inst/doc/hhh4_spacetime.R

## ----include = FALSE---------------------------------------------------------------
## load the "cool" package
library("surveillance")

## Compute everything or fetch cached results?
message("Doing computations: ",
        COMPUTE <- !file.exists("hhh4_spacetime-cache.RData"))
if (!COMPUTE) load("hhh4_spacetime-cache.RData", verbose = TRUE)

## ----measlesWeserEms_components, echo=FALSE----------------------------------------
## extract components from measlesWeserEms to reconstruct
data("measlesWeserEms")
counts <- observed(measlesWeserEms)
map <- measlesWeserEms@map
populationFrac <- measlesWeserEms@populationFrac

## ----measlesWeserEms_neighbourhood-------------------------------------------------
weserems_nbOrder <- nbOrder(poly2adjmat(map), maxlag = 10)

## ----measlesWeserEms_construct-----------------------------------------------------
measlesWeserEms <- sts(counts, start = c(2001, 1), frequency = 52,
  population = populationFrac, neighbourhood = weserems_nbOrder, map = map)

## ----measlesWeserEms, fig.cap="Measles infections in the Weser-Ems region, 2001--2002.", fig.subcap=c("Time series of weekly counts.","Disease incidence (per 100\\,000 inhabitants)."), fig.width=5, fig.height=5, out.width="0.47\\linewidth", fig.pos="htb"----
plot(measlesWeserEms, type = observed ~ time)
plot(measlesWeserEms, type = observed ~ unit,
  population = measlesWeserEms@map$POPULATION / 100000,
  labels = list(font = 2), colorkey = list(space = "right"),
  sp.layout = layout.scalebar(measlesWeserEms@map, corner = c(0.05, 0.05),
    scale = 50, labels = c("0", "50 km"), height = 0.03))

## ----measlesWeserEms15, fig.cap=paste("Count time series of the", sum(colSums(observed(measlesWeserEms))>0), "affected districts."), out.width="\\linewidth", fig.width=10, fig.height=6, fig.pos="!h"----
plot(measlesWeserEms, units = which(colSums(observed(measlesWeserEms)) > 0))

## ----measlesWeserEms_animation, eval=FALSE-----------------------------------------
#  animation::saveHTML(
#    animate(measlesWeserEms, tps = 1:52, total.args = list()),
#    title = "Evolution of the measles epidemic in the Weser-Ems region, 2001",
#    ani.width = 500, ani.height = 600)

## ----echo=FALSE, eval=FALSE--------------------------------------------------------
#  ## to perform the following analysis using biweekly aggregated measles counts:
#  measlesWeserEms <- aggregate(measlesWeserEms, by = "time", nfreq = 26)

## ----measlesModel_basic------------------------------------------------------------
measlesModel_basic <- list(
  end = list(f = addSeason2formula(~1 + t, period = measlesWeserEms@freq),
             offset = population(measlesWeserEms)),
  ar = list(f = ~1),
  ne = list(f = ~1, weights = neighbourhood(measlesWeserEms) == 1),
  family = "NegBin1")

## ----measlesFit_basic--------------------------------------------------------------
measlesFit_basic <- hhh4(stsObj = measlesWeserEms, control = measlesModel_basic)

## ----measlesFit_basic_summary------------------------------------------------------
summary(measlesFit_basic, idx2Exp = TRUE, amplitudeShift = TRUE, maxEV = TRUE)

## ----measlesFit_basic_endseason, fig.width=6, fig.height=2.5, out.width=".6\\linewidth", fig.cap="Estimated multiplicative effect of seasonality on the endemic mean.", fig.pos="ht"----
plot(measlesFit_basic, type = "season", components = "end", main = "")

## ----measlesFitted_basic, fig.cap="Fitted components in the initial model \\code{measlesFit\\_basic} for the six districts with more than 20 cases. Dots are only drawn for positive weekly counts.", out.width="\\linewidth", fig.pos="htb"----
districts2plot <- which(colSums(observed(measlesWeserEms)) > 20)
plot(measlesFit_basic, type = "fitted", units = districts2plot, hide0s = TRUE)

