R/linim.R

Defines functions pairs.linim as.data.frame.linim scalardilate.linim affine.linim median.linim quantilefun.linim quantile.linim mean.linim integral.linim as.linnet.linim resampleNetworkDataFrame eval.linim as.linim.linim pointsAlongNetwork as.linim.default as.linim as.im.linim sortalongsegment print.summary.linim summary.linim print.linim is.linim linim

Documented in affine.linim as.data.frame.linim as.im.linim as.linim as.linim.default as.linim.linim as.linnet.linim eval.linim integral.linim linim mean.linim median.linim pairs.linim pointsAlongNetwork print.linim print.summary.linim quantilefun.linim quantile.linim resampleNetworkDataFrame scalardilate.linim sortalongsegment summary.linim

#
# linim.R
#
#  $Revision: 1.85 $   $Date: 2023/05/04 01:37:22 $
#
#  Image/function on a linear network
#

linim <- function(L, Z, ..., restrict=TRUE, df=NULL) {
  L <- as.linnet(L)
  stopifnot(is.im(Z))
  class(Z) <- "im"    # prevent unintended dispatch 
  dfgiven <- !is.null(df)
  if(dfgiven) {
    stopifnot(is.data.frame(df))
    neednames <- c("xc", "yc", "x", "y", "mapXY", "tp", "values")
    ok <- neednames %in% names(df)
    dfcomplete <- all(ok)
    if(!dfcomplete) {
      #' omission of "values" column is permissible, but not other columns
      mapnames <- setdiff(neednames, "values")
      if(!all(mapnames %in% names(df))) {
        nn <- sum(!ok)
        stop(paste(ngettext(nn, "A column", "Columns"),
                   "named", commasep(sQuote(neednames[!ok])),
                   ngettext(nn, "is", "are"),
                   "missing from argument", sQuote("df")))
      }
    }
  }
  if(restrict) {
    #' restrict image to pixels actually lying on the network
    M <- psp2mask(as.psp(L), Z)
    if(dfgiven) {
      #' ensure all mapped pixels are untouched
      pos <- nearest.pixel(df$xc, df$yc, Z)
      pos <- cbind(pos$row, pos$col)
      M$m[pos] <- TRUE
    }
    Z <- Z[M, drop=FALSE]
  }
  if(!dfgiven) {
    # compute the data frame of mapping information
    xx <- rasterx.im(Z)
    yy <- rastery.im(Z)
    mm <- !is.na(Z$v)
    xx <- as.vector(xx[mm])
    yy <- as.vector(yy[mm])
    pixelcentres <- ppp(xx, yy, window=as.rectangle(Z), check=FALSE)
    pixdf <- data.frame(xc=xx, yc=yy)
    # project pixel centres onto lines
    p2s <- project2segment(pixelcentres, as.psp(L))
    projloc <- as.data.frame(p2s$Xproj)
    projmap <- as.data.frame(p2s[c("mapXY", "tp")])
    # extract values
    values <- Z[pixelcentres]
    # bundle
    df <- cbind(pixdf, projloc, projmap, data.frame(values=values))
  } else if(!dfcomplete) {
    #' look up values
    pixelcentres <- ppp(df$xc, df$yc, window=as.rectangle(Z), check=FALSE)
    df$values <- safelookup(Z, pixelcentres)
  }
  out <- Z
  attr(out, "L") <- L
  attr(out, "df") <- df
  class(out) <- c("linim", class(out))
  return(out)
}

is.linim <- function(x) { inherits(x, "linim") }

print.linim <- function(x, ...) {
  splat("Image on linear network")
  L <- attr(x, "L")
  Lu <- summary(unitname(L))
  nsample <- nrow(attr(x, "df"))
  print(L)
  NextMethod("print")
  if(!is.null(nsample))
    splat(" Data frame:", nsample, "sample points along network", "\n",
          "Average density: one sample point per",
          signif(volume(L)/nsample, 3),
          Lu$plural, Lu$explain)
  return(invisible(NULL))
}

