10",
                           "cumulativeAttainedAlphaH20",
                           "efficacyRiskDiffLower",
                           "efficacyRiskDiffUpper", "efficacyP",
                           "information", "numberOfSubjects")]

  des$settings$nullVariance = nullVariance
  des$settings$allocationRatioPlanned = allocationRatioPlanned
  des$settings$rounding = rounding
  des$settings <-
    des$settings[c("typeAlphaSpending", "parameterAlphaSpending",
                   "userAlphaSpending", "spendingTime",
                   "nullVariance",
                   "varianceRatioH10", "varianceRatioH20",
                   "varianceRatioH12", "varianceRatioH21",
                   "allocationRatioPlanned", "rounding")]

  attr(des, "class") = "designRiskDiffEquiv"

  des
}


#' @title Group Sequential Design for Equivalence in Two-Sample
#' Risk Ratio
#' @description Obtains the power given sample size or obtains the sample
#' size given power for a group sequential design for equivalence in
#' two-sample risk ratio.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param riskRatioLower The lower equivalence limit of risk ratio.
#' @param riskRatioUpper The upper equivalence limit of risk ratio.
#' @param pi1 The assumed probability for the active treatment group.
#' @param pi2 The assumed probability for the control group.
#' @param nullVariance Whether to use the variance under the null or
#'   the empirical variance under the alternative.
#' @param allocationRatioPlanned Allocation ratio for the active treatment
#'   versus control. Defaults to 1 for equal randomization.
#' @param rounding Whether to round up sample size. Defaults to 1 for
#'   sample size rounding.
#' @inheritParams param_kMax
#' @param informationRates The information rates. Fixed prior to the trial.
#'   Defaults to \code{(1:kMax) / kMax} if left unspecified.
#' @inheritParams param_criticalValues
#' @param alpha The significance level for each of the two one-sided
#'   tests. Defaults to 0.05.
#' @inheritParams param_typeAlphaSpending
#' @inheritParams param_parameterAlphaSpending
#' @inheritParams param_userAlphaSpending
#' @param spendingTime A vector of length \code{kMax} for the error spending
#'   time at each analysis. Defaults to missing, in which case, it is the
#'   same as \code{informationRates}.
#'
#' @return An S3 class \code{designRiskRatioEquiv} object with three
#' components:
#'
#' * \code{overallResults}: A data frame containing the following variables:
#'
#'     - \code{overallReject}: The overall rejection probability.
#'
#'     - \code{alpha}: The significance level for each of the two one-sided
#'       tests. Defaults to 0.05.
#'
#'     - \code{attainedAlphaH10}: The attained significance level under H10.
#'
#'     - \code{attainedAlphaH20}: The attained significance level under H20.
#'
#'     - \code{kMax}: The number of stages.
#'
#'     - \code{information}: The maximum information.
#'
#'     - \code{expectedInformationH1}: The expected information under H1.
#'
#'     - \code{expectedInformationH10}: The expected information under H10.
#'
#'     - \code{expectedInformationH20}: The expected information under H20.
#'
#'     - \code{numberOfSubjects}: The maximum number of subjects.
#'
#'     - \code{expectedNumberOfSubjectsH1}: The expected number of subjects
#'       under H1.
#'
#'     - \code{expectedNumberOfSubjectsH10}: The expected number of subjects
#'       under H10.
#'
#'     - \code{expectedNumberOfSubjectsH20}: The expected number of subjects
#'       under H20.
#'
#'     - \code{riskRatioLower}: The lower equivalence limit of risk ratio.
#'
#'     - \code{riskRatioUpper}: The upper equivalence limit of risk ratio.
#'
#'     - \code{pi1}: The assumed probability for the active treatment group.
#'
#'     - \code{pi2}: The assumed probability for the control group.
#'
#'     - \code{riskRatio}: The risk ratio.
#'
#' * \code{byStageResults}: A data frame containing the following variables:
#'
#'     - \code{informationRates}: The information rates.
#'
#'     - \code{efficacyBounds}: The efficacy boundaries on the Z-scale for
#'       each of the two one-sided tests.
#'
#'     - \code{rejectPerStage}: The probability for efficacy stopping.
#'
#'     - \code{cumulativeRejection}: The cumulative probability for efficacy
#'       stopping.
#'
#'     - \code{cumulativeAlphaSpent}: The cumulative alpha for each of
#'       the two one-sided tests.
#'
#'     - \code{cumulativeAttainedAlphaH10}: The cumulative alpha attained
#'       under H10.
#'
#'     - \code{cumulativeAttainedAlphaH20}: The cumulative alpha attained
#'       under H20.
#'
#'     - \code{efficacyRiskRatioLower}: The efficacy boundaries on the
#'       risk ratio scale for the one-sided null hypothesis on the
#'       lower equivalence limit.
#'
#'     - \code{efficacyRiskRatioUpper}: The efficacy boundaries on the
#'       risk ratio scale for the one-sided null hypothesis on the
#'       upper equivalence limit.
#'
#'     - \code{efficacyP}: The efficacy bounds on the p-value scale for
#'       each of the two one-sided tests.
#'
#'     - \code{information}: The cumulative information.
#'
#'     - \code{numberOfSubjects}: The number of subjects.
#'
#' * \code{settings}: A list containing the following input parameters:
#'
#'     - \code{typeAlphaSpending}: The type of alpha spending.
#'
#'     - \code{parameterAlphaSpending}: The parameter value for alpha
#'       spending.
#'
#'     - \code{userAlphaSpending}: The user defined alpha spending.
#'
#'     - \code{spendingTime}: The error spending time at each analysis.
#'
#'     - \code{nullVariance}: Whether to use the variance under the null or
#'       the empirical variance under the alternative.
#'
#'     - \code{varianceRatioH10}: The ratio of the variance under H10 to
#'       the variance under H1.
#'
#'     - \code{varianceRatioH20}: The ratio of the variance under H20 to
#'       the variance under H1.
#'
#'     - \code{varianceRatioH12}: The ratio of the variance under H10 to
#'       the variance under H20.
#'
#'     - \code{varianceRatioH21}: The ratio of the variance under H20 to
#'       the variance under H10.
#'
#'     - \code{allocationRatioPlanned}: Allocation ratio for the active
#'       treatment versus control.
#'
#'     - \code{rounding}: Whether to round up sample size.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' (design1 <- getDesignRiskRatioEquiv(
#'   beta = 0.2, n = NA, riskRatioLower = 0.8,
#'   riskRatioUpper = 1.25, pi1 = 0.12, pi2 = 0.12,
#'   kMax = 3, alpha = 0.05, typeAlphaSpending = "sfOF"))
#'
#' @export
getDesignRiskRatioEquiv <- function(
    beta = NA_real_,
    n = NA_real_,
    riskRatioLower = NA_real_,
    riskRatioUpper = NA_real_,
    pi1 = NA_real_,
    pi2 = NA_real_,
    nullVariance = FALSE,
    allocationRatioPlanned = 1,
    rounding = TRUE,
    kMax = 1L,
    informationRates = NA_real_,
    criticalValues = NA_real_,
    alpha = 0.05,
    typeAlphaSpending = "sfOF",
    parameterAlphaSpending = NA_real_,
    userAlphaSpending = NA_real_,
    spendingTime = NA_real_) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && n <= 0) {
    stop("n must be positive")
  }

  if (is.na(riskRatioLower)) {
    stop("riskRatioLower must be provided")
  }

  if (is.na(riskRatioUpper)) {
    stop("riskRatioUpper must be provided")
  }

  if (riskRatioLower <= 0) {
    stop("riskRatioLower must be positive")
  }

  if (is.na(pi1)) {
    stop("pi1 must be provided")
  }

  if (is.na(pi2)) {
    stop("pi2 must be provided")
  }

  if (pi1 <= 0 || pi1 >= 1) {
    stop("pi1 must lie between 0 and 1")
  }

  if (pi2 <= 0 || pi2 >= 1) {
    stop("pi2 must lie between 0 and 1")
  }

  riskRatio = pi1/pi2

  if (riskRatioLower >= riskRatio) {
    stop("riskRatioLower must be less than pi1/pi2")
  }

  if (riskRatioUpper <= riskRatio) {
    stop("riskRatioUpper must be greater than pi1/pi2")
  }

  if (allocationRatioPlanned <= 0) {
    stop("allocationRatioPlanned must be positive")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }

  if (any(is.na(informationRates))) {
    informationRates = (1:kMax)/kMax
  }


  r = allocationRatioPlanned/(1 + allocationRatioPlanned)

  # variance for one sampling unit
  vH1 = (1-pi1)/(r*pi1) + (1-pi2)/((1-r)*pi2)

  if (nullVariance) {
    # variance for one sampling unit under H10
    pi1H10 = pi2*riskRatioLower
    vH10 = (1-pi1H10)/(r*pi1H10) + (1-pi2)/((1-r)*pi2)

    # variance for one sampling unit under H20
    pi1H20 = pi2*riskRatioUpper
    vH20 = (1-pi1H20)/(r*pi1H20) + (1-pi2)/((1-r)*pi2)

    # restricted maximum likelihood estimates under H10 w.r.t. H1
    mr = remlRiskRatio(riskRatioLower, r, r*pi1, 1-r, (1-r)*pi2)
    vH10H1 = (1-mr[1])/(r*mr[1]) + (1-mr[2])/((1-r)*mr[2])

    # restricted maximum likelihood estimates under H20 w.r.t. H1
    mr = remlRiskRatio(riskRatioUpper, r, r*pi1, 1-r, (1-r)*pi2)
    vH20H1 = (1-mr[1])/(r*mr[1]) + (1-mr[2])/((1-r)*mr[2])

    # restricted maximum likelihood estimates under H10 w.r.t. H20
    mr = remlRiskRatio(riskRatioLower, r, r*pi1H20, 1-r, (1-r)*pi2)
    vH10H20 = (1-mr[1])/(r*mr[1]) + (1-mr[2])/((1-r)*mr[2])

    # restricted maximum likelihood estimates under H20 w.r.t. H10
    mr = remlRiskRatio(riskRatioUpper, r, r*pi1H10, 1-r, (1-r)*pi2)
    vH20H10 = (1-mr[1])/(r*mr[1]) + (1-mr[2])/((1-r)*mr[2])

    # calculate the variance ratios
    varianceRatioH10 = vH10H1/vH1
    varianceRatioH20 = vH20H1/vH1
    varianceRatioH12 = vH10H20/vH20
    varianceRatioH21 = vH20H10/vH10
  } else {
    varianceRatioH10 = varianceRatioH20 = 1
    varianceRatioH12 = varianceRatioH21 = 1
  }

  # sample size calculation
  if (is.na(n)) {
    des = getDesignEquiv(
      beta = beta, IMax = NA, thetaLower = log(riskRatioLower),
      thetaUpper = log(riskRatioUpper), theta = log(riskRatio),
      kMax = kMax, informationRates = informationRates,
      alpha = alpha, typeAlphaSpending = typeAlphaSpending,
      parameterAlphaSpending = parameterAlphaSpending,
      userAlphaSpending = userAlphaSpending,
      spendingTime = spendingTime,
      varianceRatioH10 = varianceRatioH10,
      varianceRatioH20 = varianceRatioH20,
      varianceRatioH12 = varianceRatioH12,
      varianceRatioH21 = varianceRatioH21)

    n = des$overallResults$information*vH1
  }

  if (rounding) {
    n = ceiling(n - 1.0e-12)
    informationRates = round(n*informationRates)/n
  }

  if (is.na(beta) || rounding) { # calculate power
    des = getDesignEquiv(
      beta = NA, IMax = n/vH1, thetaLower = log(riskRatioLower),
      thetaUpper = log(riskRatioUpper), theta = log(riskRatio),
      kMax = kMax, informationRates = informationRates,
      alpha = alpha, typeAlphaSpending = typeAlphaSpending,
      parameterAlphaSpending = parameterAlphaSpending,
      userAlphaSpending = userAlphaSpending,
      spendingTime = spendingTime,
      varianceRatioH10 = varianceRatioH10,
      varianceRatioH20 = varianceRatioH20,
      varianceRatioH12 = varianceRatioH12,
      varianceRatioH21 = varianceRatioH21)
  }

  des$overallResults$numberOfSubjects = n
  des$overallResults$expectedNumberOfSubjectsH1 =
    des$overallResults$expectedInformationH1*vH1
  des$overallResults$expectedNumberOfSubjectsH10 =
    des$overallResults$expectedInformationH10*vH1
  des$overallResults$expectedNumberOfSubjectsH20 =
    des$overallResults$expectedInformationH20*vH1
  des$overallResults$riskRatioLower = riskRatioLower
  des$overallResults$riskRatioUpper = riskRatioUpper
  des$overallResults$pi1 = pi1
  des$overallResults$pi2 = pi2
  des$overallResults$riskRatio = pi1/pi2
  des$overallResults <-
    des$overallResults[, c("overallReject", "alpha",
                           "attainedAlphaH10", "attainedAlphaH20",
                           "kMax", "information",
                           "expectedInformationH1",
                           "expectedInformationH10",
                           "expectedInformationH20",
                           "numberOfSubjects",
                           "expectedNumberOfSubjectsH1",
                           "expectedNumberOfSubjectsH10",
                           "expectedNumberOfSubjectsH20",
                           "riskRatioLower", "riskRatioUpper",
                           "pi1", "pi2", "riskRatio")]

