Nothing
#' Multitrait Genotype-Ideotype Distance Index
#'
#' @description
#' `r badge('stable')`
#'
#' Computes the multi-trait genotype-ideotype distance index, MGIDI, (Olivoto
#' and Nardino, 2020), used to select genotypes in plant breeding programs based
#' on multiple traits.The MGIDI index is computed as follows:
#' \loadmathjax
#' \mjsdeqn{MGIDI_i = \sqrt{\sum\limits_{j = 1}^f(F_{ij} - {F_j})^2}}
#'
#' where \mjseqn{MGIDI_i} is the multi-trait genotype-ideotype distance index
#' for the *i*th genotype; \mjseqn{F_{ij}} is the score of the *i*th genotype in
#' the *j*th factor (*i = 1, 2, ..., g; j = 1, 2, ..., f*), being *g* and *f*
#' the number of genotypes and factors, respectively, and \mjseqn{F_j} is the
#' *j*th score of the ideotype. The genotype with the lowest MGIDI is then
#' closer to the ideotype and therefore should presents desired values for all
#' the analyzed traits.
#'
#' @param .data An object fitted with the function [gafem()],
#' [gamem()] or a two-way table with BLUPs for genotypes in each
#' trait (genotypes in rows and traits in columns). In the last case, row
#' names must contain the genotypes names.
#' @param use_data Define which data to use if `.data` is an object of
#' class `gamem`. Defaults to `"blup"` (the BLUPs for genotypes).
#' Use `"pheno"` to use phenotypic means instead BLUPs for computing the
#' index.
#' @param SI An integer (0-100). The selection intensity in percentage of the
#' total number of genotypes.
#' @param mineval The minimum value so that an eigenvector is retained in the
#' factor analysis.
#' @param ideotype A vector of length `nvar` where `nvar` is the
#' number of variables used to plan the ideotype. Use `'h'` to indicate
#' the traits in which higher values are desired or `'l'` to indicate the
#' variables in which lower values are desired. For example, `ideotype =
#' c("h, h, h, h, l")` will consider that the ideotype has higher values for
#' the first four traits and lower values for the last trait. If `.data`
#' is a model fitted with the functions [gafem()] or
#' [gamem()], the order of the traits will be the declared in the
#' argument `resp` in those functions.
#' @param weights Optional weights to assign for each trait in the selection
#' process. It must be a numeric vector of length equal to the number of
#' traits in `.data`. By default (`NULL`) a numeric vector of weights equal to
#' 1 is used, i.e., all traits have the same weight in the selection process.
#' It is suggested weights ranging from 0 to 1. The weights will then shrink
#' the ideotype vector toward 0. This is useful, for example, to prioritize
#' grain yield rather than a plant-related trait in the selection process.
#' @param use The method for computing covariances in the presence of missing
#' values. Defaults to `complete.obs`, i.e., missing values are handled
#' by casewise deletion.
#' @param verbose If `verbose = TRUE` (Default) then some results are
#' shown in the console.
#' @return An object of class `mgidi` with the following items:
#' * **data** The data used to compute the factor analysis.
#' * **cormat** The correlation matrix among the environments.
#' * **PCA** The eigenvalues and explained variance.
#' * **FA** The factor analysis.
#' * **KMO** The result for the Kaiser-Meyer-Olkin test.
#' * **MSA** The measure of sampling adequacy for individual variable.
#' * **communalities** The communalities.
#' * **communalities_mean** The communalities' mean.
#' * **initial_loadings** The initial loadings.
#' * **finish_loadings** The final loadings after varimax rotation.
#' * **canonical_loadings** The canonical loadings.
#' * **scores_gen** The scores for genotypes in all retained factors.
#' * **scores_ide** The scores for the ideotype in all retained factors.
#' * **gen_ide** The distance between the scores of each genotype with the
#' ideotype.
#' * **MGIDI** The multi-trait genotype-ideotype distance index.
#' * **contri_fac** The relative contribution of each factor on the MGIDI
#' value. The lower the contribution of a factor, the close of the ideotype the
#' variables in such factor are.
#' * **contri_fac_rank, contri_fac_rank_sel** The rank for the contribution
#' of each factor for all genotypes and selected genotypes, respectively.