summary.linim <- function(object, ...) {
  y <- NextMethod("summary")
  if("integral" %in% names(y))
    y$integral <- integral(object)
  y$network <- summary(as.linnet(object))
  class(y) <- c("summary.linim", class(y))
  return(y)
}

print.summary.linim <- function(x, ...) {
  splat(paste0(x$type, "-valued"), "pixel image on a linear network")
  unitinfo <- summary(x$units)
  pluralunits <- unitinfo$plural
  sigdig <- getOption('digits')
  di <- x$dim
  win <- x$window
  splat(di[1L], "x", di[2L], "pixel array (ny, nx)")
  splat("enclosing rectangle:",
        prange(signif(win$xrange, sigdig)),
        "x",
        prange(signif(win$yrange, sigdig)),
        unitinfo$plural,
        unitinfo$explain)
  splat("dimensions of each pixel:",
        signif(x$xstep, 3), "x", signif(x$ystep, sigdig),
        pluralunits)
  if(!is.null(explain <- unitinfo$explain))
    splat(explain)
  splat("Pixel values (on network):")
  switch(x$type,
         integer=,
         real={
           splat("\trange =", prange(signif(x$range, sigdig)))
           splat("\tintegral =", signif(x$integral, sigdig))
           splat("\tmean =", signif(x$mean, sigdig))
         },
         factor={
           print(x$table)
         },
         complex={
           splat("\trange: Real",
                 prange(signif(x$Re$range, sigdig)),
                 "Imaginary",
                 prange(signif(x$Im$range, sigdig)))
           splat("\tintegral =", signif(x$integral, sigdig))
           splat("\tmean =", signif(x$mean, sigdig))
         },
         {
           print(x$summary)
         })
  splat("Underlying network:")
  print(x$network)
  return(invisible(NULL))
}


plot.linim <- local({

  plot.linim <- function(x, ..., style=c("colour", "width"),
                         scale, adjust=1, fatten=0, 
                         negative.args=list(col=2),
                         legend=TRUE,
                         leg.side=c("right", "left", "bottom", "top"),
                         leg.sep=0.1,
                         leg.wid=0.1,
                         leg.args=list(),
                         leg.scale=1,
                         zlim,
                         box=FALSE,
                         do.plot=TRUE) {
    xname <- short.deparse(substitute(x))
    style <- match.arg(style)
    leg.side <- match.arg(leg.side)
    check.1.real(leg.scale)
    force(x)

    if(!missing(fatten)) {
      check.1.real(fatten)
      if(fatten != 0 && style == "width")
        warning("Argument 'fatten' is ignored when style='width'", call.=FALSE)
      stopifnot(fatten >= 0)
    }
    
    if(missing(zlim) || is.null(zlim)) {
      zlim <- NULL
      zliminfo <- list()
    } else {
      check.range(zlim)
      stopifnot(all(is.finite(zlim)))
      zliminfo <- list(zlim=zlim)
    }
    
    ribstuff <- list(ribbon   = legend,
                     ribside  = leg.side,
                     ribsep   = leg.sep,
                     ribwid   = leg.wid,
                     ribargs  = leg.args,
                     ribscale = leg.scale)
    