  des$byStageResults$efficacyRiskRatioLower =
    exp(des$byStageResults$efficacyThetaLower)
  des$byStageResults$efficacyRiskRatioUpper =
    exp(des$byStageResults$efficacyThetaUpper)
  des$byStageResults$numberOfSubjects = n*informationRates
  des$byStageResults <-
    des$byStageResults[, c("informationRates", "efficacyBounds",
                           "rejectPerStage", "cumulativeRejection",
                           "cumulativeAlphaSpent",
                           "cumulativeAttainedAlphaH10",
                           "cumulativeAttainedAlphaH20",
                           "efficacyRiskRatioLower",
                           "efficacyRiskRatioUpper", "efficacyP",
                           "information", "numberOfSubjects")]

  des$settings$nullVariance = nullVariance
  des$settings$allocationRatioPlanned = allocationRatioPlanned
  des$settings$rounding = rounding
  des$settings <-
    des$settings[c("typeAlphaSpending", "parameterAlphaSpending",
                   "userAlphaSpending", "spendingTime",
                   "nullVariance",
                   "varianceRatioH10", "varianceRatioH20",
                   "varianceRatioH12", "varianceRatioH21",
                   "allocationRatioPlanned", "rounding")]

  attr(des, "class") = "designRiskRatioEquiv"

  des
}


#' @title Group Sequential Design for Equivalence in Two-Sample
#' Odds Ratio
#' @description Obtains the power given sample size or obtains the sample
#' size given power for a group sequential design for equivalence in
#' two-sample odds ratio.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param oddsRatioLower The lower equivalence limit of odds ratio.
#' @param oddsRatioUpper The upper equivalence limit of odds ratio.
#' @param pi1 The assumed probability for the active treatment group.
#' @param pi2 The assumed probability for the control group.
#' @param nullVariance Whether to use the variance under the null
#'   or the empirical variance under the alternative.
#' @param allocationRatioPlanned Allocation ratio for the active treatment
#'   versus control. Defaults to 1 for equal randomization.
#' @param rounding Whether to round up sample size. Defaults to 1 for
#'   sample size rounding.
#' @inheritParams param_kMax
#' @param informationRates The information rates. Fixed prior to the trial.
#'   Defaults to \code{(1:kMax) / kMax} if left unspecified.
#' @inheritParams param_criticalValues
#' @param alpha The significance level for each of the two one-sided
#'   tests. Defaults to 0.05.
#' @inheritParams param_typeAlphaSpending
#' @inheritParams param_parameterAlphaSpending
#' @inheritParams param_userAlphaSpending
#' @param spendingTime A vector of length \code{kMax} for the error spending
#'   time at each analysis. Defaults to missing, in which case, it is the
#'   same as \code{informationRates}.
#'
#' @return An S3 class \code{designOddsRatioEquiv} object with three
#' components:
#'
#' * \code{overallResults}: A data frame containing the following variables:
#'
#'     - \code{overallReject}: The overall rejection probability.
#'
#'     - \code{alpha}: The significance level for each of the two one-sided
#'       tests. Defaults to 0.05.
#'
#'     - \code{attainedAlphaH10}: The attained significance level under H10.
#'
#'     - \code{attainedAlphaH20}: The attained significance level under H20.
#'
#'     - \code{kMax}: The number of stages.
#'
#'     - \code{information}: The maximum information.
#'
#'     - \code{expectedInformationH1}: The expected information under H1.
#'
#'     - \code{expectedInformationH10}: The expected information under H10.
#'
#'     - \code{expectedInformationH20}: The expected information under H20.
#'
#'     - \code{numberOfSubjects}: The maximum number of subjects.
#'
#'     - \code{expectedNumberOfSubjectsH1}: The expected number of subjects
#'       under H1.
#'
#'     - \code{expectedNumberOfSubjectsH10}: The expected number of subjects
#'       under H10.
#'
#'     - \code{expectedNumberOfSubjectsH20}: The expected number of subjects
#'       under H20.
#'
#'     - \code{oddsRatioLower}: The lower equivalence limit of odds ratio.
#'
#'     - \code{oddsRatioUpper}: The upper equivalence limit of odds ratio.
#'
#'     - \code{pi1}: The assumed probability for the active treatment group.
#'
#'     - \code{pi2}: The assumed probability for the control group.
#'
#'     - \code{oddsRatio}: The odds ratio.
#'
#' * \code{byStageResults}: A data frame containing the following variables:
#'
#'     - \code{informationRates}: The information rates.
#'
#'     - \code{efficacyBounds}: The efficacy boundaries on the Z-scale for
#'       each of the two one-sided tests.
#'
#'     - \code{rejectPerStage}: The probability for efficacy stopping.
#'
#'     - \code{cumulativeRejection}: The cumulative probability for efficacy
#'       stopping.
#'
#'     - \code{cumulativeAlphaSpent}: The cumulative alpha for each of
#'       the two one-sided tests.
#'
#'     - \code{cumulativeAttainedAlphaH10}: The cumulative alpha attained
#'       under H10.
#'
#'     - \code{cumulativeAttainedAlphaH20}: The cumulative alpha attained
#'       under H20.
#'
#'     - \code{efficacyOddsRatioLower}: The efficacy boundaries on the
#'       odds ratio scale for the one-sided null hypothesis on the
#'       lower equivalence limit.
#'
#'     - \code{efficacyOddsRatioUpper}: The efficacy boundaries on the
#'       odds ratio scale for the one-sided null hypothesis on the
#'       upper equivalence limit.
#'
#'     - \code{efficacyP}: The efficacy bounds on the p-value scale for
#'       each of the two one-sided tests.
#'
#'     - \code{information}: The cumulative information.
#'
#'     - \code{numberOfSubjects}: The number of subjects.
#'
#' * \code{settings}: A list containing the following input parameters:
#'
#'     - \code{typeAlphaSpending}: The type of alpha spending.
#'
#'     - \code{parameterAlphaSpending}: The parameter value for alpha
#'       spending.
#'
#'     - \code{userAlphaSpending}: The user defined alpha spending.
#'
#'     - \code{spendingTime}: The error spending time at each analysis.
#'
#'     - \code{nullVariance}: Whether to use the variance under the null
#'       or the empirical variance under the alternative.
#'
#'     - \code{varianceRatioH10}: The ratio of the variance under H10 to
#'       the variance under H1.
#'
#'     - \code{varianceRatioH20}: The ratio of the variance under H20 to
#'       the variance under H1.
#'
#'     - \code{varianceRatioH12}: The ratio of the variance under H10 to
#'       the variance under H20.
#'
#'     - \code{varianceRatioH21}: The ratio of the variance under H20 to
#'       the variance under H10.
#'
#'     - \code{allocationRatioPlanned}: Allocation ratio for the active
#'       treatment versus control.
#'
#'     - \code{rounding}: Whether to round up sample size.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' (design1 <- getDesignOddsRatioEquiv(
#'   beta = 0.2, n = NA, oddsRatioLower = 0.8,
#'   oddsRatioUpper = 1.25, pi1 = 0.12, pi2 = 0.12,
#'   kMax = 3, alpha = 0.05, typeAlphaSpending = "sfOF"))
#'
#' @export
getDesignOddsRatioEquiv <- function(
    beta = NA_real_,
    n = NA_real_,
    oddsRatioLower = NA_real_,
    oddsRatioUpper = NA_real_,
    pi1 = NA_real_,
    pi2 = NA_real_,
    nullVariance = FALSE,
    allocationRatioPlanned = 1,
    rounding = TRUE,
    kMax = 1L,
    informationRates = NA_real_,
    criticalValues = NA_real_,
    alpha = 0.05,
    typeAlphaSpending = "sfOF",
    parameterAlphaSpending = NA_real_,
    userAlphaSpending = NA_real_,
    spendingTime = NA_real_) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && n <= 0) {
    stop("n must be positive")
  }

  if (is.na(oddsRatioLower)) {
    stop("oddsRatioLower must be provided")
  }

  if (is.na(oddsRatioUpper)) {
    stop("oddsRatioUpper must be provided")
  }

  if (oddsRatioLower <= 0) {
    stop("oddsRatioLower must be positive")
  }

  if (pi1 <= 0 || pi1 >= 1) {
    stop("pi1 must lie between 0 and 1")
  }

  if (pi2 <= 0 || pi2 >= 1) {
    stop("pi2 must lie between 0 and 1")
  }

  oddsRatio = pi1*(1-pi2)/((1-pi1)*pi2)

  if (oddsRatioLower >= oddsRatio) {
    stop("oddsRatioLower must be less than pi1*(1-pi2)/((1-pi1)*pi2)")
  }

  if (oddsRatioUpper <= oddsRatio) {
    stop("oddsRatioUpper must be greater than pi1*(1-pi2)/((1-pi1)*pi2)")
  }

  if (allocationRatioPlanned <= 0) {
    stop("allocationRatioPlanned must be positive")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }

  if (any(is.na(informationRates))) {
    informationRates = (1:kMax)/kMax
  }


  r = allocationRatioPlanned/(1 + allocationRatioPlanned)

  # variance for one sampling unit
  vH1 = 1/(r*pi1*(1-pi1)) + 1/((1-r)*pi2*(1-pi2))

  if (nullVariance) {
    # variance for one sampling unit under H10
    pi1H10 = pi2*oddsRatioLower/(1 + pi2*(oddsRatioLower - 1))
    vH10 = 1/(r*pi1H10*(1-pi1H10)) + 1/((1-r)*pi2*(1-pi2))

    # variance for one sampling unit under H20
    pi1H20 = pi2*oddsRatioUpper/(1 + pi2*(oddsRatioUpper - 1))
    vH20 = 1/(r*pi1H20*(1-pi1H20)) + 1/((1-r)*pi2*(1-pi2))

    # restricted maximum likelihood estimates under H10 w.r.t. H1
    mr = remlOddsRatio(oddsRatioLower, r, r*pi1, 1-r, (1-r)*pi2)
    vH10H1 = 1/(r*mr[1]*(1-mr[1])) + 1/((1-r)*mr[2]*(1-mr[2]))

    # restricted maximum likelihood estimates under H20 w.r.t. H1
    mr = remlOddsRatio(oddsRatioUpper, r, r*pi1, 1-r, (1-r)*pi2)
    vH20H1 = 1/(r*mr[1]*(1-mr[1])) + 1/((1-r)*mr[2]*(1-mr[2]))

    # restricted maximum likelihood estimates under H10 w.r.t. H20
    mr = remlOddsRatio(oddsRatioLower, r, r*pi1H20, 1-r, (1-r)*pi2)
    vH10H20 = 1/(r*mr[1]*(1-mr[1])) + 1/((1-r)*mr[2]*(1-mr[2]))

    # restricted maximum likelihood estimates under H20 w.r.t. H10
    mr = remlOddsRatio(oddsRatioUpper, r, r*pi1H10, 1-r, (1-r)*pi2)
    vH20H10 = 1/(r*mr[1]*(1-mr[1])) + 1/((1-r)*mr[2]*(1-mr[2]))

    # calculate the variance ratios
    varianceRatioH10 = vH10H1/vH1
    varianceRatioH20 = vH20H1/vH1
    varianceRatioH12 = vH10H20/vH20
    varianceRatioH21 = vH20H10/vH10
  } else {
    varianceRatioH10 = varianceRatioH20 = 1
    varianceRatioH12 = varianceRatioH21 = 1
  }