#' * **sel_dif** The selection differential for the variables.
#' * **stat_gain** A descriptive statistic for the selection gains. The
#' minimum, mean, confidence interval, standard deviation, maximum, and sum of
#' selection gain values are computed. If traits have negative and positive
#' desired gains, the statistics are computed for by strata.
#' * **sel_gen** The selected genotypes.
#' @md
#' @references Olivoto, T., and Nardino, M. (2020). MGIDI: toward an effective
#' multivariate selection in biological experiments. Bioinformatics.
#' \doi{10.1093/bioinformatics/btaa981}
#' @importFrom tidyselect any_of all_of
#' @author Tiago Olivoto \email{tiagoolivoto@@gmail.com}
#' @export
#' @examples
#'\donttest{
#' library(metan)
#'
#'# simulate a data set
#'# 10 genotypes
#'# 5 replications
#'# 4 traits
#' df <-
#' g_simula(ngen = 10,
#' nrep = 5,
#' nvars = 4,
#' gen_eff = 35,
#' seed = c(1, 2, 3, 4))
#'
#'# run a mixed-effect model (genotype as random effect)
#' mod <-
#' gamem(df,
#' gen = GEN,
#' rep = REP,
#' resp = everything())
#'# BLUPs for genotypes
#' gmd(mod, "blupg")
#'
#'# Compute the MGIDI index
#'# Default options (all traits with positive desired gains)
#'# Equal weights for all traits
#'mgidi_ind <- mgidi(mod)
#'gmd(mgidi_ind, "MGIDI")
#'
#'# Higher weight for traits V1 and V4
#'# This will increase the probability of selecting H7 and H9
#'# 30% selection pressure
#' mgidi_ind2 <-
#' mgidi(mod,
#' weights = c(1, .2, .2, 1),
#' SI = 30)
#'gmd(mgidi_ind2, "MGIDI")
#'
#'# plot the contribution of each factor on the MGIDI index
#'p1 <- plot(mgidi_ind, type = "contribution")
#'p2 <- plot(mgidi_ind2, type = "contribution")
#'p1 + p2
#'
#'# Positive desired gains for V1, V2 and V3
#'# Negative desired gains for V4
#'mgidi_ind3 <-
#' mgidi(mod,
#' ideotype = c("h, h, h, l"))
#'
#'}
mgidi <- function(.data,
use_data = "blup",
SI = 15,
mineval = 1,
ideotype = NULL,
weights = NULL,
use = "complete.obs",
verbose = TRUE) {
if(has_class(.data, c("gamem_group", "gafem_group", "waasb_group"))){
bind <-
.data %>%
mutate(data = map(data, ~.x %>%
mgidi(use_data = use_data,
SI = SI,
mineval = mineval,
ideotype = ideotype,
use = use,
verbose = verbose,
weights = weights)))
return(set_class(bind, c("tbl_df", "mgidi_group", "mgidi", "tbl", "data.frame")))
} else{
d <- match.call()
if(!use_data %in% c("blup", "pheno")){
stop("Argument 'use_data = ", d["use_data"], "'", "invalid. It must be either 'blup' or 'pheno'.")
