Description Usage Arguments Details Value References Examples
Generic imputation return function
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
scm |
|
assay |
string; name of an existing assay. Default = "score" |
new_assay |
string; name for transformed assay. Default = "new_assay" |
regions |
Granges; the regions to impute. Default is by chromosome. |
n_chunks |
integer; Number of chunks to split the |
n_threads |
integer; Maximum number of parallel instances. Default = 1 |
overlap_type |
defines the type of the overlap of the CpG sites with the target region. Default value is |
type |
string/closure; the imputation to perform "kNN","iPCA",or "RF". Otherwise, a closure can be specified that returns the imputed matrix. Default = "kNN" |
verbose |
boolean; Flag for outputting function status messages. Default = TRUE |
k |
Number of neighbors to be used in the imputation (default=10) |
n_pc |
the range of principal components to check when using iPCA. Caution: this can be very time-intensive |
... |
further arguments passed to or from other methods |
Uses the specified imputation operation to evaluation an scMethrix object.
list; two scMethrix
objects names 'training' and 'test'
Hastie T, Tibshirani R, Narasimhan B, Chu G (2021). impute: impute: Imputation for microarray data. R package version 1.66.0.
Stekhoven, D. J., & Bühlmann, P. (2012). MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112-118.
Bro, R., Kjeldahl, K. Smilde, A. K. and Kiers, H. A. L. (2008) Cross-validation of component models: A critical look at current methods. Analytical and Bioanalytical Chemistry, 5, 1241-1251.
Josse, J. and Husson, F. (2011). Selecting the number of components in PCA using cross-validation approximations. Computational Statistics and Data Analysis. 56 (6), pp. 1869-1879.
1 2 | data('scMethrix_data')
impute_regions(scMethrix_data)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.