  # sample size calculation
  if (is.na(n)) {
    des = getDesignEquiv(
      beta = beta, IMax = NA, thetaLower = log(oddsRatioLower),
      thetaUpper = log(oddsRatioUpper), theta = log(oddsRatio),
      kMax = kMax, informationRates = informationRates,
      alpha = alpha, typeAlphaSpending = typeAlphaSpending,
      parameterAlphaSpending = parameterAlphaSpending,
      userAlphaSpending = userAlphaSpending,
      spendingTime = spendingTime,
      varianceRatioH10 = varianceRatioH10,
      varianceRatioH20 = varianceRatioH20,
      varianceRatioH12 = varianceRatioH12,
      varianceRatioH21 = varianceRatioH21)

    n = des$overallResults$information*vH1
  }

  if (rounding) {
    n = ceiling(n - 1.0e-12)
    informationRates = round(n*informationRates)/n
  }

  if (is.na(beta) || rounding) { # calculate power
    des = getDesignEquiv(
      beta = NA, IMax = n/vH1, thetaLower = log(oddsRatioLower),
      thetaUpper = log(oddsRatioUpper), theta = log(oddsRatio),
      kMax = kMax, informationRates = informationRates,
      alpha = alpha, typeAlphaSpending = typeAlphaSpending,
      parameterAlphaSpending = parameterAlphaSpending,
      userAlphaSpending = userAlphaSpending,
      spendingTime = spendingTime,
      varianceRatioH10 = varianceRatioH10,
      varianceRatioH20 = varianceRatioH20,
      varianceRatioH12 = varianceRatioH12,
      varianceRatioH21 = varianceRatioH21)
  }

  des$overallResults$numberOfSubjects = n
  des$overallResults$expectedNumberOfSubjectsH1 =
    des$overallResults$expectedInformationH1*vH1
  des$overallResults$expectedNumberOfSubjectsH10 =
    des$overallResults$expectedInformationH10*vH1
  des$overallResults$expectedNumberOfSubjectsH20 =
    des$overallResults$expectedInformationH20*vH1
  des$overallResults$oddsRatioLower = oddsRatioLower
  des$overallResults$oddsRatioUpper = oddsRatioUpper
  des$overallResults$pi1 = pi1
  des$overallResults$pi2 = pi2
  des$overallResults$oddsRatio = pi1*(1-pi2)/((1-pi1)*pi2)
  des$overallResults <-
    des$overallResults[, c("overallReject", "alpha",
                           "attainedAlphaH10", "attainedAlphaH20",
                           "kMax", "information",
                           "expectedInformationH1",
                           "expectedInformationH10",
                           "expectedInformationH20",
                           "numberOfSubjects",
                           "expectedNumberOfSubjectsH1",
                           "expectedNumberOfSubjectsH10",
                           "expectedNumberOfSubjectsH20",
                           "oddsRatioLower", "oddsRatioUpper",
                           "pi1", "pi2", "oddsRatio")]

  des$byStageResults$efficacyOddsRatioLower =
    exp(des$byStageResults$efficacyThetaLower)
  des$byStageResults$efficacyOddsRatioUpper =
    exp(des$byStageResults$efficacyThetaUpper)
  des$byStageResults$numberOfSubjects = n*informationRates
  des$byStageResults <-
    des$byStageResults[, c("informationRates", "efficacyBounds",
                           "rejectPerStage", "cumulativeRejection",
                           "cumulativeAlphaSpent",
                           "cumulativeAttainedAlphaH10",
                           "cumulativeAttainedAlphaH20",
                           "efficacyOddsRatioLower",
                           "efficacyOddsRatioUpper", "efficacyP",
                           "information", "numberOfSubjects")]

  des$settings$nullVariance = nullVariance
  des$settings$allocationRatioPlanned = allocationRatioPlanned
  des$settings$rounding = rounding
  des$settings <-
    des$settings[c("typeAlphaSpending", "parameterAlphaSpending",
                   "userAlphaSpending", "spendingTime",
                   "nullVariance",
                   "varianceRatioH10", "varianceRatioH20",
                   "varianceRatioH12", "varianceRatioH21",
                   "allocationRatioPlanned", "rounding")]

  attr(des, "class") = "designOddsRatioEquiv"

  des
}


#' @title Power and Sample Size for Fisher's Exact Test for Two Proportions
#' @description Obtains the power given sample size or obtains the sample
#' size given power for Fisher's exact test for two proportions.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param pi1 The assumed probability for the active treatment group.
#' @param pi2 The assumed probability for the control group.
#' @param allocationRatioPlanned Allocation ratio for the active treatment
#'   versus control. Defaults to 1 for equal randomization.
#' @param alpha The two-sided significance level. Defaults to 0.05.
#'
#' @return A data frame with the following variables:
#'
#' * \code{alpha}: The two-sided significance level.
#'
#' * \code{power}: The power.
#'
#' * \code{n}: The sample size.
#'
#' * \code{pi1}: The assumed probability for the active treatment group.
#'
#' * \code{pi2}: The assumed probability for the control group.
#'
#' * \code{allocationRatioPlanned}: Allocation ratio for the active
#'   treatment versus control.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' (design1 <- getDesignFisherExact(
#'   beta = 0.2, pi1 = 0.5, pi2 = 0.2, alpha = 0.05))
#'
#' @export
getDesignFisherExact <- function(
    beta = NA_real_,
    n = NA_real_,
    pi1 = NA_real_,
    pi2 = NA_real_,
    allocationRatioPlanned = 1,
    alpha = 0.05) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && n <= 0) {
    stop("n must be positive")
  }

  if (pi1 <= 0 || pi1 >= 1) {
    stop("pi1 must lie between 0 and 1")
  }

  if (pi2 <= 0 || pi2 >= 1) {
    stop("pi2 must lie between 0 and 1")
  }

  if (allocationRatioPlanned <= 0) {
    stop("allocationRatioPlanned must be positive")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }

  if (!is.na(n)) { # power calculation
    a = powerFisherExact(n, pi1, pi2, allocationRatioPlanned, alpha)
  } else { # sample size calculation
    a = samplesizeFisherExact(beta, pi1, pi2, allocationRatioPlanned, alpha)
  }

  a
}


#' @title Clopper-Pearson Confidence Interval for One-Sample Proportion
#' @description Obtains the Clopper-Pearson exact confidence interval for
#' a one-sample proportion.
#'
#' @param n The sample size.
#' @param y The number of responses.
#' @param cilevel The confidence interval level.
#'
#' @return A data frame with the following variables:
#'
#' * \code{n}: The sample size.
#'
#' * \code{y}: The number of responses.
#'
#' * \code{phat}: The observed proportion of responses.
#'
#' * \code{lower}: The lower limit of the confidence interval.
#'
#' * \code{upper}: The upper limit of the confidence interval.
#'
#' * \code{cilevel}: The confidence interval level.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' ClopperPearsonCI(20, 3)
#'
#' @export
#'
ClopperPearsonCI <- function(n, y, cilevel = 0.95) {
  if (n <= 0 || n != round(n)) {
    stop("n must be a positive integer")
  }

  if (y < 0 || y > n || y != round(y)) {
    stop("y must be an integer between 0 and n, inclusive")
  }

  if (cilevel <= 0 || cilevel >= 1) {
    stop("cilevel must lie between 0 and 1")
  }

  alpha = 1 - cilevel
  lower = 0
  upper = 1
  if (y > 0) lower = qbeta(alpha/2, y, n-y+1)
  if (y < n) upper = qbeta(1-alpha/2, y+1, n-y)

  data.frame(n = n, y = y, phat = y/n,
             lower = lower, upper = upper, cilevel = cilevel)
}


#' @title mTPI-2 Decision Table
#' @description Obtains the decision table for the modified toxicity
#' probability interval-2 (mTPI-2) design.
#'
#' @param nMax The maximum number of subjects in a dose cohort.
#' @param pT The target toxicity probability. Defaults to 0.3.
#' @param epsilon1 The lower equivalence margin from the target.
#'   Defaults to 0.05.
#' @param epsilon2 The upper equivalence margin from the target.
#'   Defaults to 0.05.
#' @param a The prior toxicity parameter for the beta prior.
#' @param b The prior non-toxicity parameter for the beta prior.
#' @param pExcessTox The threshold for excessive toxicity, i.e.,
#'   if Prob(p > pT | Data) > pExcessTox, then the current and
#'   all higher doses will be excluded and never be used again
#'   in the remainder of the trial to avoid any other subjects
#'   receiving treatment at those doses. Defaults to 0.95.
#'
#' @return An S3 class \code{mTPI2Table} object with the following
#' components:
#'
#' * \code{settings}: The input settings data frame with the following
#'   variables:
#'
#'     - \code{nMax}: The maximum number of subjects in a dose cohort.
#'
#'     - \code{pT}: The target toxicity probability.
#'
#'     - \code{epsilon1}: The lower equivalence margin from the target.
#'
#'     - \code{epsilon2}: The upper equivalence margin from the target.
#'
#'     - \code{a}: The prior toxicity parameter for the beta prior.
#'
#'     - \code{b}: The prior non-toxicity parameter for the beta prior.
#'
#'     - \code{pExcessTox}: The threshold for excessive toxicity.
#'
#' * \code{subintervals}: The subintervals of equal length in the mTPI-2
#'   design. It includes the following variables:
#'
#'     - \code{lower}: The lower bound of the subinterval.
#'
#'     - \code{upper}: The upper bound of the subinterval.
#'
#'     - \code{decision}: The dosing decision for the subinterval.
#'
#' * \code{decisionDataFrame}: The decision data frame for the mTPI-2 design.
#'   It includes the following variables:
#'
#'     - \code{n}: The sample size.
#'
#'     - \code{y}: The number of toxicities.
#'
#'     - \code{decision}: The dosing decision.
#'
#' * \code{decisionMatrix}: The decision matrix corresponding to the
#'   decision data frame.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' mTPI2Table(nMax = 18, pT = 0.3, epsilon1 = 0.05, epsilon2 = 0.05)
#'
#' @export
#'
mTPI2Table <- function(
    nMax = NA_integer_, pT = 0.3,
    epsilon1 = 0.05, epsilon2 = 0.05,
    a = 1, b = 1, pExcessTox = 0.95) {

  if (nMax <= 0 || nMax != round(nMax)) {
    stop("nMax must be a positive integer")
  }

  if (pT <= 0 || pT >= 1) {
    stop("pT must lie between 0 and 1")
  }

  if (epsilon1 <= 0) {
    stop("epsilon1 must be positive")
  }

  if (pT - epsilon1 <= 0) {
    stop("epsilon1 must be less than pT")
  }

  if (epsilon2 <= 0) {
    stop("epsilon2 must be positive")
  }

  if (1 - pT - epsilon2 <= 0) {
    stop("epsilon2 must be less than 1 - pT")
  }

  if (a <= 0) {
    stop("a must be positive")
  }

  if (b <= 0) {
    stop("b must be positive")
  }

  if (pExcessTox <= 0 || pExcessTox >= 1) {
    stop("pExcessTox must lie between 0 and 1")
  }


  settings = data.frame(nMax, pT, epsilon1, epsilon2, a, b, pExcessTox)

  # construct the data frame of subintervals with equal length
  width = epsilon1 + epsilon2
  l1 = floor((pT - epsilon1)/width)
  delta1 = pT - epsilon1 - l1*width
  l2 = floor((1 - pT - epsilon2)/width)
  delta2 = 1 - pT - epsilon2 - l2*width

  df1 = data.frame(
    lower = c(0, delta1 + (0:l1)*width, 1 - delta2 - (l2:0)*width),
    upper = c(delta1 + (0:l1)*width, 1 - delta2 - (l2:0)*width, 1),
    decision = c(rep("E", l1+1), "S", rep("D", l2+1)))

  # construct the decision table
  df2 = data.frame()
  for (n in 1:nMax) {
    for (y in 0:n) {
      # check the exclusion rule
      if (1 - pbeta(pT, a+y, b+n-y) > pExcessTox & y != 1) {
        decision = "DU"
      } else { # unit probability mass
        num = pbeta(df1$upper, a+y, b+n-y) - pbeta(df1$lower, a+y, b+n-y)
        den = df1$upper - df1$lower
        postprob = num/den
        i = which.max(postprob)
        decision = df1$decision[i]
      }
      df2 = rbind(df2, data.frame(n = n, y = y, decision = decision))
    }
  }


  # generate the plot for the decision table
  df3 = matrix("", nrow = nMax+1, ncol = nMax,
               dimnames = list(as.character(0:nMax),
                               as.character(1:nMax)))
  for (i in 1:nrow(df2)) {
    df3[df2$y[i]+1, df2$n[i]] = df2$decision[i]
  }

  des = list(settings = settings,
             subintervals = df1,
             decisionDataFrame = df2,
             decisionMatrix = as.data.frame(df3))

  attr(des, "class") = "mTPI2Table"

  des
}


#' @title BOIN Decision Table
#' @description Obtains the decision table for the Bayesian optimal
#' interval (BOIN) design.
#'
#' @param nMax The maximum number of subjects in a dose cohort.
#' @param pT The target toxicity probability. Defaults to 0.3.
#' @param phi1 The lower equivalence limit for target toxicity
#'   probability.
#' @param phi2 The upper equivalence limit for target toxicity
#'   probability.
#' @param a The prior toxicity parameter for the beta prior.
#' @param b The prior non-toxicity parameter for the beta prior.
#' @param pExcessTox The threshold for excessive toxicity, i.e.,
#'   if Prob(p > pT | Data) > pExcessTox, then the current and
#'   all higher doses will be excluded and never be used again
#'   in the remainder of the trial to avoid any other subjects
#'   receiving treatment at those doses. Defaults to 0.95.
#'
#' @return An S3 class \code{BOINTable} object with the following
#' components:
#'
#' * \code{settings}: The input settings data frame with the following
#'   variables:
#'
#'     - \code{nMax}: The maximum number of subjects in a dose cohort.
#'
#'     - \code{pT}: The target toxicity probability.
#'
#'     - \code{phi1}: The lower equivalence limit for target toxicity
#'       probability.
#'
#'     - \code{phi2}: The upper equivalence limit for target toxicity
#'       probability.
#'
#'     - \code{lambda1}: The lower decision boundary for observed toxicity
#'       probability.
#'
#'     - \code{lambda2}: The upper decision boundary for observed toxicity
#'       probability.
#'
#'     - \code{a}: The prior toxicity parameter for the beta prior.
#'
#'     - \code{b}: The prior non-toxicity parameter for the beta prior.
#'
#'     - \code{pExcessTox}: The threshold for excessive toxicity.
#'
#' * \code{decisionDataFrame}: The decision data frame for the BOIN design.
#'   It includes the following variables:
#'
#'     - \code{n}: The sample size.
#'
#'     - \code{y}: The number of toxicities.
#'
#'     - \code{decision}: The dosing decision.
#'
#' * \code{decisionMatrix}: The decision matrix corresponding to the
#'   decision data frame.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' BOINTable(nMax = 18, pT = 0.3, phi = 0.6*0.3, phi2 = 1.4*0.3)
#'
#' @export
#'
BOINTable <- function(
    nMax = NA_integer_, pT = 0.3,
    phi1 = 0.6*pT, phi2 = 1.4*pT,
    a = 1, b = 1, pExcessTox = 0.95) {

  if (nMax <= 0 || nMax != round(nMax)) {
    stop("nMax must be a positive integer")
  }

  if (pT <= 0 || pT >= 1) {
    stop("pT must lie between 0 and 1")
  }

  if (phi1 <= 0 || phi1 >= pT) {
    stop("phi1 must lie between 0 and", pT)
  }

  if (phi2 <= pT || phi2 >= 1) {
    stop("phi2 must lies between", pT, "and 1")
  }

  if (a <= 0) {
    stop("a must be positive")
  }

  if (b <= 0) {
    stop("b must be positive")
  }

  if (pExcessTox <= 0 || pExcessTox >= 1) {
    stop("pExcessTox must lie between 0 and 1")
  }

  lambda1 = log((1-phi1)/(1-pT))/log(pT*(1-phi1)/(phi1*(1-pT)))
  lambda2 = log((1-pT)/(1-phi2))/log(phi2*(1-pT)/(pT*(1-phi2)))

  settings = data.frame(nMax, pT, phi1 = phi1, phi2 = phi2,
                        lambda1 = lambda1, lambda2 = lambda2,
                        a, b, pExcessTox)