    if(style == "colour" || !do.plot) {
      #' colour style: plot as pixel image
      if(fatten > 0) {
        #' first fatten the lines 
        L <- attr(x, "L")
        S <- as.psp(L)
        D <- distmap(psp2mask(S, xy=x))
        fatwin <- levelset(D, fatten)
        x <- nearestValue(x)[fatwin, drop=FALSE]
      }
      return(do.call(plot.im,
                     resolve.defaults(list(quote(x)),
                                      list(...),
                                      ribstuff,
                                      zliminfo, 
                                      list(main=xname,
                                           legend=legend,
                                           do.plot=do.plot,
                                           box=box))))
    }
    #' width style
    L <- attr(x, "L")
    df <- attr(x, "df")
    Llines <- as.psp(L)
    W <- as.owin(L)
    #' ensure function values are numeric
    vals <- try(as.numeric(df$values))
    if(inherits(vals, "try-error")) 
      stop("Function values should be numeric: unable to convert them",
           call.=FALSE)
    #' convert non-finite values to zero width
    vals[!is.finite(vals)] <- 0
    df$values <- vals
    #' plan layout
    if(legend) {
      #' use layout procedure in plot.im
      z <- do.call(plot.im,
                   resolve.defaults(list(quote(x), do.plot=FALSE, ribbon=TRUE),
                                    list(...),
                                    ribstuff,
                                    list(main=xname, valuesAreColours=FALSE)))
      bb.all <- attr(z, "bbox")
      bb.leg <- attr(z, "bbox.legend")
    } else {
      bb.all <- Frame(W)
      bb.leg <- NULL
    }
    legend <- !is.null(bb.leg)
    if(legend) {
      #' expand plot region to accommodate text annotation in legend
      if(leg.side %in% c("left", "right")) {
        delta <- 2 * sidelengths(bb.leg)[1]
        xmargin <- if(leg.side == "right") c(0, delta) else c(delta, 0)
        bb.all <- grow.rectangle(bb.all, xmargin=xmargin)
      }
    }
    #' initialise plot
    bb <- do.call.matched(plot.owin,
                          resolve.defaults(list(x=quote(bb.all), type="n"),
                                           list(...), list(main=xname)),
                          extrargs="type")
    if(box)
      plot(Frame(W), add=TRUE)
    #' resolve graphics parameters for polygons
    names(negative.args) <- paste0(names(negative.args), ".neg")
    grafpar <- resolve.defaults(negative.args,
                                list(...),
                               list(col=1),
                                .MatchNull=FALSE)
    #' rescale values to a plottable range
    if(is.null(zlim)) zlim <- range(x, finite=TRUE)
    vr <- range(0, zlim)
    if(missing(scale)) {
      maxsize <- mean(distmap(Llines))/2
      scale <- maxsize/max(abs(vr))
    } 
    df$values <- adjust * scale * df$values/2
    #' examine sign of values
    signtype <- if(vr[1] >= 0) "positive" else
                if(vr[2] <= 0) "negative" else "mixed"
    #' split data by segment
    mapXY <- factor(df$mapXY, levels=seq_len(Llines$n))
    dfmap <- split(df, mapXY, drop=TRUE)
    #' sort each segment's data by position along segment
    dfmap <- lapply(dfmap, sortalongsegment)
    #' plot each segment's data
    Lperp <- angles.psp(Llines) + pi/2
    Lfrom <- L$from
    Lto   <- L$to
    Lvert <- L$vertices
    Ljoined  <- (vertexdegree(L) > 1)
    #' precompute coordinates of dodecagon
    dodo <- disc(npoly=12)$bdry[[1L]]
    #'
    for(i in seq(length(dfmap))) {
      z <- dfmap[[i]]
      segid <- unique(z$mapXY)[1L]
      xx <- z$x
      yy <- z$y
      vv <- z$values
      #' add endpoints of segment
      ileft <- Lfrom[segid]
      iright <- Lto[segid]
      leftend <- Lvert[ileft]
      rightend <- Lvert[iright]
      xx <- c(leftend$x, xx, rightend$x)
      yy <- c(leftend$y, yy, rightend$y)
      vv <- c(vv[1L],     vv, vv[length(vv)])
      rleft <- vv[1L]
      rright <- vv[length(vv)]
      ## first add dodecagonal 'joints'
      if(Ljoined[ileft] && rleft != 0) 
        drawSignedPoly(x=rleft * dodo$x + leftend$x,
                      y=rleft * dodo$y + leftend$y,
                      grafpar, sign(rleft))
      if(Ljoined[iright] && rright != 0)
        drawSignedPoly(x=rright * dodo$x + rightend$x,
                      y=rright * dodo$y + rightend$y,
                      grafpar, sign(rright))
      ## Now render main polygon
      ang <- Lperp[segid]
      switch(signtype,
             positive = drawseg(xx, yy, vv, ang, grafpar),
             negative = drawseg(xx, yy, vv, ang, grafpar),
             mixed = {
               ## find zero-crossings
               xing <- (diff(sign(vv)) != 0)
               ## excursions
               excu <- factor(c(0, cumsum(xing)))
               elist <- split(data.frame(xx=xx, yy=yy, vv=vv), excu)
               ## plot each excursion
               for(e in elist) 
                 with(e, drawseg(xx, yy, vv, ang, grafpar))
             })
    }
    result <- adjust * scale
    attr(result, "bbox") <- bb
    if(legend) {
      attr(result, "bbox.legend") <- bb.leg
      plotWidthMap(bb.leg     = bb.leg,
                   zlim       = zlim,
                   phys.scale = adjust * scale, 
                   leg.scale  = leg.scale,
                   leg.side   = leg.side,
                   leg.args   = leg.args,
                   grafpar    = grafpar)
    }
    return(invisible(result))
  }

