Man pages for ANTsX/ANTsRNet
Neural Networks for Medical Image Processing

AnchorBoxLayer2DAnchor box layer for SSD architecture (2-D).
AnchorBoxLayer3DAnchor box layer for SSD architecture (3-D).
applyDeepBackProjectionModelApply a pretrained deep back projection model for super...
applySuperResolutionModelapplySuperResolutionModel
applySuperResolutionModelPatchapplySuperResolutionModelPatch
applySuperResolutionModelToImageApply a pretrained model for super resolution.
arterialLesionSegmentationArterial lesion segmentation
AttentionAugmentationLayer2DAttention augmentation layer (2-D)
AttentionLayer2DAttention layer (2-D)
AttentionLayer3DAttention layer (3-D)
basisWarpGenerate a deformable map from basis
binary_dice_coefficientDice function for binary segmentation problems
binary_surface_lossFunction for surface loss
brainAgeBrainAGE
brainExtractionBrain extraction
brainMraVesselSegmentationMRA-TOF vessel segmentation.
brainTumorSegmentationBrain tumor probabilistic segmentation
categorical_focal_gainFunction for categorical focal gain
categorical_focal_lossFunction for categorical focal loss
cerebellumMorphologyCerebellum tissue segmentation, Schmahmann parcellation, and...
checkXrayLungOrientationCheck x-ray lung orientation.
chexnetCheXNet: Radiologist-Level Pneumonia Detection on Chest...
claustrumSegmentationClaustrum segmentation
ClusteringLayerClustering layer for Deep Embedded Clustering
ContextualAttentionLayer2DContextual attention layer (2-D)
ContextualAttentionLayer3DContextual attention layer (3-D)
convertCoordinatesConvert coordinates to/from min/max representation from/to...
convOutputLengthCompute output length in single dimension for convolution...
corticalThicknessCortical thickness using deep learning
createAlexNetModel2D2-D implementation of the AlexNet deep learning architecture.
createAlexNetModel3D3-D implementation of the AlexNet deep learning architecture.
createAutoencoderModelFunction for creating a symmetric autoencoder model.
createConvolutionalAutoencoderModel2DFunction for creating a 2-D symmetric convolutional...
createConvolutionalAutoencoderModel3DFunction for creating a 3-D symmetric convolutional...
createDeepBackProjectionNetworkModel2D2-D implementation of the deep back-projection network.
createDeepBackProjectionNetworkModel3D3-D implementation of the deep back-projection network.
createDeepDenoiseSuperResolutionModel2D2-D implementation of the deep denoise image super resolution...
createDeepDenoiseSuperResolutionModel3D3-D implementation of the deep denoise image super resolution...
createDenoisingAutoEncoderSuperResolutionModel2D2-D implementation of the denoising autoencoder image super...
createDenoisingAutoEncoderSuperResolutionModel3D3-D implementation of the denoising autoencoder image super...
createDenseModelSimple multilayer dense network.
createDenseNetModel2D2-D implementation of the DenseNet deep learning...
createDenseNetModel3D3-D implementation of the DenseNet deep learning...
createDenseUnetModel2D2-D implementation of the dense U-net deep learning...
createDenseUnetModel3D3-D implementation of the dense U-net deep learning...
createEnhancedDeepSuperResolutionModel2D2-D implementation of the EDSR super resolution architecture.
createExpandedSuperResolutionModel2D2-D implementation of the expanded image super resolution...
createExpandedSuperResolutionModel3D3-D implementation of the expanded image super resolution...
createFullyConvolutionalVggModel2D2-D implementation of the VGG deep learning architecture...
createFullyConvolutionalVggModel3D3-D implementation of the VGG deep learning architecture...
createGoogLeNetModel2D2-D implementation of the GoogLeNet deep learning...
createHippMapp3rUnetModel3DImplementation of the "HippMapp3r" U-net architecture
createHyperMapp3rUnetModel3DImplementation of the "HyperMapp3r" U-net architecture
createHypothalamusUnetModel3D3-D u-net architecture for hypothalamus segmentation
createImageSuperResolutionModel2D2-D implementation of the image super resolution deep...
createImageSuperResolutionModel3D3-D implementation of the image super resolution deep...
createNoBrainerUnetModel3DImplementation of the "NoBrainer" U-net architecture
createPartialConvolutionUnetModel2D2-D implementation of the U-net architecture for inpainting...
createPartialConvolutionUnetModel3D3-D implementation of the U-net architecture for inpainting...
createResNetModel2D2-D implementation of the ResNet deep learning architecture.
createResNetModel3D3-D implementation of the ResNet deep learning architecture.
createResNetSuperResolutionModel2D2-D implementation of the ResNet image super resolution...
createResNetSuperResolutionModel3D3-D implementation of the ResNet image super resolution...
