Nothing
#############################################################################################################
# Author :
# Florian Rohart, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD
# Kim-Anh Le Cao, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD
# Benoit Gautier, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD
#
# created: 22-04-2015
# last modified: 04-10-2017
#
# Copyright (C) 2015
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#############################################################################################################
# ========================================================================================================
# Internal helpers functions to run "mixOmics" and "internal_mint.block" functions
# ========================================================================================================
# Some of these functions have been borrowed from the RGCCA package, as indicated below
# --------------------------------------
# study_split: used in 'internal_mint.block.R' and 'predict.mint.block.pls.R'
# --------------------------------------
get.weights = function(variates, indY)
{
ncomp = min(sapply(variates, ncol))
x.xList <- list()
compt = 1
for(comp in 1:ncomp)
{
for(i in 1:length(variates)){
corDat <- rep(0, length(variates))
names(corDat) <- paste("cor", names(variates)[i], names(variates), sep = "_")
for(j in 1:length(variates)){
corDat[j] <- as.numeric(cor(variates[[i]][,comp], variates[[j]][,comp]))
}
x.xList[[compt]] <- corDat
compt = compt +1
}
}
corMat.diablo <- do.call(rbind, x.xList)
rownames(corMat.diablo) <- paste(names(variates),".comp",rep(1:ncomp,each=length(variates)),sep="")
colnames(corMat.diablo) <- names(variates)
temp = matrix(corMat.diablo[,indY],ncol=ncomp)
correlation = apply(temp, 1, function(x){mean(abs(x))})[1:length(variates)]
names(correlation) = names(variates)
correlation = correlation[-indY]
return(correlation)
}
# --------------------------------------
# study_split: used in 'internal_mint.block.R' and 'predict.mint.block.pls.R'
# --------------------------------------
study_split = function(data, study)
{
#data should be a matrix
if(!any(class(data) == "matrix"))
data = as.matrix(data)
M = length(levels(study))
#---------------------- split data
if(M>1)
{
data.list.study = split.data.frame(data,study)
} else {
data.list.study = list(data)
names(data.list.study) = levels(study)
}
result = data.list.study
return(invisible(result))
}
# --------------------------------------
# soft_thresholding: used in sparsity (below)
# --------------------------------------
# x: vector
# nx: number of entries to put to zero
soft_thresholding_L1 = function(x,nx)
{
#selection on a (loadings.X). modified on 19/02/15 to make sure that a!=0
if (nx!=0)
{
absa = abs(x)
if (any(rank(absa, ties.method = "max") <= nx))
{
x = ifelse(rank(absa, ties.method = "max") <= nx, 0,
sign(x) * (absa - max(absa[rank(absa, ties.method = "max") <= nx])))
}
}
x
}
# ----------------------------------------------------------------------------------------------------------
# soft.threshold() - soft-thresholds a vector such that the L1-norm constraint is satisfied.
# ----------------------------------------------------------------------------------------------------------
soft.threshold = function (x, sumabs = 1)
return(soft(x, BinarySearch(x, sumabs)))
BinarySearch = function(argu,sumabs)
{
if (norm2(argu)==0 || sum(abs(argu/norm2(argu)))<=sumabs)
return(0)
lam1 = 0
lam2 = max(abs(argu))-1e-5
iter = 1
while (iter < 500)
{
su = soft(argu,(lam1+lam2)/2)
if (sum(abs(su/norm2(su)))<sumabs)
{
lam2 = (lam1+lam2)/2
} else {
lam1 = (lam1+lam2)/2
}
if ((lam2-lam1)<1e-10)
return((lam1+lam2)/2)
iter = iter+1
}
warning("Didn't quite converge")
return((lam1+lam2)/2)
}
soft = function(x,d) return(sign(x)*pmax(0, abs(x)-d))
norm2 = function(vec)
{
a = sqrt(sum(vec^2))
if (a == 0)
a = .05
return(a)
}