  # construct the decision table
  df2 = data.frame()
  for (n in 1:nMax) {
    for (y in 0:n) {
      # check the exclusion rule
      if (1 - pbeta(pT, a+y, b+n-y) > pExcessTox & n > 2) {
        decision = "DU"
      } else {
        p = y/n
        if (p <= lambda1) {
          decision = "E"
        } else if (p < lambda2) {
          decision = "S"
        } else {
          decision = "D"
        }
      }
      df2 = rbind(df2, data.frame(n = n, y = y, decision = decision))
    }
  }


  # generate the plot for the decision table
  df3 = matrix("", nrow = nMax+1, ncol = nMax,
               dimnames = list(as.character(0:nMax),
                               as.character(1:nMax)))
  for (i in 1:nrow(df2)) {
    df3[df2$y[i]+1, df2$n[i]] = df2$decision[i]
  }

  des = list(settings = settings,
             decisionDataFrame = df2,
             decisionMatrix = as.data.frame(df3))

  attr(des, "class") = "BOINTable"

  des
}


#' @title Power and Sample Size for One-Sample Multinomial Response
#' @description Obtains the power given sample size or obtains the sample
#' size given power for one-sample multinomial response.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param ncats The number of categories of the multinomial response.
#' @param piH0 The prevalence of each category under the null hypothesis.
#'   Only need to provide the values for the first \code{ncats-1}
#'   categories.
#' @param pi The prevalence of each category. Only need to provide the
#'   values for the first \code{ncats-1} categories.
#' @param rounding Whether to round up sample size. Defaults to 1 for
#'   sample size rounding.
#' @param alpha The two-sided significance level. Defaults to 0.05.
#'
#' @return An S3 class \code{designOneMultinom} object with the following
#' components:
#'
#' * \code{power}: The power to reject the null hypothesis.
#'
#' * \code{alpha}: The two-sided significance level.
#'
#' * \code{n}: The maximum number of subjects.
#'
#' * \code{ncats}: The number of categories of the multinomial response.
#'
#' * \code{piH0}: The prevalence of each category under the null hypothesis.
#'
#' * \code{pi}: The prevalence of each category.
#'
#' * \code{effectsize}: The effect size for the chi-square test.
#'
#' * \code{rounding}: Whether to round up sample size.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' (design1 <- getDesignOneMultinom(
#'   beta = 0.1, ncats = 3, piH0 = c(0.25, 0.25),
#'   pi = c(0.3, 0.4), alpha = 0.05))
#'
#' @export
#'
getDesignOneMultinom <- function(
    beta = NA_real_,
    n = NA_real_,
    ncats = NA_integer_,
    piH0 = NA_real_,
    pi = NA_real_,
    rounding = TRUE,
    alpha = 0.05) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && (n <= 0 || n != round(n))) {
    stop("n must be a positive integer")
  }

  if (is.na(ncats)) {
    stop("ncats must be provided")
  }

  if (ncats < 2 || ncats != round(ncats)) {
    stop("ncats must be a positive integer >= 2")
  }

  if (any(is.na(piH0))) {
    stop("piH0 must be provided")
  }

  if (any(piH0 <= 0 | piH0 >= 1)) {
    stop(paste("Elements of piH0 must lie between 0 and 1"))
  }

  if (length(piH0) != ncats-1 && length(piH0) != ncats) {
    stop(paste("piH0 must have length", ncats-1, "or", ncats))
  }

  if (length(piH0) == ncats-1) {
    if (sum(piH0) >= 1) {
      stop("piH0 must sum up to < 1 if it has only", ncats-1, "elements")
    }

    piH0 = c(piH0, 1 - sum(piH0))
  } else {
    if (sum(piH0) != 1) {
      stop(paste("piH0 must sum to 1 across", ncats, "categories"))
    }
  }

  if (any(is.na(pi))) {
    stop("pi must be provided")
  }

  if (any(pi <= 0 | pi >= 1)) {
    stop(paste("Elements of pi must lie between 0 and 1"))
  }

  if (length(pi) != ncats-1 && length(pi) != ncats) {
    stop(paste("pi must have length", ncats-1, "or", ncats))
  }

  if (length(pi) == ncats-1) {
    if (sum(pi) >= 1) {
      stop("pi must sum up to < 1 if it has only", ncats-1, "elements")
    }

    pi = c(pi, 1 - sum(pi))
  } else {
    if (sum(pi) != 1) {
      stop(paste("pi must sum to 1 across", ncats, "categories"))
    }
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }

  tau = sum((pi - piH0)^2/piH0)

  nu = ncats - 1
  b = qchisq(1-alpha, nu)

  if (is.na(n)) {
    n0 = (b - nu + qnorm(1-beta)*sqrt(2*nu))/tau
    while (pchisq(b, nu, n0*tau) > beta) n0 <- 2*n0
    n = uniroot(function(n) pchisq(b, nu, n*tau) - beta, c(0.5*n0, n0))$root
  }

  if (rounding) {
    n = ceiling(n - 1.0e-12)
  }

  power = pchisq(b, nu, n*tau, lower.tail = FALSE)

  des = list(power = power, alpha = alpha, n = n,
             ncats = ncats, piH0 = piH0, pi = pi,
             effectsize = tau,
             rounding = rounding)

  attr(des, "class") = "designOneMultinom"

  des
}


#' @title Power and Sample Size for Difference in Two-Sample Multinomial
#' Responses
#' @description Obtains the power given sample size or obtains the sample
#' size given power for difference in two-sample multinomial responses.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param ncats The number of categories of the multinomial response.
#' @param pi1 The prevalence of each category for the treatment group.
#'   Only need to specify the valued for the first \code{ncats-1} categories.
#' @param pi2 The prevalence of each category for the control group.
#'   Only need to specify the valued for the first \code{ncats-1} categories.
#' @param allocationRatioPlanned Allocation ratio for the active treatment
#'   versus control. Defaults to 1 for equal randomization.
#' @param rounding Whether to round up sample size. Defaults to 1 for
#'   sample size rounding.
#' @param alpha The two-sided significance level. Defaults to 0.05.
#'
#' @return An S3 class \code{designTwoMultinom} object with the following
#' components:
#'
#' * \code{power}: The power to reject the null hypothesis.
#'
#' * \code{alpha}: The two-sided significance level.
#'
#' * \code{n}: The maximum number of subjects.
#'
#' * \code{ncats}: The number of categories of the multinomial response.
#'
#' * \code{pi1}: The prevalence of each category for the treatment group.
#'
#' * \code{pi2}: The prevalence of each category for the control group.
#'
#' * \code{effectsize}: The effect size for the chi-square test.
#'
#' * \code{allocationRatioPlanned}: Allocation ratio for the active treatment
#'   versus control.
#'
#' * \code{rounding}: Whether to round up sample size.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' (design1 <- getDesignTwoMultinom(
#'   beta = 0.1, ncats = 3, pi1 = c(0.3, 0.35),
#'   pi2 = c(0.2, 0.3), alpha = 0.05))
#'
#' @export
#'
getDesignTwoMultinom <- function(
    beta = NA_real_,
    n = NA_real_,
    ncats = NA_integer_,
    pi1 = NA_real_,
    pi2 = NA_real_,
    allocationRatioPlanned = 1,
    rounding = TRUE,
    alpha = 0.05) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && (n <= 0 || n != round(n))) {
    stop("n must be a positive integer")
  }

  if (is.na(ncats)) {
    stop("ncats must be provided")
  }

  if (ncats < 2 || ncats != round(ncats)) {
    stop("ncats must be a positive integer >= 2")
  }

  if (any(is.na(pi1))) {
    stop("pi1 must be provided")
  }

  if (any(pi1 <= 0 | pi1 >= 1)) {
    stop(paste("Elements of pi1 must lie between 0 and 1"))
  }

  if (length(pi1) != ncats-1 && length(pi1) != ncats) {
    stop(paste("pi1 must have length", ncats-1, "or", ncats))
  }

  if (length(pi1) == ncats-1) {
    if (sum(pi1) >= 1) {
      stop("pi1 must sum up to < 1 if it has only", ncats-1, "elements")
    }

    pi1 = c(pi1, 1 - sum(pi1))
  } else {
    if (sum(pi1) != 1) {
      stop(paste("pi1 must sum to 1 across", ncats, "categories"))
    }
  }

  if (any(is.na(pi2))) {
    stop("pi2 must be provided")
  }

  if (any(pi2 <= 0 | pi2 >= 1)) {
    stop(paste("Elements of pi2 must lie between 0 and 1"))
  }

  if (length(pi2) != ncats-1 && length(pi2) != ncats) {
    stop(paste("pi2 must have length", ncats-1, "or", ncats))
  }

  if (length(pi2) == ncats-1) {
    if (sum(pi2) >= 1) {
      stop("pi2 must sum up to < 1 if it has only", ncats-1, "elements")
    }

    pi2 = c(pi2, 1 - sum(pi2))
  } else {
    if (sum(pi2) != 1) {
      stop(paste("pi2 must sum to 1 across", ncats, "categories"))
    }
  }

  if (allocationRatioPlanned <= 0) {
    stop("allocationRatioPlanned must be positive")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }


  r = allocationRatioPlanned/(1 + allocationRatioPlanned)

  tau = r*(1-r)*sum((pi1 - pi2)^2/(r*pi1 + (1-r)*pi2))

  nu = ncats - 1
  b = qchisq(1-alpha, nu)

  if (is.na(n)) {
    n0 = (b - nu + qnorm(1-beta)*sqrt(2*nu))/tau
    while (pchisq(b, nu, n0*tau) > beta) n0 <- 2*n0
    n = uniroot(function(n) pchisq(b, nu, n*tau) - beta, c(0.5*n0, n0))$root
  }

  if (rounding) {
    n = ceiling(n - 1.0e-12)
  }

  power = pchisq(b, nu, n*tau, lower.tail = FALSE)

  des = list(power = power, alpha = alpha, n = n,
             ncats = ncats, pi1 = pi1, pi2 = pi2,
             effectsize = tau,
             allocationRatioPlanned = allocationRatioPlanned,
             rounding = rounding)

  attr(des, "class") = "designTwoMultinom"

  des
}


#' @title Power and Sample Size for the Wilcoxon Test for Two-Sample
#' Ordinal Response
#' @description Obtains the power given sample size or obtains the sample
#' size given power for the Wilcoxon test for two-sample ordinal response.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param ncats The number of categories of the ordinal response.
#' @param pi1 The prevalence of each category for the treatment group.
#'   Only need to specify the valued for the first \code{ncats-1} categories.
#' @param pi2 The prevalence of each category for the control group.
#'   Only need to specify the valued for the first \code{ncats-1} categories.
#' @param allocationRatioPlanned Allocation ratio for the active treatment
#'   versus control. Defaults to 1 for equal randomization.
#' @param rounding Whether to round up sample size. Defaults to 1 for
#'   sample size rounding.
#' @inheritParams param_alpha
#'
#' @return An S3 class \code{designTwoOrdinal} object with the following
#' components:
#'
#' * \code{power}: The power to reject the null hypothesis.
#'
#' * \code{alpha}: The two-sided significance level.
#'
#' * \code{n}: The maximum number of subjects.
#'
#' * \code{ncats}: The number of categories of the ordinal response.
#'
#' * \code{pi1}: The prevalence of each category for the treatment group.
#'
#' * \code{pi2}: The prevalence of each category for the control group.
#'
#' * \code{meanscore1}: The mean midrank score for the treatment group.
#'
#' * \code{meanscore2}: The mean midrank score for the control group.
#'
#' * \code{allocationRatioPlanned}: Allocation ratio for the active treatment
#'   versus control.
#'
#' * \code{rounding}: Whether to round up sample size.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' (design1 <- getDesignTwoOrdinal(
#'   beta = 0.1, ncats = 4, pi1 = c(0.55, 0.3, 0.1),
#'   pi2 = c(0.214, 0.344, 0.251), alpha = 0.025))
#'
#' @export
getDesignTwoOrdinal <- function(
    beta = NA_real_,
    n = NA_real_,
    ncats = NA_integer_,
    pi1 = NA_real_,
    pi2 = NA_real_,
    allocationRatioPlanned = 1,
    rounding = TRUE,
    alpha = 0.05) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && (n <= 0 || n != round(n))) {
    stop("n must be a positive integer")
  }

