Description Usage Arguments Details Value Examples
View source: R/scMethrix_plot.R
Evaluates imputations methods by NRMSE or AUC
1 2 3 4 5 6 7 8 9 10 | benchmark_imputation(
scm = NULL,
assay = "score",
sparse_prop = seq(0.1, 0.9, 0.1),
iterations = 3,
imp_methods = c(iPCA = function(...) impute_regions(type = "iPCA", ...), RF =
function(...) impute_regions(type = "RF", ...), kNN = function(...)
impute_regions(type = "kNN", ...)),
type = "RMSE"
)
|
scm |
|
assay |
string; name of an existing assay. Default = "score" |
sparse_prop |
numeric; A sparsity proportion between 0 and 1. E.g. 0.1 replaces 10% of the matrix with NA |
iterations |
integer; Number of iterations to test |
imp_methods |
closure; The imputation methods to compare. |
type |
character; descriptive statistic. Can be either "AUC" or "RMSE". Default "RMSE" |
Does stuff
ggplot; The graph showing the NRMSE for each imputation method at each sparsity
1 2 3 4 5 6 | data('scMethrix_data')
## Not run:
scMethrix_data <- impute_regions(scMethrix_data, new_assay="impute",type="RF")
benchmark_imputation(scMethrix_data, assay="impute", sparse_prop = c(0.1,0.5,0.85))
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.