# --------------------------------------
# sparsity function: used in 'internal_mint.block.R'
# --------------------------------------
sparsity=function(loadings.A, keepA, penalty=NULL)
{
if (!is.null(keepA)) {
nx = length(loadings.A) - keepA
loadings.A = soft_thresholding_L1(loadings.A, nx = nx)
} else if (!is.null(penalty)) {
loadings.A = soft.threshold(loadings.A, penalty)
}
return(loadings.A)
}
# --------------------------------------
# scaling with or without bias: used in mean_centering_per_study (below)
# --------------------------------------
scale.function_old=function(temp, scale = TRUE) # problem: divide by n instead of n-#NA
{
meanX = colMeans(temp, na.rm = TRUE)
data.list.study.scale_i = t(t(temp) - meanX)
if (scale)
{
sqrt.sdX = sqrt(colSums(data.list.study.scale_i^2, na.rm = TRUE) / (nrow(temp) - 1))
data.list.study.scale_i = t(t(data.list.study.scale_i) / sqrt.sdX)
} else {
sqrt.sdX = NULL
}
#is.na.data = is.na(data.list.study.scale_i)
#if (sum(is.na.data) > 0)
#data.list.study.scale_i[is.na.data] = 0
out = list(data_scale=data.list.study.scale_i, meanX=meanX, sqrt.sdX=sqrt.sdX)
return(out)
}
# --------------------------------------
# scaling, using colSds from library(matrixStats), used in mean_centering_per_study (below)
# --------------------------------------
scale.function=function(temp, scale = TRUE)
{
meanX = colMeans(temp, na.rm = TRUE)
if (scale)
{
sqrt.sdX = colSds(temp, na.rm=TRUE)
data.list.study.scale_i = t( (t(temp)-meanX) / sqrt.sdX)
ind = which(sqrt.sdX == 0) # scaling can creates NA
if(length(ind) >0)
data.list.study.scale_i[,ind] = 0
} else {
sqrt.sdX = NULL
data.list.study.scale_i = t( (t(temp)-meanX))
}
#is.na.data = is.na(data.list.study.scale_i)
#if (sum(is.na.data) > 0)
#data.list.study.scale_i[is.na.data] = 0
out = list(data_scale=data.list.study.scale_i, meanX=meanX, sqrt.sdX=sqrt.sdX)
return(out)
}
# --------------------------------------
# Mean centering/scaling per study: used in 'internal_mint.block.R'
# --------------------------------------
mean_centering_per_study=function(data, study, scale)
{
M = length(levels(study)) # number of groups
# split the data
data.list.study = study_split(data, study)
# center and scale data per group, and concatene the data
res = lapply(data.list.study, scale.function, scale = scale)
meanX = lapply(res, function(x){x[[2]]})
sqrt.sdX = lapply(res, function(x){x[[3]]})
rownames.study = lapply(res, function(x){rownames(x[[1]])})
#rename rows and cols of concatenated centered (and/or scaled) data
#colnames(concat.data) = colnames(data) #already done
#sort the samples as in the original X
if(M>1) # otherwise already same order
{
concat.data = do.call("rbind", lapply(res,function(x){x[[1]]}))
indice.match = match(rownames(data),rownames(concat.data))
concat.data = concat.data[indice.match, ,drop=FALSE]
} else{
concat.data = res[[1]][[1]]
}
if (M > 1)
{
for (m in 1:M)
{
attr(concat.data,paste0("means:", levels(study)[m])) = meanX[[m]]
if(scale)
{
attr(concat.data,paste0("sigma:", levels(study)[m])) = sqrt.sdX[[m]]
} else {
attr(concat.data,paste0("sigma:", levels(study)[m])) = NULL
}
}
} else {
attr(concat.data,"scaled:center") = meanX[[1]]
if (scale)
{
attr(concat.data,"scaled:scale") = sqrt.sdX[[1]]
} else {
attr(concat.data,"scaled:scale") = NULL
}
}
return(list(concat.data=concat.data, rownames.study=rownames.study))
}
# --------------------------------------
# l2.norm: used in 'internal_mint.block.R'
# --------------------------------------
l2.norm=function(x)
{
if (!is.vector(x))
stop("x has to be a vector")
out = x / drop(sqrt(crossprod(x)))
}
# ---------------------------------------------------
# tau.estimate() - Estimation of tau accoring to Strimmer formula
# ---------------------------------------------------
#used in 'internal_mint.block.R'
tau.estimate = function (x)
{
if (is.matrix(x) == TRUE && is.numeric(x) == FALSE)
stop("The data matrix must be numeric!")