  if (is.na(ncats)) {
    stop("ncats must be provided")
  }

  if (ncats < 2 || ncats != round(ncats)) {
    stop("ncats must be a positive integer >= 2")
  }

  if (any(is.na(pi1))) {
    stop("pi1 must be provided")
  }

  if (any(pi1 <= 0 | pi1 >= 1)) {
    stop(paste("Elements of pi1 must lie between 0 and 1"))
  }

  if (length(pi1) != ncats-1 && length(pi1) != ncats) {
    stop(paste("pi1 must have length", ncats-1, "or", ncats))
  }

  if (length(pi1) == ncats-1) {
    if (sum(pi1) >= 1) {
      stop("pi1 must sum up to < 1 if it has only", ncats-1, "elements")
    }

    pi1 = c(pi1, 1 - sum(pi1))
  } else {
    if (sum(pi1) != 1) {
      stop(paste("pi1 must sum to 1 across", ncats, "categories"))
    }
  }

  if (any(is.na(pi2))) {
    stop("pi2 must be provided")
  }

  if (any(pi2 <= 0 | pi2 >= 1)) {
    stop(paste("Elements of pi2 must lie between 0 and 1"))
  }

  if (length(pi2) != ncats-1 && length(pi2) != ncats) {
    stop(paste("pi2 must have length", ncats-1, "or", ncats))
  }

  if (length(pi2) == ncats-1) {
    if (sum(pi2) >= 1) {
      stop("pi2 must sum up to < 1 if it has only", ncats-1, "elements")
    }

    pi2 = c(pi2, 1 - sum(pi2))
  } else {
    if (sum(pi2) != 1) {
      stop(paste("pi2 must sum to 1 across", ncats, "categories"))
    }
  }

  if (allocationRatioPlanned <= 0) {
    stop("allocationRatioPlanned must be positive")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }


  r = allocationRatioPlanned/(1 + allocationRatioPlanned)

  pi = r*pi1 + (1-r)*pi2
  p = cumsum(pi)
  w = p - 0.5*pi

  riskDiff = sum(w*(pi1 - pi2))

  directionUpper = riskDiff > 0

  theta = ifelse(directionUpper, riskDiff, -riskDiff)

  varH0 = (sum(w^2*pi) - sum(w*pi)^2)/(r*(1-r))
  varH1 = (sum(w^2*pi1) - sum(w*pi1)^2)/r +
    (sum(w^2*pi2) - sum(w*pi2)^2)/(1-r)


  if (is.na(n)) {
    n = (qnorm(1-alpha)*sqrt(varH0) + qnorm(1-beta)*sqrt(varH1))^2/theta^2
  }

  if (rounding) {
    n = ceiling(n - 1.0e-12)
  }

  power = pnorm((sqrt(n)*theta - qnorm(1-alpha)*sqrt(varH0))/sqrt(varH1))

  des = list(power = power, alpha = alpha, n = n,
             ncats = ncats, pi1 = pi1, pi2 = pi2,
             meanscore1 = n*sum(w*pi1), meanscore2 = n*sum(w*pi2),
             allocationRatioPlanned = allocationRatioPlanned,
             rounding = rounding)

  attr(des, "class") = "designTwoOrdinal"

  des
}


#' @title Power and Sample Size for Cochran-Armitage Trend Test for
#' Ordered Multi-Sample Binomial Response
#' @description Obtains the power given sample size or obtains the sample
#' size given power for the Cochran-Armitage trend test for ordered
#' multi-sample binomial response.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param ngroups The number of treatment groups.
#' @param pi The response probabilities for the treatment groups.
#' @param w The scores assigned to the treatment groups. This should
#'   reflect the ordinal nature of the treatment groups, e.g. dose levels.
#'   Defaults to equally spaced scores.
#' @param allocationRatioPlanned Allocation ratio for the treatment groups.
#' @param rounding Whether to round up sample size. Defaults to 1 for
#'   sample size rounding.
#' @param alpha The two-sided significance level. Defaults to 0.05.
#'
#' @return An S3 class \code{designOrderedBinom} object with the following
#' components:
#'
#' * \code{power}: The power to reject the null hypothesis.
#'
#' * \code{alpha}: The two-sided significance level.
#'
#' * \code{n}: The maximum number of subjects.
#'
#' * \code{ngroups}: The number of treatment groups.
#'
#' * \code{pi}: The response probabilities for the treatment groups.
#'
#' * \code{w}: The scores assigned to the treatment groups.
#'
#' * \code{trendstat}: The Cochran-Armitage trend test statistic.
#'
#' * \code{allocationRatioPlanned}: Allocation ratio for the treatment
#'   groups.
#'
#' * \code{rounding}: Whether to round up sample size.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' (design1 <- getDesignOrderedBinom(
#'   beta = 0.1, ngroups = 3, pi = c(0.1, 0.25, 0.5), alpha = 0.05))
#'
#' @export
getDesignOrderedBinom <- function(
    beta = NA_real_,
    n = NA_real_,
    ngroups = NA_integer_,
    pi = NA_real_,
    w = NA_real_,
    allocationRatioPlanned = NA_integer_,
    rounding = TRUE,
    alpha = 0.05) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && (n <= 0 || n != round(n))) {
    stop("n must be a positive integer")
  }

  if (is.na(ngroups)) {
    stop("ncats must be provided")
  }

  if (ngroups < 2 || ngroups != round(ngroups)) {
    stop("ngroups must be a positive integer >= 2")
  }

  if (any(is.na(pi))) {
    stop("pi must be provided")
  }

  if (any(pi <= 0 | pi >= 1)) {
    stop(paste("Elements of pi must lie between 0 and 1"))
  }

  if (length(pi) != ngroups) {
    stop(paste("pi must have length", ngroups))
  }

  if (any(is.na(w))) {
    w = seq(1, ngroups)
  }

  if (length(w) != ngroups) {
    stop(paste("w must have length", ngroups))
  }

  if (any(is.na(allocationRatioPlanned))) {
    allocationRatioPlanned = rep(1, ngroups)
  }

  if (length(allocationRatioPlanned) != ngroups-1 &&
      length(allocationRatioPlanned) != ngroups) {
    stop(paste("allocationRatioPlanned should have", ngroups-1,
               "or", ngroups, "elements"))
  }

  if (length(allocationRatioPlanned) == ngroups-1) {
    allocationRatioPlanned = c(allocationRatioPlanned, 1)
  }

  if (any(allocationRatioPlanned <= 0)) {
    stop("Elements of allocationRatioPlanned must be positive")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }


  # randomization probabilities
  r = allocationRatioPlanned/sum(allocationRatioPlanned)

  wbar = sum(r*w)
  pibar = sum(r*pi)

  theta = sum(r*(w-wbar)*(pi-pibar))

  varH0 = pibar*(1-pibar)*sum(r*(w-wbar)^2)
  varH1 = sum(r*(w-wbar)^2*pi*(1-pi))

  if (is.na(n)) {
    n = (qnorm(1-alpha/2)*sqrt(varH0) + qnorm(1-beta)*sqrt(varH1))^2/theta^2
  }

  if (rounding) {
    n = ceiling(n - 1.0e-12)
  }

  power = pnorm((sqrt(n)*abs(theta) - qnorm(1-alpha/2)*sqrt(varH0))/
                  sqrt(varH1))

  des = list(power = power, alpha = alpha, n = n,
             ngroups = ngroups, pi = pi, w = w,
             trendstat = n*sum(r*(w-wbar)*pi),
             allocationRatioPlanned = allocationRatioPlanned,
             rounding = rounding)

  attr(des, "class") = "designOrderedBinom"

  des
}


#' @title Power and Sample Size for Unordered Multi-Sample Binomial Response
#' @description Obtains the power given sample size or obtains the sample
#' size given power for the chi-square test for unordered multi-sample
#' binomial response.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param ngroups The number of treatment groups.
#' @param pi The response probabilities for the treatment groups.
#' @param allocationRatioPlanned Allocation ratio for the treatment groups.
#' @param rounding Whether to round up sample size. Defaults to 1 for
#'   sample size rounding.
#' @param alpha The two-sided significance level. Defaults to 0.05.
#'
#' @return An S3 class \code{designUnorderedBinom} object with the following
#' components:
#'
#' * \code{power}: The power to reject the null hypothesis.
#'
#' * \code{alpha}: The two-sided significance level.
#'
#' * \code{n}: The maximum number of subjects.
#'
#' * \code{ngroups}: The number of treatment groups.
#'
#' * \code{pi}: The response probabilities for the treatment groups.
#'
#' * \code{effectsize}: The effect size for the chi-square test.
#'
#' * \code{allocationRatioPlanned}: Allocation ratio for the treatment
#'   groups.
#'
#' * \code{rounding}: Whether to round up sample size.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' (design1 <- getDesignUnorderedBinom(
#'   beta = 0.1, ngroups = 3, pi = c(0.1, 0.25, 0.5), alpha = 0.05))
#'
#' @export
getDesignUnorderedBinom <- function(
    beta = NA_real_,
    n = NA_real_,
    ngroups = NA_integer_,
    pi = NA_real_,
    allocationRatioPlanned = NA_integer_,
    rounding = TRUE,
    alpha = 0.05) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && (n <= 0 || n != round(n))) {
    stop("n must be a positive integer")
  }

  if (is.na(ngroups)) {
    stop("ngroups must be provided")
  }

  if (ngroups < 2 || ngroups != round(ngroups)) {
    stop("ngroups must be a positive integer >= 2")
  }

  if (any(is.na(pi))) {
    stop("pi must be provided")
  }

  if (any(pi <= 0 | pi >= 1)) {
    stop(paste("Elements of pi must lie between 0 and 1"))
  }

  if (length(pi) != ngroups) {
    stop(paste("pi must have length", ngroups))
  }

  if (any(is.na(allocationRatioPlanned))) {
    allocationRatioPlanned = rep(1, ngroups)
  }

  if (length(allocationRatioPlanned) != ngroups-1 &&
      length(allocationRatioPlanned) != ngroups) {
    stop(paste("allocationRatioPlanned should have", ngroups-1,
               "or", ngroups, "elements"))
  }

  if (length(allocationRatioPlanned) == ngroups-1) {
    allocationRatioPlanned = c(allocationRatioPlanned, 1)
  }

  if (any(allocationRatioPlanned <= 0)) {
    stop("Elements of allocationRatioPlanned must be positive")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }


  # randomization probabilities
  r = allocationRatioPlanned/sum(allocationRatioPlanned)

  pibar = sum(r*pi)

  tau = sum(r*(pi - pibar)^2)/(pibar*(1-pibar))

  nu = ngroups - 1
  b = qchisq(1-alpha, nu)

  if (is.na(n)) {
    n0 = (qchisq(1-alpha, nu) - nu + qnorm(1-beta)*sqrt(2*nu))/tau
    while (pchisq(b, nu, n0*tau) > beta) n0 <- 2*n0
    n = uniroot(function(n) pchisq(b, nu, n*tau) - beta, c(0.5*n0, n0))$root
  }

  if (rounding) {
    n = ceiling(n - 1.0e-12)
  }

  power = pchisq(b, nu, n*tau, lower.tail = FALSE)

  des = list(power = power, alpha = alpha, n = n,
             ngroups = ngroups, pi = pi,
             effectsize = tau,
             allocationRatioPlanned = allocationRatioPlanned,
             rounding = rounding)

  attr(des, "class") = "designUnorderedBinom"

  des
}


#' @title Power and Sample Size for Unordered Multi-Sample Multinomial
#' Response
#' @description Obtains the power given sample size or obtains the sample
#' size given power for the chi-square test for unordered multi-sample
#' multinomial response.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param ngroups The number of treatment groups.
#' @param ncats The number of categories of the multinomial response.
#' @param pi The matrix of response probabilities for the treatment groups.
#'   It should have \code{ngroups} rows and \code{ncats-1} or \code{ncats}
#'   columns.
#' @param allocationRatioPlanned Allocation ratio for the treatment groups.
#' @param rounding Whether to round up sample size. Defaults to 1 for
#'   sample size rounding.
#' @param alpha The two-sided significance level. Defaults to 0.05.
#'
#' @return An S3 class \code{designUnorderedMultinom} object with the
#' following components:
#'
#' * \code{power}: The power to reject the null hypothesis.
#'
#' * \code{alpha}: The two-sided significance level.
#'
#' * \code{n}: The maximum number of subjects.
#'
#' * \code{ngroups}: The number of treatment groups.
#'
#' * \code{ncats}: The number of categories of the multinomial response.
#'
#' * \code{pi}: The response probabilities for the treatment groups.
#'
#' * \code{effectsize}: The effect size for the chi-square test.
#'
#' * \code{allocationRatioPlanned}: Allocation ratio for the treatment
#'   groups.
#'
#' * \code{rounding}: Whether to round up sample size.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' (design1 <- getDesignUnorderedMultinom(
#'   beta = 0.1, ngroups = 3, ncats = 4,
#'   pi = matrix(c(0.230, 0.320, 0.272,
#'                 0.358, 0.442, 0.154,
#'                 0.142, 0.036, 0.039),
#'               3, 3, byrow = TRUE),
#'   allocationRatioPlanned = c(2, 2, 1),
#'   alpha = 0.05))
#'
#' @export
getDesignUnorderedMultinom <- function(
    beta = NA_real_,
    n = NA_real_,
    ngroups = NA_integer_,
    ncats = NA_integer_,
    pi = NA_real_,
    allocationRatioPlanned = NA_integer_,
    rounding = TRUE,
    alpha = 0.05) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && (n <= 0 || n != round(n))) {
    stop("n must be a positive integer")
  }