  drawseg <- function(xx, yy, vv, ang, pars) {
    ## draw polygon around segment
    sgn <- sign(mean(vv))
    xx <- c(xx, rev(xx))
    yy <- c(yy, rev(yy))
    vv <- c(vv, -rev(vv))
    xx <- xx + cos(ang) * vv
    yy <- yy + sin(ang) * vv
    drawSignedPoly(xx, yy, pars, sgn)
    invisible(NULL)
  }

  plot.linim
})


sortalongsegment <- function(df) {
  df[fave.order(df$tp), , drop=FALSE]
}

as.im.linim <- function(X, ...) {
  attr(X, "L") <- attr(X, "df") <- NULL
  class(X) <- "im"
  if(length(list(...)) > 0)
    X <- as.im(X, ...)
  return(X)
}

as.linim <- function(X, ...) {
  UseMethod("as.linim")
}

as.linim.default <- function(X, L, ..., eps = NULL, dimyx = NULL, xy = NULL,
                             rule.eps=c("adjust.eps",
                                        "grow.frame", "shrink.frame"),
                             delta = NULL, nd = NULL) {
  stopifnot(inherits(L, "linnet"))
  rule.eps <- match.arg(rule.eps)
  Y <- as.im(X, W=Frame(L), ..., eps=eps, dimyx=dimyx, xy=xy, rule.eps=rule.eps)
  M <- psp2mask(as.psp(L), as.owin(Y))
  Y[complement.owin(M)] <- NA
  df <- NULL
  if(!is.null(delta) || !is.null(nd)) {
    if(is.null(delta)) delta <- volume(L)/nd
    df <- pointsAlongNetwork(L, delta)
    pix <- nearest.valid.pixel(df$x, df$y, Y)
    df$xc <- Y$xcol[pix$col]
    df$yc <- Y$yrow[pix$row]
    df$values <- Y$v[cbind(pix$row, pix$col)]
    df <- df[,c("xc", "yc", "x", "y", "seg", "tp", "values")]
    names(df)[names(df) == "seg"] <- "mapXY"
  }
  if(is.mask(WL <- Window(L)) && !all(sapply(list(eps, dimyx, xy), is.null))) {
    Window(L, check=FALSE) <- as.mask(WL,
                              eps=eps, dimyx=dimyx, xy=xy, rule.eps=rule.eps)
  }
  out <- linim(L, Y, df=df, restrict=FALSE)
  return(out)
}