createResNetWithSpatialTransformerNetworkModel2D2-D implementation of the ResNet deep learning architecture...
createResNetWithSpatialTransformerNetworkModel3D3-D implementation of the ResNet deep learning architecture...
createResUnetModel2D2-D implementation of the Resnet + U-net deep learning...
createResUnetModel3D3-D implementation of the Resnet + U-net deep learning...
createRmnetGeneratorImplementation of the "RMNet" generator architecture for...
createShivaUnetModel3DImplementation of the "shiva" u-net architecture for PVS and...
createSimpleClassificationWithSpatialTransformerNetworkModel2D2-D implementation of the spatial transformer network.
createSimpleClassificationWithSpatialTransformerNetworkModel3D3-D implementation of the spatial transformer network.
createSimpleFullyConvolutionalNeuralNetworkModel3DImplementation of the "SCFN" architecture for Brain/Gender...
createSsd7Model2D2-D implementation of the SSD 7 deep learning architecture.
createSsd7Model3D3-D implementation of the SSD 7 deep learning architecture.
createSsdModel2D2-D implementation of the SSD deep learning architecture.
createSsdModel3D3-D implementation of the SSD deep learning architecture.
createSysuMediaUnetModel2DImplementation of the sysu_media U-net architecture
createSysuMediaUnetModel3D3-D variant of the sysu_media U-net architecture
createUnetModel2D2-D implementation of the U-net deep learning architecture.
createUnetModel3D3-D image segmentation implementation of the U-net deep...
createVggModel2D2-D implementation of the VGG deep learning architecture.
createVggModel3D3-D implementation of the VGG deep learning architecture.
createWideResNetModel2D2-D implementation of the Wide ResNet deep learning...
createWideResNetModel3D3-D implementation of the Wide ResNet deep learning...
cropImageCenterCrop the center of an image.
CycleGanModelCycle GAN model
dataAugmentationRandomly transform image data.
decodeSsd2DDecoding function for 2-D Y_train
decodeSsd3DDecoding function for 3-D Y_train
decodeUnetDecoding function for the u-net prediction outcome
deepAtroposSix tissue segmentation
DeepConvolutionalGanModelDeep convolutional GAN (DCGAN) model
DeepEmbeddedClusteringModelDeep embedded clustering (DEC) model class
deepFlashHippocampal/Enthorhinal segmentation using "Deep Flash"
desikanKillianyTourvilleLabelingCortical and deep gray matter labeling using...
drawRectanglesPlotting function for 2-D object detection visualization.
EfficientAttentionLayer2DEfficient attention layer (2-D)
EfficientAttentionLayer3DEfficient attention layer (3-D)
elBichoFunctional lung segmentation.
encodeSsd2DEncoding function for 2-D Y_train
encodeSsd3DEncoding function for 3-D Y_train
encodeUnetOne-hot encoding function
extractImagePatchCoordinatesExtract 2-D or 3-D image patch coordinates.
extractImagePatchesExtract 2-D or 3-D image patches.
GaussianDiffusionCustom Gaussian Diffusion
getAntsxnetCacheDirectoryGet the ANTsXNet Cache Directory
getANTsXNetDatagetANTsXNetData
getMixtureDensityLossFunctionReturns a loss function for the mixture density.
getMixtureDensityMseAccuracyFunctionReturns a MSE accuracy function for the mixture density.
getMixtureDensitySamplingFunctionReturns a sampling function for the mixture density.
getPretrainedNetworkgetPretrainedNetwork
GMSDGradient Magnitude Similarity Deviation
hippMapp3rSegmentationhippMapp3rSegmentation
histogramWarpImageIntensitiesTransform image intensities based on histogram mapping.
hyperMapp3rSegmentationhyperMapp3rSegmentation
hypothalamusSegmentationHypothalamus segmentation
ImprovedWassersteinGanModelImproved Wasserstein GAN model
InpaintingDeepFillModelIn-painting with contextual attention
InstanceNormalizationLayerCreates an instance normalization layer
jaccardSimilarityJaccard similarity between two sets of boxes.
L2NormalizationLayer2DL2 2-D normalization layer for SSD300/512 architecture.