  if (is.na(ngroups)) {
    stop("ngroups must be provided")
  }

  if (ngroups < 2 || ngroups != round(ngroups)) {
    stop("ngroups must be a positive integer >= 2")
  }

  if (is.na(ncats)) {
    stop("ncats must be provided")
  }

  if (ncats < 2 || ncats != round(ncats)) {
    stop("ncats must be a positive integer >= 2")
  }

  if (any(is.na(pi))) {
    stop("pi must be provided")
  }

  if (any(pi <= 0 | pi >= 1)) {
    stop(paste("Elements of pi must lie between 0 and 1"))
  }

  if (nrow(pi) != ngroups) {
    stop(paste("pi must have", ngroups, "rows"))
  }

  if (ncol(pi) != ncats-1 && ncol(pi) != ncats) {
    stop(paste("pi must have", ncats-1, "or", ncats, "columns"))
  }

  if (ncol(pi) == ncats-1) {
    if (any(rowSums(pi) >= 1)) {
      stop("pi should sum up to <1 for any treatment group")
    }

    pi = matrix(c(pi, 1-rowSums(pi)), ngroups, ncats)
  } else {
    if (any(rowSums(pi) != 1)) {
      stop("pi should sum up to 1 for any treatment group")
    }
  }

  if (any(is.na(allocationRatioPlanned))) {
    allocationRatioPlanned = rep(1, ngroups)
  }

  if (length(allocationRatioPlanned) != ngroups-1 &&
      length(allocationRatioPlanned) != ngroups) {
    stop(paste("allocationRatioPlanned should have", ngroups-1,
               "or", ngroups, "elements"))
  }

  if (length(allocationRatioPlanned) == ngroups-1) {
    allocationRatioPlanned = c(allocationRatioPlanned, 1)
  }

  if (any(allocationRatioPlanned <= 0)) {
    stop("Elements of allocationRatioPlanned must be positive")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }


  # randomization probabilities
  r = allocationRatioPlanned/sum(allocationRatioPlanned)
  mr = matrix(r, ngroups, ncats)

  pibar = colSums(r*pi)
  mpibar = matrix(pibar, ngroups, ncats, byrow = TRUE)

  tau = sum(mr*(pi - mpibar)^2/mpibar)

  nu = (ngroups-1)*(ncats-1)
  b = qchisq(1-alpha, nu)

  if (is.na(n)) {
    n0 = (qchisq(1-alpha, nu) - nu + qnorm(1-beta)*sqrt(2*nu))/tau
    while (pchisq(b, nu, n0*tau) > beta) n0 <- 2*n0
    n = uniroot(function(n) pchisq(b, nu, n*tau) - beta, c(0.5*n0, n0))$root
  }

  if (rounding) {
    n = ceiling(n - 1.0e-12)
  }

  power = pchisq(b, nu, n*tau, lower.tail = FALSE)

  des = list(power = power, alpha = alpha, n = n,
             ngroups = ngroups, ncats = ncats,
             pi = pi, effectsize = tau,
             allocationRatioPlanned = allocationRatioPlanned,
             rounding = rounding)

  attr(des, "class") = "designUnorderedMultinom"

  des
}


#' @title Power and Sample Size for Logistic Regression
#' @description Obtains the power given sample size or obtains the sample
#' size given power for logistic regression of a binary response given
#' the covariate of interest and other covariates.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param ncovariates The number of covariates.
#' @param nconfigs The number of configurations of discretized covariate
#'   values.
#' @param x The matrix of covariate values.
#' @param pconfigs The vector of probabilities for the configurations.
#' @param corr The multiple correlation between the predictor and other
#'   covariates. Defaults to 0.
#' @param oddsratios The odds ratios for one unit increase in the
#'   covariates.
#' @param responseprob The response probability in the full model when
#'   all predictor variables are equal to their means.
#' @param rounding Whether to round up sample size. Defaults to 1 for
#'   sample size rounding.
#' @param alpha The two-sided significance level. Defaults to 0.05.
#'
#' @details
#' We consider the logistic regression of a binary response variable
#' \eqn{Y} on a set of predictor variables \eqn{x = (x_1,\ldots,x_K)^T}
#' with \eqn{x_1} being the covariate of interest:
#' \eqn{\log \frac{P(Y_i=1)}{1 - P(Y_i = 1)} = \psi_0 + x_i^T \psi,}
#' where \eqn{\psi = (\psi_1,\ldots,\psi_K)^T}.
#' Similar to Self et al (1992), we assume that all covariates are
#' either inherently discrete or discretized from continuous
#' distributions (e.g. using the quantiles). Let \eqn{m} denote the total
#' number of configurations of the covariate values. Let
#' \deqn{\pi_i = P(x = x_i), i = 1,\ldots, m}
#' denote the probabilities for the configurations of the covariates
#' under independence. The likelihood ratio test statistic for testing
#' \eqn{H_0: \psi_1 = 0} can be approximated by a noncentral chi-square
#' distribution with one degree of freedom and noncentrality parameter
#' \deqn{\Delta = 2 \sum_{i=1}^m \pi_i [b'(\theta_i)(\theta_i - \theta_i^*)
#' - \{b(\theta_i) - b(\theta_i^*)\}],} where
#' \deqn{\theta_i = \psi_0 + \sum_{j=1}^{k} \psi_j x_{ij},}
#' \deqn{\theta_i^* = \psi_0^* + \sum_{j=2}^{k} \psi_j^* x_{ij},}
#' for \eqn{\psi_0^* = \psi_0 + \psi_1 \mu_1}, and \eqn{\psi_j^* = \psi_j}
#' for \eqn{j=2,\ldots,K}. Here \eqn{\mu_1} is the mean of \eqn{x_1},
#' e.g., \eqn{\mu_1 = \sum_i \pi_i x_{i1}.} In addition, by
#' formulating the logistic regression in the framework of generalized
#' linear models, \deqn{b(\theta) = \log(1 + \exp(\theta)),} and
#' \deqn{b'(\theta) = \frac{\exp(\theta)}{1 + \exp(\theta)}.}
#'
#' The regression coefficients \eqn{\psi} can be obtained by taking the
#' log of the odds ratios for the covariates. The intercept \eqn{\psi_0}
#' can be derived as \deqn{\psi_0 = \log(\bar{\mu}/(1- \bar{\mu})) -
#' \sum_{j=1}^{K} \psi_j \mu_j,} where \eqn{\bar{\mu}} denotes the
#' response probability when all predictor variables are equal to their
#' means.
#'
#' Finally, let \eqn{\rho} denote the multiple correlation between
#' the predictor and other covariates. The noncentrality parameter
#' of the chi-square test is adjusted downward by multiplying by
#' \eqn{1-\rho^2}.
#'
#' @return An S3 class \code{designLogistic} object with the
#' following components:
#'
#' * \code{power}: The power to reject the null hypothesis.
#'
#' * \code{alpha}: The two-sided significance level.
#'
#' * \code{n}: The total sample size.
#'
#' * \code{ncovariates}: The number of covariates.
#'
#' * \code{nconfigs}: The number of configurations of discretized covariate
#'   values.
#'
#' * \code{x}: The matrix of covariate values.
#'
#' * \code{pconfigs}: The vector of probabilities for the configurations.
#'
#' * \code{corr}: The multiple correlation between the predictor and other
#'   covariates.
#'
#' * \code{oddsratios}: The odds ratios for one unit increase in the
#'   covariates.
#'
#' * \code{responseprob}: The response probability in the full model when
#'   all predictor variables are equal to their means.
#'
#' * \code{effectsize}: The effect size for the chi-square test.
#'
#' * \code{rounding}: Whether to round up sample size.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @references
#'
#' Steven G. Self, Robert H. Mauritsen and Jill Ohara.
#' Power calculations for likelihood ratio tests in generalized linear
#' models. Biometrics 1992; 48:31-39.
#'
#' @examples
#'
#' # two ordinal covariates
#' x1 = c(5, 10, 15, 20)
#' px1 = c(0.2, 0.3, 0.3, 0.2)
#'
#' x2 = c(2, 4, 6)
#' px2 = c(0.4, 0.4, 0.2)
#'
#' # discretizing a normal distribution with mean 4 and standard deviation 2
#' nbins = 10
#' x3 = qnorm(((1:nbins) - 0.5)/nbins)*2 + 4
#' px3 = rep(1/nbins, nbins)
#'
#' # combination of covariate values
#' nconfigs = length(x1)*length(x2)*length(x3)
#' x = expand.grid(x3 = x3, x2 = x2, x1 = x1)
#' x = as.matrix(x[, ncol(x):1])
#'
#' # probabilities for the covariate configurations under independence
#' pconfigs = as.numeric(px1 %x% px2 %x% px3)
#'
#' # convert the odds ratio for the predictor variable in 5-unit change
#' # to the odds ratio in 1-unit change
#' (design1 <- getDesignLogistic(
#'   beta = 0.1, ncovariates = 3,
#'   nconfigs = nconfigs,
#'   x = x,
#'   pconfigs = pconfigs,
#'   oddsratios = c(1.2^(1/5), 1.4, 1.3),
#'   responseprob = 0.25,
#'   alpha = 0.1))
#'
#' @export
#'
getDesignLogistic <- function(
    beta = NA_real_,
    n = NA_real_,
    ncovariates = NA_integer_,
    nconfigs = NA_integer_,
    x = NA_real_,
    pconfigs = NA_real_,
    corr = 0,
    oddsratios = NA_real_,
    responseprob = NA_real_,
    rounding = TRUE,
    alpha = 0.05) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && (n <= 0 || n != round(n))) {
    stop("n must be a positive integer")
  }

  if (is.na(ncovariates)) {
    stop("ncovariates must be provided")
  }

  if (ncovariates < 1 || ncovariates != round(ncovariates)) {
    stop("ncovariates must be a positive integer")
  }

  if (is.na(nconfigs)) {
    stop("nconfigs must be provided")
  }

  if (nconfigs < 2 || nconfigs != round(nconfigs)) {
    stop("nconfigs must be a positive integer >= 2")
  }

  if (any(is.na(x))) {
    stop("x must be provided")
  }

  if (ncovariates != 1 && !is.matrix(x)) {
    stop("x must be a matrix")
  }

  if (ncovariates == 1 && !is.matrix(x)) {
    x = as.matrix(x, ncol = 1)
  }

  if (is.matrix(x) && nrow(x) != nconfigs) {
    stop("x must have", nconfigs, "rows")
  }

  if (is.matrix(x) && ncol(x) != ncovariates) {
    stop("x must have", ncovariates, "columns")
  }

  if (any(is.na(pconfigs))) {
    stop("pconfigs must be provided")
  }

  if (any(pconfigs <= 0 | pconfigs >= 1)) {
    stop(paste("Elements of pconfigs must lie between 0 and 1"))
  }

  if (length(pconfigs) != nconfigs-1 && length(pconfigs) != nconfigs) {
    stop(paste("pconfigs must have", nconfigs-1, "or", nconfigs, "elements"))
  }

  if (length(pconfigs) == nconfigs-1) {
    if (sum(pconfigs) >= 1) {
      stop("pconfigs should sum up to <1")
    }

    pconfigs = c(pconfigs, 1-sum(pconfigs))
  } else {
    if (abs(sum(pconfigs) - 1.0) > 1.0e-8) {
      stop("pconfigs should sum up to 1")
    }
  }

  if (corr <= -1 || corr >= 1) {
    stop("corr must lie between 0 and 1")
  }

  if (any(is.na(oddsratios))) {
    stop("oddsratios must be provided")
  }

  if (length(oddsratios) != ncovariates) {
    stop("oddsratios must have", ncovariates, "elements")
  }

  if (any(oddsratios <= 0)) {
    stop("oddsratios must be positive")
  }

  if (is.na(responseprob)) {
    stop("responseprob must be provided")
  }

  if (responseprob <= 0 || responseprob >= 1) {
    stop("responseprob must lie between 0 and 1")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }


  xmean = colSums(pconfigs*x)
  names(xmean) = NULL
  psi = log(oddsratios)
  psi0 = qlogis(responseprob) - sum(xmean*psi)
  psi0star = psi0 + psi[1]*xmean[1]
  psistar = psi
  psistar[1] = 0

  theta = psi0 + as.numeric(x %*% psi)
  thetastar = psi0star + as.numeric(x %*% psistar)


  tau = 2*sum(pconfigs*(plogis(theta)*(theta - thetastar) -
                          log(1 + exp(theta)) +
                          log(1 + exp(thetastar))))

  tau = tau*(1-corr^2)


  nu = 1
  b = qchisq(1-alpha, nu)

  if (is.na(n)) {
    n0 = (qchisq(1-alpha, nu) - nu + qnorm(1-beta)*sqrt(2*nu))/tau
    while (pchisq(b, nu, n0*tau) > beta) n0 <- 2*n0
    n = uniroot(function(n) pchisq(b, nu, n*tau) - beta, c(0.5*n0, n0))$root
  }