pointsAlongNetwork <- function(L, delta) {
  #' sample points evenly spaced along each segment
  stopifnot(inherits(L, "linnet"))
  S <- as.psp(L)
  ns <- nsegments(S)
  seglen <- lengths_psp(S)
  ends <- as.data.frame(S)
  nsample <- pmax(1, ceiling(seglen/delta))
  df <- NULL
  x0 <- ends$x0
  y0 <- ends$y0
  x1 <- ends$x1
  y1 <- ends$y1
  for(i in seq_len(ns)) {
    nn <- nsample[i] + 1L
    tcut <- seq(0, 1, length.out=nn)
    tp <- (tcut[-1] + tcut[-nn])/2
    x <- x0[i] * (1-tp) + x1[i] * tp
    y <- y0[i] * (1-tp) + y1[i] * tp
    df <- rbind(df, data.frame(x=x, y=y, seg=i, tp=tp))
  }
  return(df)          
}

as.linim.linim <- function(X, ...) {
  if(length(list(...)) == 0)
    return(X)
  Y <- as.linim.default(X, as.linnet(X), ...)
  return(Y)
}

# analogue of eval.im

eval.linim <- function(expr, envir, harmonize=TRUE, warn=TRUE) {
  sc <- sys.call()
  # Get names of all variables in the expression
  e <- as.expression(substitute(expr))
  varnames <- all.vars(e)
  allnames <- all.names(e, unique=TRUE)
  funnames <- allnames[!(allnames %in% varnames)]
  if(length(varnames) == 0)
    stop("No variables in this expression")
  # get the values of the variables
  if(missing(envir)) {
    envir <- parent.frame() # WAS: sys.parent()
  } else if(is.list(envir)) {
    envir <- list2env(envir, parent=parent.frame())
  }
  vars <- mget(varnames, envir=envir, inherits=TRUE, ifnotfound=list(NULL))
  funs <- mget(funnames, envir=envir, inherits=TRUE, ifnotfound=list(NULL))
  # Find out which variables are (linear) images
  islinim <- unlist(lapply(vars, inherits, what="linim"))
  if(!any(islinim))
    stop("There are no linear images (class linim) in this expression")
  # ....................................
  # Evaluate the pixel values using eval.im
  # ....................................
  sc[[1L]] <- as.name('eval.im')
  sc$envir <- envir
  Y <- eval(sc)
  # .........................................
  # Then evaluate data frame entries if feasible
  # .........................................
  dfY <- NULL
  linims <- vars[islinim]
  nlinims <- length(linims)
  dframes <- lapply(linims, attr, which="df")
  nets <- lapply(linims, attr, which="L")
  isim <- unlist(lapply(vars, is.im))
  if(!any(isim & !islinim)) {
    # all images are 'linim' objects
    # Check that the images refer to the same linear network
    if(nlinims > 1) {
      agree <- unlist(lapply(nets[-1L], identical, y=nets[[1L]]))
      if(!all(agree))
        stop(paste("Images do not refer to the same linear network"))
    }
    dfempty <- unlist(lapply(dframes, is.null))
    if(!any(dfempty)) {
      # ensure data frames are compatible
      if(length(dframes) > 1 && (
          length(unique(nr <- sapply(dframes, nrow))) > 1   ||
           !allElementsIdentical(dframes, "seg")            ||
   	   !allElementsIdentical(dframes, "tp")
	)) {
        # find the one with finest spacing
	imax <- which.max(nr)
	# resample the others
	dframes[-imax] <- lapply(dframes[-imax],
	                         resampleNetworkDataFrame,
	                         template=dframes[[imax]])
      }
      # replace each image variable by its data frame column of values
      vars[islinim] <- lapply(dframes, getElement, "values")
      # now evaluate expression
      Yvalues <- eval(e, append(vars, funs))
      # pack up
      dfY <- dframes[[1L]]
      dfY$values <- Yvalues
    }
  }
  result <- linim(nets[[1L]], Y, df=dfY, restrict=FALSE)
  return(result)
}

resampleNetworkDataFrame <- function(df, template) {
  # resample 'df' at the points of 'template'
  invalues  <- df$values
  insegment <- df$mapXY
  inteepee  <- df$tp
  out <- template
  n <- nrow(out)
  outvalues <- vector(mode = typeof(invalues), length=n)
  outsegment <- out$mapXY
  outteepee  <- out$tp
  for(i in seq_len(n)) {
    relevant <- which(insegment == outsegment[i])
    if(length(relevant) > 0) {
      j <- which.min(abs(inteepee[relevant] - outteepee[i]))
      outvalues[i] <- invalues[relevant[j]]
    }
  }
  out$values <- outvalues
  return(out)
}