}
if(has_class(.data, c("gamem", "waasb"))){
data <-
gmd(.data, ifelse(use_data == "blup", "blupg", "data"), verbose = FALSE) %>%
mean_by(GEN) %>%
column_to_rownames("GEN")
} else if(has_class(.data, "gafem")){
data <-
gmd(.data, "Y", verbose = FALSE) %>%
mean_by(GEN) %>%
column_to_rownames("GEN")
} else{
if(has_class(.data, c("data.frame", "matrix")) & !has_rownames(.data)){
stop("object '", d[[".data"]], "' must have rownames.", call. = FALSE)
}
if(any(sapply(.data, function(x){is.numeric(x)})== FALSE)){
stop("All variables in '", d[[".data"]], "' must be numeric.",call. = FALSE)
}
data <- .data
}
if (length(data) == 1) {
stop("The multi-trait stability index cannot be computed with one single variable.", call. = FALSE)
}
if(is.null(ideotype)){
rescaled <- rep(100, length(data))
ideotype.D <- rep(100, length(data))
names(ideotype.D) <- names(data)
} else{
rescaled <- unlist(strsplit(ideotype, split="\\s*(\\s|,)\\s*")) %>%
all_lower_case()
if(length(rescaled) != length(data)){
stop("Ideotype must have length ", ncol(data), ", the number of columns in data")
}
if(!all(rescaled %in% c("h", "l", "m"))){
stop("argument 'ideotype' must have 'h', 'l', or 'm' only", call. = FALSE)
}
ideotype.D <- ifelse(rescaled == "m", 50, 100)
names(ideotype.D) <- names(data)
rescaled <- case_when(
rescaled == "h" ~ 100,
rescaled == "l" ~ 0,
TRUE ~ 100)
}
if (is.null(SI)) {
ngs <- NULL
} else {
ngs <- round(nrow(data) * (SI/100), 0)
}
means <- data.frame(matrix(ncol = ncol(data), nrow = nrow(data)))
rownames(means) <- rownames(data)
vars <- tibble(VAR = colnames(data),
sense = rescaled) %>%
mutate(sense = ifelse(sense == 0, "decrease", "increase"))
for (i in 1:ncol(data)) {
means[i] <- resca(values = data[i], new_max = rescaled[i], new_min = 100 - rescaled[i])
colnames(means) <- colnames(data)
}
if(has_na(means)){
warning("Missing values observed in the table of means. Using complete observations to compute the correlation matrix.", call. = FALSE)
}
if(is.null(weights)){
weights <- rep(1, ncol(data))
}
cor.means <- cor(means, use = use)
eigen.decomposition <- eigen(cor.means)
eigen.values <- eigen.decomposition$values
eigen.vectors <- eigen.decomposition$vectors
colnames(eigen.vectors) <- paste("PC", 1:ncol(cor.means), sep = "")
rownames(eigen.vectors) <- colnames(means)
if (length(eigen.values[eigen.values >= mineval]) == 1) {
eigen.values.factors <- as.vector(c(as.matrix(sqrt(eigen.values[eigen.values >= mineval]))))
initial_loadings <- cbind(eigen.vectors[, eigen.values >= mineval] * eigen.values.factors)
A <- initial_loadings
} else {
eigen.values.factors <-
t(replicate(ncol(cor.means), c(as.matrix(sqrt(eigen.values[eigen.values >= mineval])))))
initial_loadings <- eigen.vectors[, eigen.values >= mineval] * eigen.values.factors
A <- varimax(initial_loadings)[[1]][]
}
partial <- solve_svd(cor.means)
k <- ncol(means)
seq_k <- seq_len(ncol(means))
for (j in seq_k) {
for (i in seq_k) {
if (i == j) {
next
} else {
partial[i, j] <- -partial[i, j]/sqrt(partial[i, i] * partial[j, j])
}
}
}
KMO <- sum((cor.means[!diag(k)])^2)/(sum((cor.means[!diag(k)])^2) + sum((partial[!diag(k)])^2))
MSA <- unlist(lapply(seq_k, function(i) {
sum((cor.means[i, -i])^2)/(sum((cor.means[i, -i])^2) + sum((partial[i, -i])^2))
}))
names(MSA) <- colnames(means)
colnames(A) <- paste("FA", 1:ncol(initial_loadings), sep = "")
pca <- tibble(PC = paste("PC", 1:ncol(means), sep = ""),
Eigenvalues = eigen.values,
`Variance (%)` = (eigen.values/sum(eigen.values)) * 100,
`Cum. variance (%)` = cumsum(`Variance (%)`))
Communality <- diag(A %*% t(A))
Uniquenesses <- 1 - Communality
fa <- cbind(A, Communality, Uniquenesses) %>% as_tibble(rownames = NA) %>% rownames_to_column("VAR")