L2NormalizationLayer3DL2 3-D normalization layer for SSD300/512 architecture.
layer_activation_log_softmaxLog softmax layer
layer_anchor_box_2dAnchor box layer (2-D and 3-D)
layer_attention_2dAttention layer (2-D)
layer_attention_3dAttention layer (3-D)
layer_attention_augmentation_2dAttention augmentation layer (2-D)
layer_attention_augmented_convolution_block_2dCreates a 2-D attention augmented convolutional block
layer_contextual_attention_2dContextual attention layer (2-D and 3-D)
layer_efficient_attention_2dEfficient attention layer (2-D)
layer_efficient_attention_3dEfficient attention layer (3-D)
layer_instance_normalizationInstance normalization layer
layer_l2_normalization_2dNormalization layer (2-D and 3-D)
layer_mixture_densityMixture density layer
layer_partial_conv_2dPartial convolution layer 2D
layer_partial_conv_3dPartial convolution layer 3D
layer_resample_tensor_2dCreates a resampled tensor (to fixed size) layer (2-D)
layer_resample_tensor_3dResampling a spatial tensor (3-D).
layer_resample_tensor_to_target_tensor_2dResampling a spatial tensor to a target tensor (2-D).
layer_resample_tensor_to_target_tensor_3dResampling a spatial tensor (3-D).
layer_spatial_transformer_2dspatial transformer layer (2-D and 3-D)
lesionSegmentationwholeHeadInpainting
linMatchIntensitylinMatchIntensity
LogSoftmaxLayerCreates a log softmax layer
longitudinalCorticalThicknessLongitudinal cortical thickness using deep learning
LossSSDLoss function for the SSD deep learning architecture.
lungAirwaySegmentationLung airway segmentation.
lungExtractionLung extraction
lungPulmonaryArterySegmentationPulmonary artery segmentation.
MAEMean absolute error of a single image or between two images.
masked_mse_errorFunction for masked mean-squared error
maximum_mean_discrepancyFunction for maximum-mean discrepancy
MixtureDensityNetworkLayerMixture density network layer
mixture_density_network_softmaxSoftmax function for mixture density with temperature...
mouseBrainExtractionMouse brain extraction
mouseBrainParcellationMouse brain parcellation
mouseCorticalThicknessMouse brain cortical thickness using deep learning
mriModalityClassificationMRI modality classification
mriSuperResolutionSuper-resolution for MRI
MSEMean square error of a single image or between two images.
multilabel_dice_coefficientDice function for multilabel segmentation problems
neuralStyleTransferNeural transfer style
padImageByFactorPad an image based on a factor.
padOrCropImageToSizePad or crop image to a specified size
PartialConv2DLayerCreates 2D partial convolution layer
PartialConv3DLayerCreates 3D partial convolution layer
peak_signal_to_noise_ratioFunction to calculate peak-signal-to-noise ratio.
pearson_correlation_coefficientFunction for Pearson correlation coefficient.
pipePipe operator
preprocessBrainImageBasic preprocessing pipeline for T1-weighted brain MRI
PSNRPeak signal-to-noise ratio between two images.
randomImageTransformAugmentationApply random transforms to a predictor / outcome training...
randomImageTransformBatchGeneratorRandom image transformation batch generator
randomImageTransformParametersAugmentationGenerate transform parameters and transformed images
randomImageTransformParametersBatchGeneratorRandom image transform parameters batch generator
randomlyTransformImageDataRandomly transform image data (optional: with corresponding...
reconstructImageFromPatchesReconstruct image from a list of patches.
regressionMatchImageImage intensity normalization using linear regression.
ResampleTensorLayer2DCreates a resample tensor layer (2-D)
ResampleTensorLayer3DCreates a resampled tensor (to fixed size) layer (3-D)
ResampleTensorToTargetTensorLayer2DCreates a resampled tensor (to target tensor) layer (2-D)
ResampleTensorToTargetTensorLayer3DCreates a resampled tensor (to target tensor) layer (3-D)
sampleFromCategoricalDistributionSample from a categorical distribution
sampleFromOutputSample from a distribution
ScaleLayerCustom scale layer
setAntsxnetCacheDirectorySet the ANTsXNet Cache Directory
shivaPvsSegmentationSHIVA PVS/VRS segmentation.
shivaWmhSegmentationSHIVA WMH segmentation.
simulateBiasFieldSimulate random bias field
SpatialTransformerLayer2DSpatial transformer layer (2-D)
SpatialTransformerLayer3DSpatial transfomer layer (3-D)
splitMixtureParametersSplits the mixture parameters.
SSIMStructural similarity index (SSI) between two images.
SuperResolutionGanModelSuper resolution GAN model
sysuMediaWmhSegmentationWhite matter hyperintensity segmentation
tidNeuralImageAssessmentPerform MOS-based assessment of an image.
uvaSegUnsupervised variational autoencoder segmentation
uvaSegTrainUnsupervised variational autoencoder training
VanillaGanModelVanilla GAN model
WassersteinGanModelWasserstein GAN model
weighted_categorical_crossentropyFunction for weighted categorical cross entropy
wholeHeadInpaintingwholeHeadInpainting
wmhSegmentationWhite matter hyperintensity probabilistic segmentation
ANTsX/ANTsRNet documentation built on Nov. 21, 2024, 4:07 a.m.