## ----------------------------------------------------------------------------------
confint(measlesFit_basic, parm = "overdisp")

## ----measlesFit_basic_Poisson------------------------------------------------------
AIC(measlesFit_basic, update(measlesFit_basic, family = "Poisson"))

## ----Sprop-------------------------------------------------------------------------
Sprop <- matrix(1 - measlesWeserEms@map@data$vacc1.2004,
  nrow = nrow(measlesWeserEms), ncol = ncol(measlesWeserEms), byrow = TRUE)
summary(Sprop[1, ])

## ----SmodelGrid--------------------------------------------------------------------
Soptions <- c("unchanged", "Soffset", "Scovar")
SmodelGrid <- expand.grid(end = Soptions, ar = Soptions)
row.names(SmodelGrid) <- do.call("paste", c(SmodelGrid, list(sep = "|")))

## ----measlesFits_vacc, eval=COMPUTE------------------------------------------------
#  measlesFits_vacc <- apply(X = SmodelGrid, MARGIN = 1, FUN = function (options) {
#    updatecomp <- function (comp, option) switch(option, "unchanged" = list(),
#      "Soffset" = list(offset = comp$offset * Sprop),
#      "Scovar" = list(f = update(comp$f, ~. + log(Sprop))))
#    update(measlesFit_basic,
#      end = updatecomp(measlesFit_basic$control$end, options[1]),
#      ar = updatecomp(measlesFit_basic$control$ar, options[2]),
#      data = list(Sprop = Sprop))
#    })

## ----aics_vacc, eval=COMPUTE-------------------------------------------------------
#  aics_vacc <- do.call(AIC, lapply(names(measlesFits_vacc), as.name),
#    envir = as.environment(measlesFits_vacc))

## ----------------------------------------------------------------------------------
aics_vacc[order(aics_vacc[, "AIC"]), ]

## ----measlesFit_vacc---------------------------------------------------------------
measlesFit_vacc <- update(measlesFit_basic,
  end = list(f = update(formula(measlesFit_basic)$end, ~. + log(Sprop))),
  data = list(Sprop = Sprop))
coef(measlesFit_vacc, se = TRUE)["end.log(Sprop)", ]

## ----------------------------------------------------------------------------------
2^cbind("Estimate" = coef(measlesFit_vacc),
  confint(measlesFit_vacc))["end.log(Sprop)",]

## ----measlesFit_nepop--------------------------------------------------------------
measlesFit_nepop <- update(measlesFit_vacc,
  ne = list(f = ~log(pop)), data = list(pop = population(measlesWeserEms)))

## ----------------------------------------------------------------------------------
cbind("Estimate" = coef(measlesFit_nepop),
  confint(measlesFit_nepop))["ne.log(pop)",]

## ----measlesFit_powerlaw-----------------------------------------------------------
measlesFit_powerlaw <- update(measlesFit_nepop,
  ne = list(weights = W_powerlaw(maxlag = 5)))

## ----------------------------------------------------------------------------------
cbind("Estimate" = coef(measlesFit_powerlaw),
  confint(measlesFit_powerlaw))["neweights.d",]

## ----measlesFit_np-----------------------------------------------------------------
measlesFit_np2 <- update(measlesFit_nepop,
  ne = list(weights = W_np(maxlag = 2)))