z <- scale(means, center = FALSE, scale = apply(means, 2, sd, na.rm = TRUE))
canonical_loadings <- t(t(A) %*% solve_svd(cor.means))
scores <- z %*% canonical_loadings
pos.var.factor <- which(abs(A) == apply(abs(A), 1, max), arr.ind = TRUE)
var.factor <- lapply(1:ncol(A), function(i) {
rownames(pos.var.factor)[pos.var.factor[, 2] == i]
})
names(var.factor) <- paste("FA", 1:ncol(A), sep = "")
names.pos.var.factor <- rownames(pos.var.factor)
ideotypes.matrix <- t(as.matrix(ideotype.D))/apply(means, 2, sd, na.rm = TRUE) * weights
rownames(ideotypes.matrix) <- "ID1"
ideotypes.scores <- ideotypes.matrix %*% canonical_loadings
gen_ide <- sweep(scores, 2, ideotypes.scores, "-")
MGIDI <- apply(gen_ide, 1, function(x){sqrt(sum(x^2))}) %>% sort(decreasing = FALSE)
contr.factor <-
data.frame((sqrt(gen_ide^2)/apply(gen_ide, 1, function(x) sum(sqrt(x^2)))) * 100) %>%
rownames_to_column("GEN") %>%
as_tibble()
means.factor <- means[, names.pos.var.factor]
observed <- means[, names.pos.var.factor]
contri_long <- pivot_longer(contr.factor, -GEN)
contri_fac_rank <-
contri_long %>%
ge_winners(name, GEN, value, type = "ranks", better = "l") %>%
split_factors(ENV) %>%
map_dfc(~.x %>% pull())
if (!is.null(ngs)) {
selected <- names(MGIDI)[1:ngs]
data_order <- data[colnames(observed)]
sel_dif_mean <-
tibble(VAR = names(pos.var.factor[, 2]),
Factor = paste("FA", as.numeric(pos.var.factor[, 2]), sep = ""),
Xo = colMeans(data_order, na.rm = TRUE),
Xs = colMeans(data_order[selected, ], na.rm = TRUE),
SD = Xs - colMeans(data_order, na.rm = TRUE),
SDperc = (Xs - colMeans(data_order, na.rm = TRUE)) / abs(colMeans(data_order, na.rm = TRUE)) * 100)
if(has_class(.data, c("gamem", "gafem"))){
h2 <- gmd(.data, "h2", verbose = FALSE)
sel_dif_mean <-
left_join(sel_dif_mean, h2, by = "VAR") %>%
add_cols(SG = SD * h2,
SGperc = SG / Xo * 100)
}
sel_dif_mean <-
sel_dif_mean %>%
left_join(vars, by = "VAR") %>%
mutate(goal = case_when(
sense == "decrease" & SDperc < 0 | sense == "increase" & SDperc > 0 ~ 100,
TRUE ~ 0
))
stat_gain <-
sel_dif_mean %>%
group_by(sense) %>%
summarise(across(any_of(c("SDperc", "SGperc")),
list(n = ~n(),
min = min,
mean = mean,
max = max,
sum = sum,
sd = sd))) %>%
pivot_longer(-sense) %>%
separate(name, into = c("variable", "stat")) %>%
pivot_wider(names_from = stat, values_from = value)
contri_fac_rank_sel <-
contri_long %>%
subset(GEN %in% selected) %>%
ge_winners(name, GEN, value, type = "ranks", better = "l") %>%
split_factors(ENV) %>%
map_dfc(~.x %>% pull())
} else{
sel_dif_mean <- NULL
contri_fac_rank_sel <- NULL
}
if (verbose) {
cat("\n-------------------------------------------------------------------------------\n")
cat("Principal Component Analysis\n")
cat("-------------------------------------------------------------------------------\n")
print(round_cols(pca))
cat("-------------------------------------------------------------------------------\n")
cat("Factor Analysis - factorial loadings after rotation-\n")
cat("-------------------------------------------------------------------------------\n")
print(round_cols(fa))
cat("-------------------------------------------------------------------------------\n")
cat("Comunalit Mean:", mean(Communality), "\n")
cat("-------------------------------------------------------------------------------\n")
if (!is.null(ngs)) {
cat("Selection differential \n")
cat("-------------------------------------------------------------------------------\n")
print(sel_dif_mean)
cat("------------------------------------------------------------------------------\n")
cat("Selected genotypes\n")
cat("-------------------------------------------------------------------------------\n")
