Nothing
#' Multilevel FoSR using Variational Bayes and Wishart prior
#'
#' Fitting function for function-on-scalar regression for cross-sectional data.
#' This function estimates model parameters using VB and estimates
#' the residual covariance surface using a Wishart prior. If prior hyperparameters
#' are \code{NULL} they are estimated using the data.
#'
#' @param formula a formula indicating the structure of the proposed model.
#' @param Kt number of spline basis functions used to estimate coefficient functions
#' @param data an optional data frame, list or environment containing the
#' variables in the model. If not found in data, the variables are taken from
#' environment(formula), typically the environment from which the function is
#' called.
#' @param alpha tuning parameter balancing second-derivative penalty and
#' zeroth-derivative penalty (alpha = 0 is all second-derivative penalty)
#' @param min.iter minimum number of iterations of VB algorithm
#' @param max.iter maximum number of iterations of VB algorithm
#' @param Az hyperparameter for inverse gamma controlling variance of spline terms
#' for subject-level effects
#' @param Bz hyperparameter for inverse gamma controlling variance of spline terms
#' for subject-level effects
#' @param Aw hyperparameter for inverse gamma controlling variance of spline terms
#' for population-level effects
#' @param Bw hyperparameter for inverse gamma controlling variance of spline terms
#' for population-level effects
#' @param v hyperparameter for inverse Wishart prior on residual covariance
#' @param verbose logical defaulting to \code{TRUE} -- should updates on progress be printed?
#'
#' @references
#' Goldsmith, J., Kitago, T. (2016).
#' Assessing Systematic Effects of Stroke on Motor Control using Hierarchical
#' Function-on-Scalar Regression. \emph{Journal of the Royal Statistical Society:
#' Series C}, 65 215-236.
#'
#' @author Jeff Goldsmith \email{ajg2202@@cumc.columbia.edu}
#' @importFrom splines bs
#' @export
#'
vb_mult_wish = function(formula, data=NULL, verbose = TRUE, Kt = 5, alpha = .1, min.iter = 10, max.iter = 50,
Az = NULL, Bz = NULL, Aw = NULL, Bw = NULL, v = NULL){
call <- match.call()
tf <- terms.formula(formula, specials = "re")
trmstrings <- attr(tf, "term.labels")
specials <- attr(tf, "specials")
where.re <-specials$re - 1
if (length(where.re) != 0) {
mf_fixed <- model.frame(tf[-where.re], data = data)
formula = tf[-where.re]
responsename <- attr(tf, "variables")[2][[1]]
###
REs = list(NA, NA)
REs[[1]] = names(eval(parse(text=attr(tf[where.re], "term.labels")), envir=data)$data)
REs[[2]]=paste0("(1|",REs[[1]],")")
###
formula2 <- paste(responsename, "~", REs[[1]], sep = "")
newfrml <- paste(responsename, "~", REs[[2]], sep = "")
newtrmstrings <- attr(tf[-where.re], "term.labels")
formula2 <- formula(paste(c(formula2, newtrmstrings),
collapse = "+"))
newfrml <- formula(paste(c(newfrml, newtrmstrings), collapse = "+"))
mf <- model.frame(formula2, data = data)
if (length(data) == 0) {
Z = lme4::mkReTrms(lme4::findbars(newfrml), fr = mf)$Zt
}
else {
Z = lme4::mkReTrms(lme4::findbars(newfrml), fr = data)$Zt
}
}
else {
mf_fixed <- model.frame(tf, data = data)
}
mt_fixed <- attr(mf_fixed, "terms")
# get response (Y)
Y <- model.response(mf_fixed, "numeric")