as.linnet.linim <- function(X, ...) {
  attr(X, "L")
}

"[.linim" <- function(x, i, ..., drop=TRUE) {
  if(!missing(i) && is.lpp(i)) {
    n <- npoints(i)
    result <- vector(mode=typeof(x$v), length=n)
    if(is.factor(x$v)) {
      lev <- levels(x$v)
      result <- factor(result, levels=seq_along(lev), labels=lev)
    }
    if(n == 0) return(result)
    if(!is.null(df <- attr(x, "df"))) {
      #' use data frame of sample points along network
      knownseg <- df$mapXY
      knowntp  <- df$tp
      knownval <- df$values
      #' extract local coordinates of query points
      coo <- coords(i)
      queryseg <- coo$seg
      querytp  <- coo$tp
      #' match to nearest sample point
      for(j in 1:n) {
        relevant <- (knownseg == queryseg[j])
        if(!any(relevant)) {
          result[j] <- NA
        } else {
          k <- which.min(abs(knowntp[relevant] - querytp[j]))
          result[j] <- knownval[relevant][k]
        }
      }
      if(drop && anyNA(result))
        result <- result[!is.na(result)]
      return(result)
    }
    #' give up and use pixel image
  }
  #' apply subset method for 'im'
  y <- NextMethod("[")
  if(!is.im(y)) return(y) # vector of pixel values
  class(y) <- unique(c("linim", class(y)))
  #' handle linear network info
  L <- attr(x, "L")
  df <- attr(x, "df")
  #' clip to new window
  W <- if(!missing(i) && is.owin(i)) i else Window(y)
  LW <- L[W]
  df <- df[inside.owin(df$xc, df$yc, W), , drop=FALSE]
  #' update local coordinates in data frame
  samplepoints <- ppp(df$x, df$y, window=Frame(W), check=FALSE)
  a <- project2segment(samplepoints, as.psp(LW))
  df$mapXY <- a$mapXY
  df$tp    <- a$tp
  #' wrap up
  attr(y, "L") <- LW
  attr(y, "df") <- df
  return(y)
}

"[<-.linim" <- function(x, i, j, value) {
  y <- NextMethod("[<-")
  #' extract linear network info
  L <- attr(x, "L")
  df <- attr(x, "df")
  #' propagate *changed* pixel values to sample points
  pos <- nearest.pixel(df$xc, df$yc, y)
  pos <- cbind(pos$row, pos$col)
  yvalue <- y$v[pos]
  xvalue <- x$v[pos]
  okx <- !is.na(xvalue)
  oky <- !is.na(yvalue)
  changed <- (okx != oky) | (okx & oky & yvalue != xvalue)
  df$values[changed] <- yvalue[changed]
  #' restrict main pixel image to network
  m <- psp2mask(L, as.mask(y))$m
  m[pos] <- TRUE
  y$v[!m] <- NA
  #' package up
  attr(y, "L") <- L
  attr(y, "df") <- df
  class(y) <- unique(c("linim", class(y)))
  return(y)
}