## ----measlesFit_neweights, fig.width=5, fig.height=3.5, fig.cap="Estimated weights as a function of adjacency order.", out.width="0.47\\linewidth", fig.subcap=c("Normalized power-law weights.", "Non-normalized weights with 95\\% CIs."), echo=c(1,4)----
library("lattice")
trellis.par.set("reference.line", list(lwd=3, col="gray"))
trellis.par.set("fontsize", list(text=14))
plot(measlesFit_powerlaw, type = "neweights", plotter = stripplot,
  panel = function (...) {panel.stripplot(...); panel.average(...)},
  jitter.data = TRUE, xlab = expression(o[ji]), ylab = expression(w[ji]))
## non-normalized weights (power law and unconstrained second-order weight)
local({
    colPL <- "#0080ff"
    ogrid <- 1:5
    par(mar=c(3.6,4,2.2,2), mgp=c(2.1,0.8,0))
    plot(ogrid, ogrid^-coef(measlesFit_powerlaw)["neweights.d"], col=colPL,
         xlab="Adjacency order", ylab="Non-normalized weight", type="b", lwd=2)
    matlines(t(sapply(ogrid, function (x)
                      x^-confint(measlesFit_powerlaw, parm="neweights.d"))),
             type="l", lty=2, col=colPL)
    w2 <- exp(c(coef(measlesFit_np2)["neweights.d"],
                 confint(measlesFit_np2, parm="neweights.d")))
    lines(ogrid, c(1,w2[1],0,0,0), type="b", pch=19, lwd=2)
    arrows(x0=2, y0=w2[2], y1=w2[3], length=0.1, angle=90, code=3, lty=2)
    legend("topright", col=c(colPL, 1), pch=c(1,19), lwd=2, bty="n", inset=0.1, y.intersp=1.5,
           legend=c("Power-law model", "Second-order model"))
})

## ----------------------------------------------------------------------------------
AIC(measlesFit_nepop, measlesFit_powerlaw, measlesFit_np2)

## ----measlesFit_ri, results="hide"-------------------------------------------------
measlesFit_ri <- update(measlesFit_powerlaw,
  end = list(f = update(formula(measlesFit_powerlaw)$end, ~. + ri() - 1)),
  ar  = list(f = update(formula(measlesFit_powerlaw)$ar,  ~. + ri() - 1)),
  ne  = list(f = update(formula(measlesFit_powerlaw)$ne,  ~. + ri() - 1)))

## ----measlesFit_ri_summary_echo, eval=FALSE----------------------------------------
#  summary(measlesFit_ri, amplitudeShift = TRUE, maxEV = TRUE)

## ----------------------------------------------------------------------------------
head(ranef(measlesFit_ri, tomatrix = TRUE), n = 3)

## ----measlesFit_ri_map, out.width="0.31\\linewidth", fig.width=3.5, fig.height=3.7, fig.pos="htb", fig.cap="Maps of the estimated random intercepts.", fig.subcap=c("Autoregressive $\\alpha_i^{(\\lambda)}$", "Spatio-temporal $\\alpha_i^{(\\phi)}$", "Endemic $\\alpha_i^{(\\nu)}$"), echo=-1----
stopifnot(ranef(measlesFit_ri) > -1.6, ranef(measlesFit_ri) < 1.6)
for (comp in c("ar", "ne", "end")) {
  print(plot(measlesFit_ri, type = "ri", component = comp,
    col.regions = cm.colors(14), labels = list(cex = 0.6),
    at = seq(-1.6, 1.6, length.out = 15)))
}

## ----measlesFitted_ri, out.width="0.93\\linewidth", fig.pos="htb", fig.cap="Fitted components in the random effects model \\code{measlesFit\\_ri} for the six districts with more than 20 cases. Compare to Figure~\\ref{fig:measlesFitted_basic}."----
plot(measlesFit_ri, type = "fitted", units = districts2plot, hide0s = TRUE)

## ----measlesFitted_maps, fig.cap="Maps of the fitted component proportions averaged over all weeks.", fig.pos="hbt", fig.width=10, fig.height=3.7, out.width="0.93\\linewidth"----
plot(measlesFit_ri, type = "maps",
  which = c("epi.own", "epi.neighbours", "endemic"),
  prop = TRUE, labels = list(cex = 0.6))