# x is a matrix of fixed effects
# automatically adds in intercept
X <- model.matrix(mt_fixed, mf_fixed, contrasts)
## fixed and random effect design matrices
W.des = X
Z.des = t(as.matrix(Z))
I = dim(Z.des)[2]
D = dim(Y)[2]
Ji = as.numeric(apply(Z.des, 2, sum))
IJ = sum(Ji)
p = dim(W.des)[2]
## bspline basis and penalty matrix
Theta = bs(1:D, df=Kt, intercept=TRUE, degree=3)
diff0 = diag(1, D, D)
diff2 = matrix(rep(c(1,-2,1, rep(0, D-2)), D-2)[1:((D-2)*D)], D-2, D, byrow = TRUE)
P0 = t(Theta) %*% t(diff0) %*% diff0 %*% Theta
P2 = t(Theta) %*% t(diff2) %*% diff2 %*% Theta
P.mat = alpha * P0 + (1-alpha) * P2
SUBJ = factor(apply(Z.des %*% 1:dim(Z.des)[2], 1, sum))
## find first observation
firstobs = rep(NA, length(unique(SUBJ)))
for(i in 1:length(unique(SUBJ))){
firstobs[i] = which(SUBJ %in% unique(SUBJ)[i])[1]
}
Wi = W.des[firstobs,]
## data organization; these computations only need to be done once
Y.vec = as.vector(t(Y))
IIP = kronecker(diag(1, I, I), P.mat)
WIk = kronecker(Wi, diag(1, Kt, Kt))
tWIW = t(WIk) %*% IIP %*% WIk
tWI = t(WIk) %*% IIP
## initial estimation and hyperparameter choice
mu.q.BZ = matrix(NA, nrow = Kt, ncol = I)
for(subj in 1:length(unique(SUBJ))){
mu.q.BZ[,subj] = solve(kronecker(Ji[subj], t(Theta) %*% Theta)) %*% t(kronecker(rep(1, Ji[subj]), Theta)) %*%
(as.vector(t(Y[which(SUBJ == unique(SUBJ)[subj]),])))
}
vec.BZ = as.vector(mu.q.BZ)
vec.BW = solve(tWIW) %*% tWI %*% vec.BZ
mu.q.BW = matrix(vec.BW, Kt, p)
Yhat = as.matrix(Z.des %*% t(mu.q.BZ) %*% t(Theta))
if(is.null(v)){
fpca.temp = fpca.sc(Y = Y - Yhat, pve = .95, var = TRUE)
cov.hat = fpca.temp$efunctions %*% tcrossprod(diag(fpca.temp$evalues, nrow = length(fpca.temp$evalues),
ncol = length(fpca.temp$evalues)), fpca.temp$efunctions)
cov.hat = cov.hat + diag(fpca.temp$sigma2, D, D)
Psi = cov.hat * IJ
} else {
Psi = diag(v, D, D)
}
v = ifelse(is.null(v), IJ, v)
inv.sig = solve(Psi/v)
Az = ifelse(is.null(Az), I*Kt/2, Az)
Bz = b.q.lambda.BZ = ifelse(is.null(Bz), .5*sum(diag((t(mu.q.BZ) - Wi %*% t(mu.q.BW)) %*% P.mat %*% t(t(mu.q.BZ) - Wi %*% t(mu.q.BW)))), Bz)
Aw = ifelse(is.null(Aw), Kt/2, Aw)
if(is.null(Bw)){
Bw = b.q.lambda.BW = sapply(1:p, function(u) max(1, .5*sum(diag( t(mu.q.BW[,u]) %*% P.mat %*% (mu.q.BW[,u])))))
} else {
Bw = b.q.lambda.BW = rep(Bw, p)
}
sigma.q.BZ = vector("list", I)
lpxq=c(0,1)
j=2
if(verbose) { cat("Beginning Algorithm \n") }
while((j < (min.iter + 2) | (lpxq[j]-lpxq[j-1])>1.0E-1) & (j < max.iter)){
###############################################################
## update b-spline parameters for subject random effects
###############################################################
for(subj in 1:length(unique(SUBJ))){
t.designmat.Z = t(kronecker(rep(1, Ji[subj]), Theta))
sigma.q.BZ[[subj]] = solve(t.designmat.Z %*% kronecker(diag(1, Ji[subj], Ji[subj]), inv.sig) %*% t(t.designmat.Z) +
((Az+I*Kt/2)/b.q.lambda.BZ) * P.mat)
mu.q.BZ[,subj] = sigma.q.BZ[[subj]] %*% (t.designmat.Z %*% kronecker(diag(1, Ji[subj], Ji[subj]), inv.sig) %*%
(as.vector(t(Y[which(SUBJ == unique(SUBJ)[subj]),]))) +
(((Az+I*Kt/2)/b.q.lambda.BZ) * P.mat) %*% mu.q.BW %*% (Wi[subj,]) )
}
ranef.cur = as.matrix(Z.des %*% t(mu.q.BZ) %*% t(Theta))
###############################################################
## update b-spline parameters for fixed effects
###############################################################
