R/integrateODE.R

Defines functions rkintegrate rkFunction dynamicsFunction fetchDynamics integrateODE

Documented in integrateODE

#' Integrate ordinary differential equations
#'
#' A formula interface to integration of an ODE with respect to "t"
#'
#' @param \dots A dynamics object (see `makeODE()`) and/or arguments giving additional formulas for dynamics in other variables,
#' assignments of parameters, assignments of initial conditions, the start and end times of the 
#' integration (through `domain()`), and the step size (through `dt=`).
#'
#' @details
#' The equations must be in first-order form.  Each dynamical equation uses
#' a formula interface with the variable name given on the left-hand side of the
#' formula, preceded by a \code{d}, so use \code{dx~-k*x} for exponential decay.
#' All parameters (such as \code{k}) must be assigned numerical values in the
#' argument list.  All dynamical variables must be assigned initial conditions in the
#' argument list.  The returned value will be a list with one component named after each
#' dynamical variable.  The component will be a spline-generated function of \code{t}.
#'
#'
#' @return a list with splined function of time for each dynamical variable
#'
#' @examples
#' soln = integrateODE(dx~r*x*(1-x/k), k=10, r=.5, domain(t=0:20), x=1)
#' soln$x(10)
#' soln$x(30) # outside the time interval for integration
#' traj_plot(x(t)~t, soln, domain(t=0:10)) 
#' soln2 = integrateODE(dx~y, dy~-x, x=1, y=0, domain(t=0:10))
#' traj_plot(y(t)~t, soln2)
#' SIR <- makeODE(dS~ -a*S*I, dI ~ a*S*I - b*I, a=0.0026, b=.5, S=762, I=1)
#' epi = integrateODE(SIR, domain(t=0:20)) 
#' traj_plot(I(t) ~ t, epi)
#' @export

integrateODE = function(...) {
  DE <- makeODE(...)
  # set up the integration parameters
  if (is.null(DE$domain)) stop("Must specify domain for integration, e.g. domain(t=0:10).")
  duration <- list(from=DE$domain$t[1], to=DE$domain$t[2], dt=DE$dt)
  values <- DE$values
  additionalAssignments <- unlist(DE$values[!DE$names %in% values])

  #create the initial condition vector
  #initstate = unlist( inputs[DE$names] )
  initstate <- unlist(DE$values[DE$names])
  if (length(initstate) != length(DE$names) )
    stop(paste("Must specify an initial condition for every state variable."))
  soln = rkintegrate(
    rkFunction(DE, additionalAssignments),
    initstate, tstart=duration$from, tend=duration$to, dt=duration$dt
  )

  # Return an object with functions for each of the dynamical variables,
  # defined as NA outside the range of tdur$from to tdur$to.
  # return interpolating functions
  result <- list()
  for (k in 1:length(DE$names)) result[[k]] <- approxfun( soln$t, soln$x[,k])
  names(result) <- DE$names
  class(result) <- "ODEsoln"
  message(paste0(
    "Solution containing functions ",
    paste0(names(result), "(t)", collapse=", "),
    "."
  ))
  
  return(result)
}




#' @importFrom stats approxfun
# #' @param x a list
# #' @return a list with two slots: names and functions

fetchDynamics <- function(x) {
  inputs <- x
  formInds <- which( sapply( inputs, function(x) inherits(x, 'formula') ) )

  dnames <- c()
  dfuns <- c()
  for (k in 1:length(formInds) ) {
    form = inputs[[formInds[k]]]
    nm = form[[2]] # should be name type so double [[ ]]
    if ( ! inherits(nm, "name") ) stop(paste("Invalid name on LHS of formula",nm))
    nm = as.character(nm)
    if (grep("^d",nm)!=1) stop("Dynamical variables must start with 'd'")
    dnames[k] <- sub("^d","",nm) # character string with the name
    dfuns[k] <- parse(text=form[3]) # an expression so single [ ]
  }
  res <- list(names = dnames, functions=dfuns) 
  class(res) <- c("list", "dynamics")
  
  res
}


# #' construct a function representing the dynamics
# #'
# #' parameters are stored as extra arguments
# #' the order of the dynamical variables (and "t") is important and will be used
# #' later
# #'
# #' @param DE representation of DE, the result of fetchDynamics
# #' @param additionalAssignments, a list
# #' return a function
# #'
dynamicsFunction <- function( DE, additionalAssignments=list() ) {
  dynfun = function(){}
  body(dynfun) = parse(text=paste("c(",paste(DE$names,DE$functions,collapse=",",sep="="),")",sep=""))

  # construct the dynamical variable argument list
  tstring=ifelse(! "t"%in% DE$names,",t=","")
  # create the dynamical variables as arguments to the function
  dynArgs = eval(parse(
           text=paste("alist(",  paste(DE$names,"=",collapse=",",sep=""), tstring,")")))
  formals(dynfun) = c(dynArgs,additionalAssignments)
  return(dynfun)
}

# #' Create a functions with a vector argument of state, for use in rk()
# #'
# #' @param DE representation of DE, the result of fetchDynamics
# #' @param additionalAssignments, a list
# #' return a function

rkFunction <- function(DE, additionalArguments=list() ) {
  result <- function(state,t) {}
  tstring <- ifelse(! "t"%in% DE$names,",t","")
  dynfun <- dynamicsFunction(DE, additionalArguments)
  bodyString <- paste("dynfun(",
    paste("state[",1:length(DE$names),"]",sep="",collapse=","),tstring,")")
  body(result) <- parse(text=bodyString)
  return(result)
}



# #' A simple Runge-Kutta integrator
# #'
# #' Integrates ordinary differential equations using a Runge-Kutta method
# #'
# #' @param fun the dynamical function with arguments \code{state} (a vector) and \code{t}.
# #' @param x0 the initial condition, a vector with one element for each state variable
# #' @param tstart starting time
# #' @param tend ending time for integration
# #' @param dt step size for integration
# #'
# #' @return a list containing \code{x}, a matrix of the state with one row for each
# #' time step and a vector \code{t} containing the times of those steps.
# #'
# #' @author Daniel Kaplan (\email{kaplan@@macalester.edu})
# #'
# #' @details
# #' This is mainly for internal use by integrateODE.

rkintegrate <- function(fun,x0,tstart=0,tend=1,dt=NULL) {
  if (is.null(dt)) {
    dt <- if( tend > 0 ) min(.01, (tend - tstart)/100)
        else max(-.01, (tend-tstart)/100)
  }
  nsteps <- round( .5+(tend-tstart)/dt);
  xout <- matrix(0,nsteps+1,length(x0));
  tout <- seq(tstart,tend,length=nsteps+1);
  xout[1,] <- x0;
  for (k in 2:(nsteps+1)) {
      time = tout[k]
      k1 <- dt*fun(x0,tout[k-1]);
      k2 <- dt*fun(x0+k1/2,time);
      k3 <- dt*fun(x0+k2/2,time);
      k4 <- dt*fun(x0+k3,time);
      x0 <- x0 + (k1+k4+(k2+k3)*2)/6;
      xout[k,] <- x0;
  }
  return( list(x=xout,t=tout) );
}

Try the mosaicCalc package in your browser

Any scripts or data that you put into this service are public.

mosaicCalc documentation built on Sept. 11, 2024, 9:10 p.m.