p = NCOL(x)
n = NROW(x)
#covm = cov(x)
corm = cor(x)
xs = scale(x, center = TRUE, scale = TRUE)
xs2 = xs^2
v = (n/((n - 1)^3)) * (crossprod(xs2) - 1/n * (crossprod(xs))^2)
diag(v) = 0
m = matrix(rep(apply(xs2, 2, mean), p), p, p)
I = diag(NCOL(x))
d = (corm - I)^2
tau = (sum(v))/sum(d)
tau = max(min(tau, 1), 0)
return(tau)
}
#############################################################################################################
# Functions acquired from RGCCA R-library
#############################################################################################################
# ----------------------------------------------------------------------------------------------------------
# cov2() - Compute biased and unbiased covariance and variance estimates
# ----------------------------------------------------------------------------------------------------------
# used in 'internal_mint.block.R'
cov2 = function (x, y = NULL, bias = FALSE) {
n = NROW(x)
if (is.null(y)) {
x = as.matrix(x)
if (bias) {
C = ((n - 1)/n) * cov(x, use = "pairwise.complete.obs")
} else {
C = cov(x, use = "pairwise.complete.obs")
}
} else {
if (bias) {
C = ((n - 1)/n) * cov(x, y, use = "pairwise.complete.obs")
} else {
C = cov(x, y, use = "pairwise.complete.obs")
}
}
return(C)
}
# ----------------------------------------------------------------------------------------------------------
# miscrossprod() - Compute cross-product between vectors x and y
# ----------------------------------------------------------------------------------------------------------
# used in 'internal_mint.block.R'
miscrossprod = function (x, y) {
d.p = sum(drop(x) * drop(y), na.rm = TRUE)
#d.p = as.vector(d.p)/norm2(d.p) ## change made
return(d.p)
}
# ----------------------------------------------------------------------------------------------------------
# deflation()
# ----------------------------------------------------------------------------------------------------------
# used in defl.select (below)
deflation = function(X, y, misdata.q, is.na.A.q, ind.NA){
# Computation of the residual matrix R
# Computation of the vector p.
#is.na.tX <- is.na(t(X))
#save(list=ls(),file="temp3.Rdata")
if (misdata.q)
{
#is.na.tX = t(is.na.A.q)
#p = apply(t(X),1,miscrossprod,y)/as.vector(crossprod(y))
#variates.A[, q] = apply(A[[q]], 1, miscrossprod, loadings.A[[q]])
#A.temp = replace(t(X), is.na.tX, 0) # replace NA in A[[q]] by 0
loadings.A.temp = crossprod(X, y)
#temp = drop(y) %o% rep(1, ncol(A.temp.q))
#temp[is.na.A.q] = 0
# we only want the diagonal, which is the norm of each column of temp
#loadings.A.norm = crossprod(temp)
#p = variates.A.temp / diag(loadings.A.norm)
#d.loadings.A.norm = apply(temp,2, crossprod)
#only calculating the ones where there's a NA
d.loadings.A.norm = rep(crossprod(y), ncol(X))
#ind.NA = which(apply(is.na.A.q, 2, sum) == 1)
if(length(ind.NA)>0)
{
temp = drop(y) %o% rep(1, length(ind.NA)) # should be n*p, but we limit it to n* where there's NA
temp[is.na.A.q[,ind.NA,drop=FALSE]] = 0
d.loadings.A.norm[ind.NA] = apply(temp,2, crossprod)
}
p = loadings.A.temp / d.loadings.A.norm
# we can have 0/0, so we put 0
a = is.na(p)
if (any(a))
p[a] = 0
} else {
p <- crossprod(X,y) / as.vector(crossprod(y))
}
R <- X - tcrossprod(y,p)
return(list(p=p,R=R))
}