integral.linim <- function(f, domain=NULL, weight=NULL, ...){
  verifyclass(f, "linim")
  if(!is.null(weight))
    weight <- as.linim(weight, domain(f))
  if(is.tess(domain)) {
    result <- sapply(tiles(domain), integral.linim, f = f)
    if(length(dim(result)) > 1) result <- t(result)
    return(result)
  }
  if(!is.null(domain)) {
    f <- f[domain]
    if(!is.null(weight)) weight <- weight[domain]
  }
  #' extract data
  L <- as.linnet(f)
  ns <- nsegments(L)
  df <- attr(f, "df")
  vals <- df$values
  seg <- factor(df$mapXY, levels=1:ns)
  #' weight
  if(!is.null(weight)) {
    samplepoints <- ppp(df$xc, df$yc, window=Frame(L), check=FALSE)
    vals <- vals * safelookup(weight, samplepoints)
  }
  #' ensure each segment has at least one sample point
  nper <- table(seg)
  if(any(missed <- (nper == 0))) {
    missed <- unname(which(missed))
    mp <- midpoints.psp(as.psp(L)[missed])
    #' nearest pixel value
    valmid <- safelookup(f, mp)
    if(!is.null(weight))
      valmid <- valmid * safelookup(weight, mp)
    #' concatenate factors
    seg <- unlist(list(seg, factor(missed, levels=1:ns)))
    vals <- c(vals, valmid)
    #' update
    nper <- table(seg)
  }
  #' take average of data on each segment
  if(!is.complex(vals)) vals <- as.numeric(vals)
  num <- tapplysum(vals, list(seg), na.rm=TRUE)
  mu <- num/nper
  #' weighted sum
  len <- lengths_psp(as.psp(L))
  if(anyNA(vals)) {
    ##    p <- as.numeric(by(!is.na(vals), seg, mean, ..., na.rm=TRUE))
    ##    p[is.na(p)] <- 0
    defined <- as.numeric(!is.na(vals))
    pnum <- tapplysum(defined, list(seg), na.rm=FALSE)
    p <- pnum/nper
    len <- len * p
  }
  return(sum(mu * len))
}

mean.linim <- function(x, ...) {
  trap.extra.arguments(...)
  integral(x)/sum(lengths_psp(as.psp(as.linnet(x))))
}

quantile.linim <- function(x, probs = seq(0,1,0.25), ...) {
  verifyclass(x, "linim")
  #' extract data
  df <- attr(x, "df")
  L <- as.linnet(x)
  vals <- df$values
  #' count sample points on each segment
  seg <- factor(df$mapXY, levels=1:nsegments(L))
  nvals <- as.integer(table(seg))
  #' calculate weights
  len <- lengths_psp(as.psp(L))
  iseg <- as.integer(seg)
  wts <- len[iseg]/nvals[iseg]
  return(weighted.quantile(vals, wts, probs))
}

quantilefun.linim <- function(x, ..., type=1) {
  verifyclass(x, "linim")
  #' extract data
  df <- attr(x, "df")
  L <- as.linnet(x)
  vals <- df$values
  #' count sample points on each segment
  seg <- factor(df$mapXY, levels=1:nsegments(L))
  nvals <- as.integer(table(seg))
  #' calculate weights
  len <- lengths_psp(as.psp(L))
  iseg <- as.integer(seg)
  wts <- len[iseg]/nvals[iseg]
  #' form weighted CDF
  FZ <- ewcdf(vals, wts)
  #' quantile function
  return(quantilefun(FZ, type=type))
}

median.linim <- function(x, ...) {
  trap.extra.arguments(...)
  return(unname(quantile(x, 0.5)))
}

shift.linim <- function (X, ...) {
  verifyclass(X, "linim")
  Z <- shift(as.im(X), ...)
  L <- shift(as.linnet(X), ...)
  v <- getlastshift(L)
  df <- attr(X, "df")
  df[,c("xc","yc")] <- shiftxy(df[,c("xc", "yc")], v)
  df[,c("x","y")]   <- shiftxy(df[,c("x", "y")],   v)
  Y <- linim(L, Z, df=df, restrict=FALSE)
  return(putlastshift(Y, v))
}

affine.linim <- function(X, mat = diag(c(1, 1)), vec = c(0, 0), ...) {
  Z <- affine(as.im(X), mat=mat, vec=vec, ...)
  L <- affine(as.linnet(X), mat=mat, vec=vec, ...)
  df <- attr(X, "df")
  df[,c("xc","yc")] <- affinexy(df[,c("xc", "yc")], mat=mat, vec=vec)
  df[,c("x","y")]   <- affinexy(df[,c("x", "y")],   mat=mat, vec=vec)
  Y <- linim(L, Z, df=df, restrict=FALSE)
  return(Y)
}

