BridgeRDrawFittingCurve: Draw fitting decay curve for BRIC-seq data

Description Usage Arguments Details Value Note Author(s) References Examples

View source: R/Z7_Draw_fitting_curve.r

Description

Draw fitting decay curve for BRIC-seq data

Usage

1
BridgeRDrawFittingCurve(filename, group, hour, ComparisonFile, CutoffRelExp = 0.1, CutoffDataPoint = 3, InforColumn = 4, OutputDir = "BridgeR_fig", OutputFile = "BridgeR_4_HalfLife_Pvalue.txt")

Arguments

filename

File path/name

group

Vector(string)

hour

Vector(number)

ComparisonFile

Vector(string)

CutoffRelExp

Number(Integer or Float)

CutoffDataPoint

integer

InforColumn

Integer

OutputDir

File path/directory namr

OutputFile

text and fig files

Details

Draw fitting decay curve for BRIC-seq data

Value

text and fig files

Note

2015-11-05

Author(s)

Naoto Imamachi

References

https://github.com/Naoto-Imamachi/BRIC-seq_data_analysis/tree/master/BridgeR

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
#inputfile <- "BridgeR_4_Normalized_expression_dataset.txt"
#group <- c("Control","knockdown1","knockdown2")
#hour <- c(0,1,2,4,8,12)
#compfile <- c("Control","Knockdown1")

#BridgeRDrawFittingCurve(filename=inputfile, group=group, hour=hour, ComparisonFile=compfile)