cat(selected)
cat("\n-------------------------------------------------------------------------------\n")
}
}
return(structure(list(data = rownames_to_column(data, "GEN"),
cormat = as.matrix(cor.means),
PCA = pca,
FA = fa,
KMO = KMO,
MSA = MSA,
communalities = Communality,
communalities_mean = mean(Communality),
initial_loadings = data.frame(initial_loadings) %>% rownames_to_column("VAR") %>% as_tibble(),
finish_loadings = data.frame(A) %>% rownames_to_column("VAR") %>% as_tibble(),
canonical_loadings = data.frame(canonical_loadings) %>% rownames_to_column("VAR") %>% as_tibble(),
scores_gen = data.frame(scores) %>% rownames_to_column("GEN") %>% as_tibble(),
scores_ide = data.frame(ideotypes.scores) %>% rownames_to_column("GEN") %>% as_tibble(),
gen_ide = as_tibble(gen_ide, rownames = NA) %>% rownames_to_column("GEN"),
MGIDI = as_tibble(MGIDI, rownames = NA) %>% rownames_to_column("Genotype") %>% rename(MGIDI = value),
contri_fac = contr.factor,
contri_fac_rank = contri_fac_rank,
contri_fac_rank_sel = contri_fac_rank_sel,
sel_dif = sel_dif_mean,
stat_gain = stat_gain,
sel_gen = selected),
class = "mgidi"))
}
}
#' Plot the multi-trait genotype-ideotype distance index
#'
#' Makes a radar plot showing the multi-trait genotype-ideotype distance index
#'
#'
#' @param x An object of class `mgidi`
#' @param SI An integer (0-100). The selection intensity in percentage of the
#' total number of genotypes.
#' @param radar Logical argument. If true (default) a radar plot is generated
#' after using `coord_polar()`.
#' @param type The type of the plot. Defaults to `"index"`. Use `type
#' = "contribution"` to show the contribution of each factor to the MGIDI
#' index of the selected genotypes/treatments.
#' @param position The position adjustment when `type = "contribution"`.
#' Defaults to `"fill"`, which shows relative proportions at each trait
#' by stacking the bars and then standardizing each bar to have the same
#' height. Use `position = "stack"` to plot the MGIDI index for each
#' genotype/treatment.
#' @param rotate Logical argument. If `rotate = TRUE` the plot is rotated,
#' i.e., traits in y axis and value in the x axis.
#' @param genotypes When `type = "contribution"` defines the genotypes to
#' be shown in the plot. By default (`genotypes = "selected"` only
#' selected genotypes are shown. Use `genotypes = "all"` to plot the
#' contribution for all genotypes.)
#' @param n.dodge The number of rows that should be used to render the x labels.
#' This is useful for displaying labels that would otherwise overlap.
#' @param check.overlap Silently remove overlapping labels, (recursively)
#' prioritizing the first, last, and middle labels.
#' @param x.lab,y.lab The labels for the axes x and y, respectively. x label is
#' set to null when a radar plot is produced.
#' @param title The plot title when `type = "contribution"`.
#' @param arrange.label Logical argument. If `TRUE`, the labels are
#' arranged to avoid text overlapping. This becomes useful when the number of
#' genotypes is large, say, more than 30.
#' @param size.point The size of the point in graphic. Defaults to 2.5.
#' @param size.line The size of the line in graphic. Defaults to 0.7.
#' @param size.text The size for the text in the plot. Defaults to 10.
#' @param width.bar The width of the bars if `type = "contribution"`.
#' Defaults to 0.75.
#' @param col.sel The colour for selected genotypes. Defaults to `"red"`.
#' @param col.nonsel The colour for nonselected genotypes. Defaults to `"gray"`.
#' @param legend.position The position of the legend.
#' @param ... Other arguments to be passed from [ggplot2::theme()].
#' @return An object of class `gg, ggplot`.