scalardilate.linim <- function(X, f, ..., origin=NULL) {
  trap.extra.arguments(..., .Context = "In scalardilate(X,f)")
  check.1.real(f, "In scalardilate(X,f)")
  stopifnot(is.finite(f) && f > 0)
  if (!is.null(origin)) {
    X <- shift(X, origin = origin)
    negorig <- getlastshift(X)
  }
  else negorig <- c(0, 0)
  Y <- affine(X, mat = diag(c(f, f)), vec = -negorig)
  return(Y)
}

as.data.frame.linim <- function(x, ...) {
  df <- attr(x, "df")
  if(!is.na(m <- match("mapXY", colnames(df))))
    colnames(df)[m] <- "seg"
  return(df)
}

pairs.linim <- function(..., plot=TRUE, eps=NULL) {
  argh <- list(...)
  cl <- match.call()
  ## unpack single argument which is a list of images
  if(length(argh) == 1) {
    arg1 <- argh[[1L]]
    if(is.list(arg1) && all(sapply(arg1, is.im)))
      argh <- arg1
  }
  ## identify which arguments are images
  isim <- sapply(argh, is.im)
  nim <- sum(isim)
  if(nim == 0) 
    stop("No images provided")
  ## separate image arguments from others
  images <- argh[isim]
  rest   <- argh[!isim]
  ## identify which arguments are images on a network
  islinim <- sapply(images, inherits, what="linim")
  if(!any(islinim)) # shouldn't be here
    return(pairs.im(argh, plot=plot))
  ## determine image names for plotting
  imnames <- argh$labels %orifnull% names(images)
  if(length(imnames) != nim || !all(nzchar(imnames))) {
    #' names not given explicitly
    callednames <- paste(cl)[c(FALSE, isim, FALSE)]
    backupnames <- paste0("V", seq_len(nim))
    if(length(callednames) != nim) {
      callednames <- backupnames
    } else if(any(toolong <- (nchar(callednames) > 15))) {
      callednames[toolong] <- backupnames[toolong]
    }
    imnames <- good.names(imnames, good.names(callednames, backupnames))
  }
  names(images) <- imnames
  ## choose resolution
  if(is.null(eps)) {
    xstep <- min(sapply(images, getElement, name="xstep"))
    ystep <- min(sapply(images, getElement, name="ystep"))
    eps <- min(xstep, ystep)
  }
  ## extract linear network
  Z1 <- images[[min(which(islinim))]]
  L <- as.linnet(Z1)
  ## construct equally-spaced sample points
  X <- pointsOnLines(as.psp(L), eps=eps)
  ## sample each image
  pixvals <- lapply(images, "[", i=X, drop=FALSE)
  pixdf <- as.data.frame(pixvals)
  dont.complain.about(pixdf)
  ## pairs plot
  if(plot) {
    if(nim > 1) {
      do.call(pairs.default, resolve.defaults(list(x=quote(pixdf)),
                                              rest,
                                              list(labels=imnames, pch=".")))
      labels <- resolve.defaults(rest, list(labels=imnames))$labels
      colnames(pixdf) <- labels
    } else {
      xname <- imnames[1L]
      pixdf1 <- pixdf[,1L]
      dont.complain.about(pixdf1)
      do.call(hist.default,
              resolve.defaults(list(x=quote(pixdf1)),
                               rest,
                               list(main=paste("Histogram of", xname),
                                    xlab=xname)))
    }
  }
  class(pixdf) <- unique(c("plotpairsim", class(pixdf)))
  attr(pixdf, "eps") <- eps
  return(invisible(pixdf))
}

Try the spatstat.linnet package in your browser

Any scripts or data that you put into this service are public.

spatstat.linnet documentation built on Sept. 20, 2024, 5:06 p.m.