sigma.q.BW = solve( (((Az+I*Kt/2)/b.q.lambda.BZ) * tWIW) + kronecker(diag((Aw+Kt/2)/b.q.lambda.BW), P.mat ))
mu.q.BW = matrix( sigma.q.BW %*% (((Az+I*Kt/2)/b.q.lambda.BZ) * tWI %*% as.vector(mu.q.BZ)), nrow = Kt, ncol = p)
beta.cur = t(mu.q.BW) %*% t(Theta)
###############################################################
## update inverse covariance matrix
###############################################################
T.BZ.Z = Theta %*% mu.q.BZ %*% t(Z.des)
mu.q.v = v + IJ
mu.q.Psi = Psi + t(Y) %*% Y -
t(Y) %*% t(T.BZ.Z) -
T.BZ.Z %*% Y +
T.BZ.Z %*% t(T.BZ.Z) +
matrix(apply(sapply(1:I, function(u) Ji[u] * Theta %*% sigma.q.BZ[[u]] %*% t(Theta)), 1, sum), D, D)
inv.sig = solve(mu.q.Psi/mu.q.v)
###############################################################
## update variance components
###############################################################
## lambda for fixed effects
for(term in 1:dim(W.des)[2]){
b.q.lambda.BW[term] = Bw[term] + .5 * (t(mu.q.BW[,term]) %*% P.mat %*% mu.q.BW[,term] +
sum(diag(P.mat %*% sigma.q.BW[(Kt*(term-1)+1):(Kt*term),(Kt*(term-1)+1):(Kt*term)])))
}
## lambda for random effects
trace.temp = sapply(1:dim(W.des)[2], function(p) sum(diag(P.mat %*% sigma.q.BW[(Kt*(p-1)+1):(Kt*p),(Kt*(p-1)+1):(Kt*p)])) )
b.q.lambda.BZ = as.numeric(Bz + .5 * sum(sapply(1:I, function(u) {
mu.q.BZ[,u] %*% P.mat %*% mu.q.BZ[,u] + sum(diag(P.mat %*% sigma.q.BZ[[u]])) -
2 * Wi[u,] %*% t(mu.q.BW) %*% P.mat %*% mu.q.BZ[,u] +
Wi[u,] %*% t(mu.q.BW) %*% P.mat %*% mu.q.BW %*% (Wi[u,]) +
Wi[u,] %*% diag(trace.temp) %*% (Wi[u,])
})))
###############################################################
## lower bound
###############################################################
curlpxq = .5 * sum(sapply(1:I, function(u) det(sigma.q.BZ[[u]]))) +
.5 * sum(sapply(1:p, function(u) det(sigma.q.BW[(Kt*(p-1)+1):(Kt*p),(Kt*(p-1)+1):(Kt*p)]))) -
(Az + (I*Kt)/2) * log(b.q.lambda.BZ) -
(Aw + Kt/2) * sum(b.q.lambda.BW) -
(v + IJ)/2 * log(det(mu.q.Psi))
lpxq = c(lpxq, curlpxq)
j=j+1
if(verbose) { cat(".") }
}
lpxq=lpxq[-(1:2)]
## compute CI for fixed effects
beta.sd = beta.LB = beta.UB = matrix(NA, nrow = p, ncol = D)
for(i in 1:p){
beta.sd[i,] = sqrt(diag((Theta) %*% sigma.q.BW[(Kt*(i-1)+1):(Kt*i),(Kt*(i-1)+1):(Kt*i)] %*% t(Theta)))
beta.LB[i,] = beta.cur[i,]-1.96*beta.sd[i,]
beta.UB[i,] = beta.cur[i,]+1.96*beta.sd[i,]
}
## convert objects from spam to matrix
beta.cur = as.matrix(beta.cur)
## export fitted values
Yhat.fixed = W.des %*% beta.cur
Yhat = ranef.cur
## export various r2 values
r2.f = 1 - (sum((Y - Yhat.fixed)^2)/(IJ*D)) / (sum((Y)^2)/(IJ*D))
r2.fr = 1 - (sum((Y - Yhat)^2)/(IJ*D)) / (sum((Y)^2)/(IJ*D))
ret = list(beta.cur, beta.UB, beta.LB, Yhat)
names(ret) = c("beta.pm", "beta.UB", "beta.LB", "Yhat")
data = if(is.null(data)) { mf_fixed } else { data }
ret = list(beta.cur, beta.UB, beta.LB, Yhat, mt_fixed, data)
names(ret) = c("beta.hat", "beta.UB", "beta.LB", "Yhat", "terms", "data")
class(ret) = "fosr"
ret
}
###############################################################
###############################################################
###############################################################
###############################################################
###############################################################
###############################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.