#' @author Tiago Olivoto \email{tiagoolivoto@@gmail.com}
#' @method plot mgidi
#' @export
#' @examples
#' \donttest{
#' library(metan)
#' model <- gamem(data_g,
#' gen = GEN,
#' rep = REP,
#' resp = c(KW, NR, NKE, NKR))
#' mgidi_index <- mgidi(model)
#' plot(mgidi_index)
#'}
#'
#'
plot.mgidi <- function(x,
SI = 15,
radar = TRUE,
type = "index",
position = "fill",
rotate = FALSE,
genotypes = "selected",
n.dodge = 1,
check.overlap = FALSE,
x.lab = NULL,
y.lab = NULL,
title = NULL,
arrange.label = FALSE,
size.point = 2.5,
size.line = 0.7,
size.text = 10,
width.bar = 0.75,
col.sel = "red",
col.nonsel = "gray",
legend.position = "bottom",
...) {
if(!type %in% c("index", "contribution")){
stop("The argument index must be one of the 'index' or 'contribution'", call. = FALSE)
}
if(!genotypes %in% c("selected", "all")){
stop("The argument 'genotypes' must be one of the 'selected' or 'all'", call. = FALSE)
}
if(type == "index"){
x.lab <- ifelse(!missing(x.lab), x.lab, "Genotypes")
y.lab <- ifelse(!missing(y.lab), y.lab, "Multi-trait genotype-ideotype distance index")
data <- x$MGIDI %>% add_cols(sel = "Selected")
data[["sel"]][(round(nrow(data) * (SI/100), 0) + 1):nrow(data)] <- "Nonselected"
cutpoint <- max(subset(data, sel == "Selected")$MGIDI)
p <-
ggplot(data = data, aes(x = reorder(Genotype, -MGIDI), y = MGIDI)) +
geom_hline(yintercept = cutpoint, col = col.sel, size = size.line) +
geom_path(colour = "black", group = 1, size = size.line) +
geom_point(size = size.point,
aes(fill = sel),
shape = 21,
colour = "black",
stroke = size.point / 10) +
scale_x_discrete() +
scale_y_reverse() +
theme_minimal() +
theme(legend.position = legend.position,
legend.title = element_blank(),
panel.grid = element_line(size = size.line / 2),
panel.border = element_blank(),
axis.text = element_text(colour = "black"),
text = element_text(size = size.text),
...) +
labs(y = y.lab,
x = x.lab) +
scale_fill_manual(values = c(col.nonsel, col.sel))
if (radar == TRUE) {
p <-
p +
coord_polar() +
theme(axis.title.x = element_blank(), ...)
if(arrange.label == TRUE){
tot_gen <- length(unique(data$Genotype))
fseq <- c(1:(tot_gen/2))
sseq <- c((tot_gen/2 + 1):tot_gen)
fang <- c(90 - 180/length(fseq) * fseq)
sang <- c(-90 - 180/length(sseq) * sseq)
p <- p +
theme(axis.text.x = suppressMessages(suppressWarnings(element_text(angle = c(fang, sang)))), ...)
}
}
} else{
if(genotypes == "selected"){
data <-
x$contri_fac %>%
subset(GEN %in% x$sel_gen)
data$GEN <-
factor(data$GEN, levels = x$sel_gen)
} else{
data <- x$contri_fac
}
data %<>%
pivot_longer(-GEN) %>%
arrange(GEN)
title <- ifelse(is.null(title), "Strengths and weaknesses view", title)
y.lab <- ifelse(!missing(y.lab), y.lab, "Contribution to the MGIDI")
if(radar == TRUE){
p <-
ggplot(data, aes(x = GEN, y = value)) +
geom_polygon(aes(group = name, color = name), fill = NA, size = size.line) +
geom_polygon(aes(group = 1, x = GEN, y = 100 / length(unique(name))),
fill = NA,
color = "black",
linetype = 2,
size = size.line,
show.legend = FALSE) +
geom_line(aes(group = name, color = name), size = size.line) +
theme_minimal() +
theme(strip.text.x = element_text(size = size.text),
axis.text.x = element_text(color = "black", size = size.text),
axis.ticks.y = element_blank(),
panel.grid = element_line(size = size.line / 2),
axis.text.y = element_text(size = size.text, color = "black"),
legend.position = legend.position,
legend.title = element_blank(),
...) +
labs(title = title,
x = NULL,
y = y.lab) +
scale_y_reverse() +
guides(color = guide_legend(nrow = 1)) +
coord_radar()
if(arrange.label == TRUE){
tot_gen <- length(unique(data$GEN))
fseq <- c(1:(tot_gen/2))
sseq <- c((tot_gen/2 + 1):tot_gen)
fang <- c(90 - 180/length(fseq) * fseq)
sang <- c(-90 - 180/length(sseq) * sseq)
p <- p +
theme(axis.text.x = suppressMessages(suppressWarnings(element_text(angle = c(fang, sang)))), ...)