## ----measlesPreds1-----------------------------------------------------------------
tp <- c(65, 77)
models2compare <- paste0("measlesFit_", c("basic", "powerlaw", "ri"))
measlesPreds1 <- lapply(mget(models2compare), oneStepAhead,
  tp = tp, type = "final")

## ----echo=FALSE--------------------------------------------------------------------
stopifnot(all.equal(measlesPreds1$measlesFit_powerlaw$pred,
                    fitted(measlesFit_powerlaw)[tp[1]:tp[2],],
                    check.attributes = FALSE))

## ----echo=FALSE--------------------------------------------------------------------
stopifnot(all.equal(
    measlesFit_powerlaw$loglikelihood,
    -sum(scores(oneStepAhead(measlesFit_powerlaw, tp = 1, type = "final"),
                which = "logs", individual = TRUE))))

## ----measlesScores1----------------------------------------------------------------
SCORES <- c("logs", "rps", "dss", "ses")
measlesScores1 <- lapply(measlesPreds1, scores, which = SCORES, individual = TRUE)
t(sapply(measlesScores1, colMeans, dims = 2))

## ----measlesPreds2, eval=COMPUTE---------------------------------------------------
#  measlesPreds2 <- lapply(mget(models2compare), oneStepAhead,
#    tp = tp, type = "rolling", which.start = "final")

## ----measlesPreds2_plot, fig.cap = "Fan charts of rolling one-week-ahead forecasts during the second quarter of 2002, as produced by the random effects model \\code{measlesFit\\_ri}, for the six most affected districts.", out.width="\\linewidth", echo=-1----
par(mfrow = sort(n2mfrow(length(districts2plot))), mar = c(4.5,4.5,2,1))
for (unit in names(districts2plot))
  plot(measlesPreds2[["measlesFit_ri"]], unit = unit, main = unit,
    key.args = if (unit == tail(names(districts2plot),1)) list())

## ----measlesScores2----------------------------------------------------------------
measlesScores2 <- lapply(measlesPreds2, scores, which = SCORES, individual = TRUE)
t(sapply(measlesScores2, colMeans, dims = 2))

## ----measlesScores_test------------------------------------------------------------
set.seed(321)
sapply(SCORES, function (score) permutationTest(
  measlesScores2$measlesFit_ri[, , score],
  measlesScores2$measlesFit_basic[, , score],
  nPermutation = 999))

## ----measlesPreds2_calibrationTest_echo, eval=FALSE--------------------------------
#  calibrationTest(measlesPreds2[["measlesFit_ri"]], which = "rps")

## ----measlesPreds2_pit, fig.width=8, fig.height=3, out.width="0.93\\linewidth", fig.cap="PIT histograms of competing models to check calibration of the one-week-ahead predictions during the second quarter of 2002.", echo=-1, fig.pos="hbt"----
par(mfrow = sort(n2mfrow(length(measlesPreds2))), mar = c(4.5,4.5,2,1))
for (m in models2compare)
  pit(measlesPreds2[[m]], plot = list(ylim = c(0, 1.25), main = m))

## ----measlesFit_ri_simulate--------------------------------------------------------
(y.start <- observed(measlesWeserEms)[52, ])
measlesSim <- simulate(measlesFit_ri,
  nsim = 100, seed = 1, subset = 53:104, y.start = y.start)

## ----------------------------------------------------------------------------------
summary(colSums(measlesSim, dims = 2))

## ----measlesSim_plot_time, fig.cap="Simulation-based long-term forecast starting from the last week in 2001 (left-hand dot). The plot shows the weekly counts aggregated over all districts. The fan chart represents the 1\\% to 99\\% quantiles of the simulations in each week. The circles correspond to the observed counts.", fig.pos="htb"----
plot(measlesSim, "fan", ylim = c(0, 140), key.args = list())

Try the surveillance package in your browser

Any scripts or data that you put into this service are public.

surveillance documentation built on Oct. 7, 2017, 1:04 a.m.