  if (rounding) {
    n = ceiling(n - 1.0e-12)
  }

  power = pchisq(b, nu, n*tau, lower.tail = FALSE)

  des = list(power = power, alpha = alpha, n = n,
             ncovariates = ncovariates, nconfigs = nconfigs,
             x = x, pconfigs = pconfigs, corr = corr,
             oddsratios = oddsratios,
             responseprob = responseprob, effectsize = tau,
             rounding = rounding)

  attr(des, "class") = "designLogistic"

  des
}


#' @title Power and Sample Size for Cohen's kappa
#' @description Obtains the power given sample size or obtains the sample
#' size given power for Cohen's kappa.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param ncats The number of categories.
#' @param kappaH0 The kappa coefficient under the null hypothesis.
#' @param kappa The kappa coefficient under the alternative hypothesis.
#' @param p1 The marginal probabilities for the first rater.
#' @param p2 The marginal probabilities for the second rater.
#'   Defaults to be equal to the marginal probabilities for the first
#'   rater if not provided.
#' @param rounding Whether to round up sample size. Defaults to 1 for
#'   sample size rounding.
#' @param alpha The one-sided significance level. Defaults to 0.025.
#'
#' @details
#' The kappa coefficient is defined as
#' \deqn{\kappa = \frac{\pi_o - \pi_e}{1 - \pi_e},} where
#' \eqn{\pi_o = \sum_i \pi_{ii}} is the observed agreement, and
#' \eqn{\pi_e = \sum_i \pi_{i.} \pi_{.i}} is the expected agreement
#' by chance.
#'
#' By Fleiss et al. (1969), the variance of \eqn{\hat{\kappa}} is given by
#' \deqn{Var(\hat{\kappa}) = \frac{v_1}{n},} where
#' \deqn{v_1 = \frac{Q_1 + Q_2 - Q3 - Q4}{(1-\pi_e)^4},}
#' \deqn{Q_1 = \pi_o(1-\pi_e)^2,}
#' \deqn{Q_2 = (1-\pi_o)^2 \sum_i \sum_j \pi_{ij}(\pi_{i.} + \pi_{.j})^2,}
#' \deqn{Q_3 = 2(1-\pi_o)(1-\pi_e) \sum_i \pi_{ii}(\pi_{i.} + \pi_{.i}),}
#' \deqn{Q_4 = (\pi_o \pi_e - 2\pi_e + \pi_o)^2.}
#'
#' Given \eqn{\kappa} and marginals
#' \eqn{\{(\pi_{i.}, \pi_{.i}): i=1,\ldots,k\}},
#' we obtain \eqn{\pi_o}. The only unknowns are the double summation
#' in \eqn{Q_2} and the single summation in \eqn{Q_3}.
#'
#' We find the optimal configuration of cell probabilities that yield the
#' maximum variance of \eqn{\hat{\kappa}} by treating the problem as a
#' linear programming problem with constraints to match the given
#' marginal probabilities and the observed agreement and ensure that
#' the cell probabilities are nonnegative. This is an extension of
#' Flack et al. (1988) by allowing unequal marginal probabilities
#' of the two raters.
#'
#' We perform the optimization under both the null and alternative
#' hypotheses to obtain \eqn{\max Var(\hat{\kappa} | \kappa = \kappa_0)}
#' and \eqn{\max Var(\hat{\kappa} | \kappa = \kappa_1)} for a
#' single subject, and then calculate the sample size or power
#' according to the following equation:
#' \deqn{\sqrt{n} |\kappa - \kappa_0| = z_{1-\alpha}
#' \sqrt{\max Var(\hat{\kappa} | \kappa = \kappa_0)} +
#' z_{1-\beta} \sqrt{\max Var(\hat{\kappa} | \kappa = \kappa_1)}.}
#'
#' @return An S3 class \code{designAgreement} object with the
#' following components:
#'
#' * \code{power}: The power to reject the null hypothesis.
#'
#' * \code{alpha}: The one-sided significance level.
#'
#' * \code{n}: The total sample size.
#'
#' * \code{ncats}: The number of categories.
#'
#' * \code{kappaH0}: The kappa coefficient under the null hypothesis.
#'
#' * \code{kappa}: The kappa coefficient under the alternative hypothesis.
#'
#' * \code{p1}: The marginal probabilities for the first rater.
#'
#' * \code{p2}: The marginal probabilities for the second rater.
#'
#' * \code{piH0}: The cell probabilities that maximize the
#'   variance of estimated kappa under H0.
#'
#' * \code{pi}: The cell probabilities that maximize the
#'   variance of estimated kappa under H1.
#'
#' * \code{rounding}: Whether to round up sample size.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @references
#'
#' V. F. Flack, A. A. Afifi, and P. A. Lachenbruch.
#' Sample size determinations for the two rater kappa statistic.
#' Psychometrika 1988; 53:321-325.
#'
#' @examples
#'
#' (design1 <- getDesignAgreement(
#'   beta = 0.2, n = NA, ncats = 4, kappaH0 = 0.4, kappa = 0.6,
#'   p1 = c(0.1, 0.2, 0.3, 0.4), p2 = c(0.15, 0.2, 0.24, 0.41),
#'   rounding = TRUE, alpha = 0.05))
#'
#' @export
#'
getDesignAgreement <- function(
    beta = NA_real_,
    n = NA_real_,
    ncats = NA_integer_,
    kappaH0 = NA_real_,
    kappa = NA_real_,
    p1 = NA_real_,
    p2 = NA_real_,
    rounding = TRUE,
    alpha = 0.025) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && (n <= 0 || n != round(n))) {
    stop("n must be a positive integer")
  }

  if (is.na(ncats)) {
    stop("ncats must be provided")
  }

  if (ncats < 2 || ncats != round(ncats)) {
    stop("ncats must be a positive integer >= 2")
  }

  if (is.na(kappaH0)) {
    stop("kappaH0 must be provided")
  }

  if (kappaH0 <= -1 || kappaH0 >= 1) {
    stop("kappaH0 must lie between -1 and 1")
  }

  if (is.na(kappa)) {
    stop("kappa must be provided")
  }

  if (kappa <= -1 || kappa >= 1) {
    stop("kappa must lie between -1 and 1")
  }

  if (any(is.na(p1))) {
    stop("p1 must be provided")
  }

  if (any(p1 <= 0 | p1 >= 1)) {
    stop(paste("Elements of p1 must lie between 0 and 1"))
  }

  if (length(p1) != ncats-1 && length(p1) != ncats) {
    stop(paste("p1 must have length", ncats-1, "or", ncats))
  }

  if (length(p1) == ncats-1) {
    if (sum(p1) >= 1) {
      stop("p1 must sum up to < 1 if it has only", ncats-1, "elements")
    }

    p1 = c(p1, 1 - sum(p1))
  } else {
    if (sum(p1) != 1) {
      stop(paste("p1 must sum to 1 across", ncats, "categories"))
    }
  }

  if (any(is.na(p2))) {
    p2 = p1
  }

  if (any(p2 <= 0 | p2 >= 1)) {
    stop(paste("Elements of p2 must lie between 0 and 1"))
  }

  if (length(p2) != ncats-1 && length(p2) != ncats) {
    stop(paste("p2 must have length", ncats-1, "or", ncats))
  }

  if (length(p2) == ncats-1) {
    if (sum(p2) >= 1) {
      stop("p2 must sum up to < 1 if it has only", ncats-1, "elements")
    }

    p2 = c(p2, 1 - sum(p2))
  } else {
    if (sum(p2) != 1) {
      stop(paste("p2 must sum to 1 across", ncats, "categories"))
    }
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }


  k = ncats

  # obtain the maximum variance for given kappa and marginal probabilities
  fpi <- function(kappa, p1, p2) {
    pe = sum(p1*p2)
    po = pe + (1-pe)*kappa

    # equation (3) in Flack et al (1988) as a function of cell probabilities
    f.obj = rep(0, k^2)
    for (i in 1:k) {
      for (j in 1:k) {
        t = (i-1)*k + j
        if (i != j) {
          f.obj[t] = (1-po)^2*(p1[i]+p2[j])^2
        } else {
          f.obj[t] = -(1-po)*(p1[i]+p2[i])*(2*(1-pe) - (1-po)*(p1[i]+p2[i]))
        }
      }
    }

    # row margin, column margin, and observed agreement
    f.con = matrix(0, 2*k+1+k^2, k^2)
    for (i in 1:k) {
      for (j in 1:k) {
        t = (i-1)*k + j
        f.con[i,t] = 1
        f.con[k+j,t] = 1
        if (i==j) f.con[2*k+1,t] = 1
      }
    }

    # nonnegative cell probabilities
    f.con[(2*k+2):(2*k+1+k^2),] = diag(k^2)

    f.dir = c(rep("==", 2*k+1), rep(">=", k^2))
    f.rhs = c(p1, p2, po, rep(0, k^2))

    # linear programming
    opt = lpSolve::lp("max", f.obj, f.con, f.dir, f.rhs)
    matrix(opt$solution, k, k, byrow = TRUE)
  }


  # variance of kappa estimate for given cell probabilities
  fv1 <- function(pi) {
    p1 = rowSums(pi)
    p2 = colSums(pi)
    pd = diag(pi)
    po = sum(pd)
    pe = sum(p1*p2)

    mp1 = matrix(p1, k, k, byrow = TRUE)
    mp2 = matrix(p2, k, k)

    q1 = po*(1-pe)^2
    q2 = (1-po)^2*sum(pi*(mp1+mp2)^2)
    q3 = 2*(1-po)*(1-pe)*sum(pd*(p1+p2))
    q4 = (po*pe-2*pe+po)^2
    v1 = (q1+q2-q3-q4)/(1-pe)^4
    v1
  }


  piH0 = fpi(kappaH0, p1, p2)
  v1H0 = fv1(piH0)
  pi = fpi(kappa, p1, p2)
  v1 = fv1(pi)

  theta = abs(kappa - kappaH0)

  if (is.na(n)) {
    n = (qnorm(1-alpha)*sqrt(v1H0) + qnorm(1-beta)*sqrt(v1))^2/theta^2
  }

  if (rounding) {
    n = ceiling(n - 1.0e-12)
  }

  power = pnorm((theta*sqrt(n) - qnorm(1-alpha)*sqrt(v1H0))/sqrt(v1))

  des = list(power = power, alpha = alpha, n = n,
             ncats = ncats, kappaH0 = kappaH0, kappa = kappa,
             p1 = p1, p2 = p2, piH0 = piH0, pi = pi,
             rounding = rounding)

  attr(des, "class") = "designAgreement"

  des
}


#' @title Power and Sample Size for One-Sample Poisson Rate Exact Test
#' @description Obtains the power given sample size or obtains the sample
#' size given power for one-sample Poisson rate.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param lambdaH0 The Poisson rate under the null hypothesis.
#' @param lambda The Poisson rate under the alternative hypothesis.
#' @param D The average exposure per subject.
#' @param alpha The one-sided significance level. Defaults to 0.025.
#'
#' @return A data frame containing the following variables:
#'
#' * \code{alpha}: The specified significance level.
#'
#' * \code{attainedAlpha}: The attained type I error of the exact test.
#'
#' * \code{power}: The actual power of the exact test.
#'
#' * \code{n}: The sample size.
#'
#' * \code{lambdaH0}: The Poisson rate under the null hypothesis.
#'
#' * \code{lambda}: The Poisson rate under the alternative hypothesis.
#'
#' * \code{D}: The average exposure per subject.
#'
#' * \code{r}: The critical value of the number of events for rejecting
#'   the null hypothesis. Reject H0 if \code{Y >= r} for upper-tailed
#'   test, and reject H0 if \code{Y <= r} for lower-tailed test.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' # Example 1: power calculation
#' (design1 <- getDesignOneRateExact(
#'   n = 525, lambdaH0 = 0.049, lambda = 0.012,
#'   D = 0.5, alpha = 0.025))
#'
#' # Example 2: sample size calculation
#' (design2 <- getDesignOneRateExact(
#'   beta = 0.2, lambdaH0 = 0.2, lambda = 0.3,
#'   D = 1, alpha = 0.05))
#'
#' @export
getDesignOneRateExact <- function(
    beta = NA_real_,
    n = NA_real_,
    lambdaH0 = NA_real_,
    lambda = NA_real_,
    D = 1,
    alpha = 0.025) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && (n <= 0 || n != round(n))) {
    stop("n must be a positive integer")
  }

  if (lambdaH0 <= 0) {
    stop("lambdaH0 must be positive");
  }

  if (lambda <= 0) {
    stop("lambda must be positive");
  }

  if (D <= 0) {
    stop("D must be positive")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }


  if (!is.na(n)) { # power calculation
    des = powerOneRateExact(n, lambdaH0, lambda, D, alpha)
  } else { # sample size calculation
    des = samplesizeOneRateExact(beta, lambdaH0, lambda, D, alpha)
  }