# ----------------------------------------------------------------------------------------------------------
# defl.select() - computes residual matrices
# ----------------------------------------------------------------------------------------------------------
# used in 'internal_mint.block.R'
defl.select = function(yy, rr, nncomp, nn, nbloc, indY = NULL, mode = "canonical", aa = NULL, misdata, is.na.A, ind.NA) { ### Start: Add new parameter for estimation classic mode
#save(list=ls(),file="temp2.Rdata")
resdefl = NULL
pdefl = NULL
for (q in 1 : nbloc) {
# for each block we create missing data parameters to be passed to the deflation()
if(misdata[q])
{
is.na.A.q = is.na.A[[q]]
} else {
is.na.A.q = NULL
}
### Start: insertion of new deflations (See La regression PLS Theorie et pratique p204 (Chap 11))
if ( nn <= nncomp[q] ) {
if ((mode == "canonical") || (q != indY)) { #deflation of each block independently from the others, except indY
defltmp = deflation(rr[[q]], yy[ , q], misdata[q], is.na.A.q, ind.NA[[q]])
resdefl[[q]] = defltmp$R
pdefl[[q]] = defltmp$p
} else if (mode == "classic") {
resdefl[[q]] = Reduce("+", lapply(c(1:nbloc)[-q], function(x) {rr[[q]] - yy[ ,x]%*%t(aa[[q]])}))/(nbloc-1)
pdefl[[q]] = rep(0,NCOL(rr[[q]]))
} else if (mode == "invariant") { #no deflation
resdefl[[q]] = rr[[q]]
pdefl[[q]] = rep(0,NCOL(rr[[q]]))
} else if (mode == "regression") {
resdefl[[q]] = Reduce("+", lapply(c(1:nbloc)[-q], function(x) {deflation(rr[[q]],yy[, x], misdata[q], is.na.A.q, ind.NA[[q]])$R}))/(nbloc-1)
pdefl[[q]] = rep(0,NCOL(rr[[q]]))
}
### End: insertion of new deflations
} else {
resdefl[[q]] = rr[[q]]
pdefl[[q]] = rep(0,NCOL(rr[[q]]))
}
}
names(resdefl) = names(pdefl) = names(rr)
return(list(resdefl=resdefl,pdefl=pdefl))
}
# ----------------------------------------------------------------------------------------------------------
# initsvd() - performs SVD on matrix X
# ----------------------------------------------------------------------------------------------------------
# used in 'internal_mint.block.R'
initsvd = function (X) {
n = NROW(X)
p = NCOL(X)
if(p>3) #use svds
{
ifelse(n >= p, return(svds(X, k=1, nu = 1, nv = 1)$v), return(svds(X, k=1, nu = 1, nv = 1)$u))
} else {
ifelse(n >= p, return(svd(X, nu = 0, nv = 1)$v), return(svd(X, nu = 1, nv = 0)$u))
}
}
# ----------------------------------------------------------------------------------------------------------
# init svd
# ----------------------------------------------------------------------------------------------------------
initialisation_by_svd = function(A, indY = NULL, misdata, is.na.A = NULL, init = "svd")
{
J = length(A)
loadings.A = vector("list",length=J)
if (init == "svd")
{
# same step with or without NA, as they are already replaced by 0
M = lapply(c(1:J)[-indY], function(x){crossprod(A[[x]], A[[indY]])})
#ssvd faster with svds, only if more than 3 column, otherwise break down
svd.M = lapply(M, function(x){if(ncol(x)>3) {svds(x, k=1, nu = 1, nv = 1)} else {svd(x, nu = 1, nv = 1)}})
loadings.A[c(1:J)[-indY]] = lapply(1:length(M), function(x){svd.M[[x]]$u})
loadings.A[[indY]] = svd.M[[1]]$v
} else if (init=="svd.single") {
alpha = lapply(1 : J, function(y){initsvd(A[[y]])})
for (j in 1:J)
{
if (nrow(A[[j]]) >= ncol(A[[j]]))
{
loadings.A[[j]] = alpha[[j]]
} else {
alpha[[j]] = drop(1/sqrt( t(alpha[[j]]) %*% A[[j]] %*% (t(A[[j]]) %*% alpha[[j]]))) * alpha[[j]]
loadings.A[[j]] = crossprod(A[[j]],alpha[[j]])
}
}
} else {
stop("init should be either 'svd' or 'svd.single'.")
}
return(loadings.A)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.