}
} else{
x.lab <- ifelse(!missing(x.lab), x.lab, "Selected genotypes")
y.lab <- ifelse(!missing(y.lab), y.lab, "Proportion")
p <-
ggplot(data, aes(GEN, value, fill = name))+
geom_bar(stat = "identity",
position = position,
color = "black",
size = size.line,
width = width.bar) +
scale_y_continuous(expand = expansion(c(0, ifelse(position == "fill", 0, 0.05))))+
theme_metan() +
theme(legend.position = legend.position,
axis.ticks = element_line(size = size.line),
plot.margin = margin(0.5, 0.5, 0, 0, "cm"),
panel.border = element_rect(size = size.line),
...)+
scale_x_discrete(guide = guide_axis(n.dodge = n.dodge, check.overlap = check.overlap),
expand = expansion(0))+
labs(x = x.lab, y = y.lab)+
guides(guide_legend(nrow = 1)) +
ggtitle(title)
if(rotate == TRUE){
p <- p + coord_flip()
}
}
}
return(p)
}
#' Print an object of class mgidi
#' Print a `mgidi` object in two ways. By default, the results are shown in
#' the R console. The results can also be exported to the directory.
#'
#' @param x An object of class `mgidi`.
#' @param export A logical argument. If `TRUE|T`, a *.txt file is exported
#' to the working directory
#' @param file.name The name of the file if `export = TRUE`
#' @param digits The significant digits to be shown.
#' @param ... Options used by the tibble package to format the output. See
#' [`tibble::print()`][tibble::formatting] for more details.
#' @author Tiago Olivoto \email{tiagoolivoto@@gmail.com}
#' @method print mgidi
#' @export
#' @examples
#' \donttest{
#' library(metan)
#' model <- gamem(data_g,
#' gen = GEN,
#' rep = REP,
#' resp = c(KW, NR, NKE, NKR))
#' mgidi_index <- mgidi(model)
#' print(mgidi_index)
#' }
print.mgidi <- function(x,
export = FALSE,
file.name = NULL,
digits = 4,
...) {
if (export == TRUE) {
file.name <- ifelse(is.null(file.name) == TRUE, "mgidi print", file.name)
sink(paste0(file.name, ".txt"))
}
opar <- options(pillar.sigfig = digits)
on.exit(options(opar))
cat("-------------------------------------------------------------------------------\n")
cat("Correlation matrix used used in factor analysis \n")
cat("-------------------------------------------------------------------------------\n")
print(x$cormat, digits = 2)
cat("-------------------------------------------------------------------------------\n")
cat("Principal component analysis \n")
cat("-------------------------------------------------------------------------------\n")
print(x$PCA)
cat("-------------------------------------------------------------------------------\n")
cat("Initial loadings \n")
cat("-------------------------------------------------------------------------------\n")
print(x$initial_loadings)
cat("-------------------------------------------------------------------------------\n")
cat("Loadings after varimax rotation \n")
cat("-------------------------------------------------------------------------------\n")
print(x$finish_loadings)
cat("-------------------------------------------------------------------------------\n")
cat("Scores for genotypes-ideotype \n")
cat("-------------------------------------------------------------------------------\n")
print(rbind(x$scores_gen, x$scores_ide))
cat("-------------------------------------------------------------------------------\n")
cat("Multi-trait genotype-ideotype distance index \n")
cat("-------------------------------------------------------------------------------\n")
print(x$MGIDI)
cat("-------------------------------------------------------------------------------\n")
cat("Selection differential \n")
cat("-------------------------------------------------------------------------------\n")
print(x$sel_dif)
cat("-------------------------------------------------------------------------------\n")
cat("Selected genotypes \n")
cat("-------------------------------------------------------------------------------\n")
cat(x$sel_gen)
if (export == TRUE) {
sink()
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.