  des
}


#' @title Power and Sample Size for Exact Unconditional Test for Risk
#' Difference
#' @description Obtains the power given sample size or obtains the sample
#' size given power for exact unconditional test of risk difference.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param riskDiffH0 The risk difference under the null hypothesis.
#'   Defaults to 0.
#' @param pi1 The assumed probability for the active treatment group.
#' @param pi2 The assumed probability for the control group.
#' @param allocationRatioPlanned Allocation ratio for the active treatment
#'   versus control. Defaults to 1 for equal randomization.
#' @param alpha The one-sided significance level. Defaults to 0.025.
#'
#' @return A data frame with the following variables:
#'
#' * \code{alpha}: The specified one-sided significance level.
#'
#' * \code{attainedAlpha}: The attained one-sided significance level.
#'
#' * \code{power}: The power.
#'
#' * \code{n}: The sample size.
#'
#' * \code{riskDiffH0}: The risk difference under the null hypothesis.
#'
#' * \code{pi1}: The assumed probability for the active treatment group.
#'
#' * \code{pi2}: The assumed probability for the control group.
#'
#' * \code{allocationRatioPlanned}: Allocation ratio for the active
#'   treatment versus control.
#'
#' * \code{zstatRiskDiffBound}: The critical value on the scale of
#'   score test statistic for risk difference.
#'
#' * \code{pi2star}: The response probability in the control group
#'   at which the critical value of the test statistic is attained.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' # Superiority test
#'
#' getDesignRiskDiffExact(n = 50, pi1 = 0.6, pi2 = 0.25, alpha = 0.025)
#'
#'
#' # Non-inferiority test
#'
#' getDesignRiskDiffExact(beta = 0.2, riskDiffH0 = -0.3,
#'                        pi1 = 0.9, pi2 = 0.9, alpha = 0.025)
#'
#'
#' @export
getDesignRiskDiffExact <- function(
    beta = NA_real_,
    n = NA_real_,
    riskDiffH0 = 0,
    pi1 = NA_real_,
    pi2 = NA_real_,
    allocationRatioPlanned = 1,
    alpha = 0.025) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && (n <= 0 || n != round(n))) {
    stop("n must be a positive integer")
  }

  if (riskDiffH0 <= -1 || riskDiffH0 >= 1) {
    stop("riskDiffH0 must lie between -1 and 1")
  }

  if (pi1 <= 0 || pi1 >= 1) {
    stop("pi1 must lie between 0 and 1")
  }

  if (pi2 <= 0 || pi2 >= 1) {
    stop("pi2 must lie between 0 and 1")
  }

  if (allocationRatioPlanned <= 0) {
    stop("allocationRatioPlanned must be positive")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }


  if (!is.na(n)) { # power calculation
    a = powerRiskDiffExact(n, riskDiffH0, pi1, pi2,
                           allocationRatioPlanned, alpha)
  } else { # sample size calculation
    a = samplesizeRiskDiffExact(beta, riskDiffH0, pi1, pi2,
                                allocationRatioPlanned, alpha)
  }

  a
}


#' @title Power and Sample Size for Exact Unconditional Test for Risk
#' Ratio
#' @description Obtains the power given sample size or obtains the sample
#' size given power for exact unconditional test of risk ratio.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param riskRatioH0 The risk ratio under the null hypothesis.
#'   Defaults to 0.
#' @param pi1 The assumed probability for the active treatment group.
#' @param pi2 The assumed probability for the control group.
#' @param allocationRatioPlanned Allocation ratio for the active treatment
#'   versus control. Defaults to 1 for equal randomization.
#' @param alpha The one-sided significance level. Defaults to 0.025.
#'
#' @return A data frame with the following variables:
#'
#' * \code{alpha}: The specified one-sided significance level.
#'
#' * \code{attainedAlpha}: The attained one-sided significance level.
#'
#' * \code{power}: The power.
#'
#' * \code{n}: The sample size.
#'
#' * \code{riskRatioH0}: The risk ratio under the null hypothesis.
#'
#' * \code{pi1}: The assumed probability for the active treatment group.
#'
#' * \code{pi2}: The assumed probability for the control group.
#'
#' * \code{allocationRatioPlanned}: Allocation ratio for the active
#'   treatment versus control.
#'
#' * \code{zstatRiskRatioBound}: The critical value on the scale of
#'   score test statistic for risk ratio.
#'
#' * \code{pi2star}: The response probability in the control group
#'   at which the critical value of the test statistic is attained.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' # Non-inferiority test
#'
#' getDesignRiskRatioExact(beta = 0.2, riskRatioH0 = 0.7,
#'                         pi1 = 0.95, pi2 = 0.95, alpha = 0.025)
#'
#'
#' @export
getDesignRiskRatioExact <- function(
    beta = NA_real_,
    n = NA_real_,
    riskRatioH0 = 1,
    pi1 = NA_real_,
    pi2 = NA_real_,
    allocationRatioPlanned = 1,
    alpha = 0.025) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && (n <= 0 || n != round(n))) {
    stop("n must be a positive integer")
  }

  if (riskRatioH0 <= 0) {
    stop("riskRatioH0 must be positive")
  }

  if (pi1 <= 0 || pi1 >= 1) {
    stop("pi1 must lie between 0 and 1")
  }

  if (pi2 <= 0 || pi2 >= 1) {
    stop("pi2 must lie between 0 and 1")
  }

  if (allocationRatioPlanned <= 0) {
    stop("allocationRatioPlanned must be positive")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }


  if (!is.na(n)) { # power calculation
    a = powerRiskRatioExact(n, riskRatioH0, pi1, pi2,
                            allocationRatioPlanned, alpha)
  } else { # sample size calculation
    a = samplesizeRiskRatioExact(beta, riskRatioH0, pi1, pi2,
                                 allocationRatioPlanned, alpha)
  }

  a
}


#' @title Power and Sample Size for Exact Unconditional Test for
#' Equivalence in Risk Difference
#' @description Obtains the power given sample size or obtains the sample
#' size given power for exact unconditional test of equivalence in risk
#' difference.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param riskDiffLower The lower equivalence limit of risk difference.
#' @param riskDiffUpper The upper equivalence limit of risk difference.
#' @param pi1 The assumed probability for the active treatment group.
#' @param pi2 The assumed probability for the control group.
#' @param allocationRatioPlanned Allocation ratio for the active treatment
#'   versus control. Defaults to 1 for equal randomization.
#' @param alpha The significance level for each of the two one-sided
#'   tests. Defaults to 0.05.
#' @return A data frame with the following variables:
#'
#' * \code{alpha}: The specified significance level for each of the two
#'   one-sided tests.
#'
#' * \code{attainedAlpha}: The attained significance level.
#'
#' * \code{power}: The power.
#'
#' * \code{n}: The sample size.
#'
#' * \code{riskDiffLower}: The lower equivalence limit of risk difference.
#'
#' * \code{riskDiffUpper}: The upper equivalence limit of risk difference.
#'
#' * \code{pi1}: The assumed probability for the active treatment group.
#'
#' * \code{pi2}: The assumed probability for the control group.
#'
#' * \code{riskDiff}: The risk difference.
#'
#' * \code{allocationRatioPlanned}: Allocation ratio for the active
#'   treatment versus control.
#'
#' * \code{zstatRiskDiffLower}: The efficacy boundaries on the
#'   z-test statistic scale for the one-sided null hypothesis on the
#'   lower equivalence limit.
#'
#' * \code{zstatRiskDiffUpper}: The efficacy boundaries on the
#'   z-test statistic scale for the one-sided null hypothesis on the
#'   upper equivalence limit.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' getDesignRiskDiffExactEquiv(
#'   n = 200, riskDiffLower = -0.2, riskDiffUpper = 0.2,
#'   pi1 = 0.775, pi2 = 0.775, alpha = 0.05)
#'
#' @export
getDesignRiskDiffExactEquiv <- function(
    beta = NA_real_,
    n = NA_real_,
    riskDiffLower = NA_real_,
    riskDiffUpper = NA_real_,
    pi1 = NA_real_,
    pi2 = NA_real_,
    allocationRatioPlanned = 1,
    alpha = 0.05) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && (n <= 0 || n != round(n))) {
    stop("n must be a positive integer")
  }

  if (is.na(riskDiffLower)) {
    stop("riskDiffLower must be provided")
  }

  if (is.na(riskDiffUpper)) {
    stop("riskDiffUpper must be provided")
  }

  if (riskDiffLower <= -1) {
    stop("riskDiffLower must be greater than -1")
  }

  if (riskDiffUpper >= 1) {
    stop("riskDiffUpper must be less than 1")
  }

  if (riskDiffLower >= riskDiffUpper) {
    stop("riskDiffLower must be less than riskDiffUpper")
  }

  if (pi1 <= 0 || pi1 >= 1) {
    stop("pi1 must lie between 0 and 1")
  }

  if (pi2 <= 0 || pi2 >= 1) {
    stop("pi2 must lie between 0 and 1")
  }

  if (allocationRatioPlanned <= 0) {
    stop("allocationRatioPlanned must be positive")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }


  if (!is.na(n)) { # power calculation
    a = powerRiskDiffExactEquiv(n, riskDiffLower, riskDiffUpper,
                                pi1, pi2, allocationRatioPlanned, alpha)
  } else { # sample size calculation
    a = samplesizeRiskDiffExactEquiv(beta, riskDiffLower, riskDiffUpper,
                                     pi1, pi2, allocationRatioPlanned, alpha)
  }

  a
}


#' @title Power and Sample Size for Exact Unconditional Test for
#' Equivalence in Risk Ratio
#' @description Obtains the power given sample size or obtains the sample
#' size given power for exact unconditional test of equivalence in risk
#' ratio.
#'
#' @param beta The type II error.
#' @param n The total sample size.
#' @param riskRatioLower The lower equivalence limit of risk ratio.
#' @param riskRatioUpper The upper equivalence limit of risk ratio.
#' @param pi1 The assumed probability for the active treatment group.
#' @param pi2 The assumed probability for the control group.
#' @param allocationRatioPlanned Allocation ratio for the active treatment
#'   versus control. Defaults to 1 for equal randomization.
#' @param alpha The significance level for each of the two one-sided
#'   tests. Defaults to 0.05.
#' @return A data frame with the following variables:
#'
#' * \code{alpha}: The specified significance level for each of the two
#'   one-sided tests.
#'
#' * \code{attainedAlpha}: The attained significance level.
#'
#' * \code{power}: The power.
#'
#' * \code{n}: The sample size.
#'
#' * \code{riskRatioLower}: The lower equivalence limit of risk ratio.
#'
#' * \code{riskRatioUpper}: The upper equivalence limit of risk ratio.
#'
#' * \code{pi1}: The assumed probability for the active treatment group.
#'
#' * \code{pi2}: The assumed probability for the control group.
#'
#' * \code{riskRatio}: The risk ratio.
#'
#' * \code{allocationRatioPlanned}: Allocation ratio for the active
#'   treatment versus control.
#'
#' * \code{zstatRiskRatioLower}: The efficacy boundaries on the
#'   z-test statistic scale for the one-sided null hypothesis on the
#'   lower equivalence limit.
#'
#' * \code{zstatRiskRatioUpper}: The efficacy boundaries on the
#'   z-test statistic scale for the one-sided null hypothesis on the
#'   upper equivalence limit.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @examples
#'
#' getDesignRiskRatioExactEquiv(
#'   n = 200, riskRatioLower = 0.8, riskRatioUpper = 1.25,
#'   pi1 = 0.775, pi2 = 0.775, alpha = 0.05)
#'
#' @export
getDesignRiskRatioExactEquiv <- function(
    beta = NA_real_,
    n = NA_real_,
    riskRatioLower = NA_real_,
    riskRatioUpper = NA_real_,
    pi1 = NA_real_,
    pi2 = NA_real_,
    allocationRatioPlanned = 1,
    alpha = 0.05) {

  if (is.na(beta) && is.na(n)) {
    stop("beta and n cannot be both missing")
  }

  if (!is.na(beta) && !is.na(n)) {
    stop("Only one of beta and n should be provided")
  }

  if (!is.na(beta) && (beta >= 1-alpha || beta < 0.0001)) {
    stop("beta must lie in [0.0001, 1-alpha)");
  }

  if (!is.na(n) && (n <= 0 || n != round(n))) {
    stop("n must be a positive integer")
  }

  if (is.na(riskRatioLower)) {
    stop("riskRatioLower must be provided")
  }

  if (is.na(riskRatioUpper)) {
    stop("riskRatioUpper must be provided")
  }

  if (riskRatioLower <= 0) {
    stop("riskRatioLower must be positive")
  }

  if (riskRatioLower >= riskRatioUpper) {
    stop("riskRatioLower must be less than riskRatioUpper")
  }

  if (pi1 <= 0 || pi1 >= 1) {
    stop("pi1 must lie between 0 and 1")
  }

  if (pi2 <= 0 || pi2 >= 1) {
    stop("pi2 must lie between 0 and 1")
  }

  if (allocationRatioPlanned <= 0) {
    stop("allocationRatioPlanned must be positive")
  }

  if (alpha < 0.00001 || alpha >= 1) {
    stop("alpha must lie in [0.00001, 1)")
  }


  if (!is.na(n)) { # power calculation
    a = powerRiskRatioExactEquiv(n, riskRatioLower, riskRatioUpper,
                                 pi1, pi2, allocationRatioPlanned, alpha)
  } else { # sample size calculation
    a = samplesizeRiskRatioExactEquiv(beta, riskRatioLower, riskRatioUpper,
                                      pi1, pi2, allocationRatioPlanned,
                                      alpha)
  }

  a
}

Try the lrstat package in your browser

Any scripts or data that you put into this service are public.

lrstat documentation built on Oct. 18, 2024, 9:06 a.m.