## The function is currently defined as
function (filename, group, hour, ComparisonFile, CutoffRelExp = 0.1, 
    CutoffDataPoint = 3, InforColumn = 4, OutputDir = "BridgeR_fig", 
    OutputFile = "BridgeR_4_HalfLife_Pvalue.txt") 
{
    library(data.table)
    library(ggplot2)
    ComparisonFile_name = paste(ComparisonFile, collapse = "_")
    output_dir_name <- paste(OutputDir, ComparisonFile_name, 
        sep = "_")
    dir.create(output_dir_name)
    time_points <- length(hour)
    group_number <- length(group)
    input_file <- fread(filename, header = T)
    comp_file_number <- NULL
    for (a in 1:length(ComparisonFile)) {
        comp_file_number <- append(comp_file_number, which(group == 
            ComparisonFile[a]))
    }
    output_file <- OutputFile
    setwd(output_dir_name)
    cat("", file = output_file)
    hour_label <- NULL
    for (a in comp_file_number) {
        if (!is.null(hour_label)) {
            cat("\t", file = output_file, append = T)
        }
        hour_label <- NULL
        for (x in hour) {
            hour_label <- append(hour_label, paste("T", x, "_", 
                a, sep = ""))
        }
        infor_st <- 1 + (a - 1) * (time_points + InforColumn)
        infor_ed <- (InforColumn) * a + (a - 1) * time_points
        infor <- colnames(input_file)[infor_st:infor_ed]
        cat(infor, hour_label, sep = "\t", file = output_file, 
            append = T)
        cat("\t", sep = "", file = output_file, append = T)
        cat("Model", "Decay_rate_coef", "coef_error", "coef_p-value", 
            "R2", "Adjusted_R2", "Residual_standard_error", "half_life", 
            "SD_ori", "half_exp_minus", "half_exp_plus", "half_life_SD", 
            sep = "\t", file = output_file, append = T)
    }
    cat("\t", sep = "", file = output_file, append = T)
    cat("p_value(Welch Modified Two-Sample t-Test)", "\n", sep = "\t", 
        file = output_file, append = T)
    gene_number <- length(input_file[[1]])
    for (x in 1:gene_number) {
        data <- as.vector(as.matrix(input_file[x, ]))
        gene_name <- as.character(data[2])
        file_name <- sprintf("%1$s.png", gene_name)
        paste(output_dir_name, "/", file_name, sep = "")
        png(filename = file_name, width = 640, height = 640)
        p.fitting <- ggplot()
        flg <- 0
        fig_color <- NULL
        N_for_p <- NULL
        SD_for_p <- NULL
        X_for_p <- NULL
        flg_for_p <- 0
        for (a in comp_file_number) {
            if (flg == 0) {
                fig_color <- "black"
            }
            else {
                fig_color <- "red"
                cat("\t", sep = "", file = output_file, append = T)
            }
            infor_st <- 1 + (a - 1) * (time_points + InforColumn)
            infor_ed <- (InforColumn) * a + (a - 1) * time_points
            exp_st <- infor_ed + 1
            exp_ed <- infor_ed + time_points
            gene_infor <- data[infor_st:infor_ed]
            cat(gene_infor, sep = "\t", file = output_file, append = T)
            cat("\t", file = output_file, append = T)
            exp <- as.numeric(data[exp_st:exp_ed])
            cat(exp, sep = "\t", file = output_file, append = T)
            cat("\t", file = output_file, append = T)
            time_point_exp_original <- data.frame(hour, exp)
            p.fitting <- p.fitting + layer(data = time_point_exp_original, 
                mapping = aes(x = hour, y = exp), geom = "point", 
                size = 4, shape = 19, colour = fig_color)
            time_point_exp <- time_point_exp_original[time_point_exp_original$exp >= 
                CutoffRelExp, ]
            data_point <- length(time_point_exp$exp)
            if (!is.null(time_point_exp)) {
                if (data_point >= CutoffDataPoint) {
                  model <- lm(log(time_point_exp$exp) ~ time_point_exp$hour - 
                    1)
                  model_summary <- summary(model)
                  coef <- -model_summary$coefficients[1]
                  coef_error <- model_summary$coefficients[2]
                  coef_p <- model_summary$coefficients[4]
                  r_squared <- model_summary$r.squared
                  adj_r_squared <- model_summary$adj.r.squared
                  residual_standard_err <- model_summary$sigma
                  half_life <- log(2)/coef
                  if (coef < 0) {
                    half_life <- Inf
                  }
                  cat("Exponential_Decay_Model", coef, coef_error, 
                    coef_p, r_squared, adj_r_squared, residual_standard_err, 
                    half_life, sep = "\t", file = output_file, 
                    append = T)
                  half_life_exp_lm <- exp(log(0.5))
                  xmin <- min(hour[1])
                  xmax <- max(hour[length(hour)])
                  predicted2 <- data.frame(hour = time_point_exp$hour)
                  predicted2_ribbon <- data.frame(hour = time_point_exp$hour)
                  pred_conf <- predict(model, predicted2, interval = "prediction", 
                    level = 0.95)
                  pred_conf2_SE <- predict(model, predicted2, 
                    se.fit = T)
                  Fit <- pred_conf2_SE$fit
                  df <- pred_conf2_SE$df
                  SE_fit <- pred_conf2_SE$se.fit
                  Residual_fit <- pred_conf2_SE$residual.scale
                  Space_minus <- function(Fit, SE_fit) {
                    Fit - sqrt(SE_fit^2 + Residual_fit^2) * qt(0.95, 
                      df)
                  }
                  Space_plus <- function(Fit, SE_fit) {
                    Fit + sqrt(SE_fit^2 + Residual_fit^2) * qt(0.95, 
                      df)
                  }
                  SE_test <- function(Fit, SE_fit) {
                    sqrt(SE_fit^2 + Residual_fit^2)
                  }
                  test_minus <- Space_minus(Fit, SE_fit)
                  test_plus <- Space_plus(Fit, SE_fit)
                  test_SE <- SE_test(Fit, SE_fit)
                  SE_table <- data.frame(hour = time_point_exp$hour, 
                    exp = SE_fit)
                  SE_model <- lm((SE_table$exp) ~ SE_table$hour - 
                    1)
                  SE_model_coef <- (summary(SE_model))$coefficients[1]
                  SE_half_life <- SE_model_coef * half_life
                  SE_fitting_curve <- sqrt(SE_half_life^2 + Residual_fit^2)
                  SD_fitting_curve <- SE_fitting_curve * sqrt(data_point - 
                    1)
                  half_life_exp_lm_minus <- exp(log(0.5) - SD_fitting_curve)
                  half_life_exp_lm_plus <- exp(log(0.5) + SD_fitting_curve)
                  half_life_plus <- -log(half_life_exp_lm_minus)/coef
                  half_life_minus <- -log(half_life_exp_lm_plus)/coef
                  SD_for_test <- half_life_plus - half_life
                  SD_for_test <- half_life - half_life_minus
                  N_for_p <- append(N_for_p, data_point)
                  SD_for_p <- append(SD_for_p, SD_for_test)
                  X_for_p <- append(X_for_p, half_life)
                  cat("\t", sep = "\t", file = output_file, append = T)
                  cat(SD_fitting_curve, half_life_exp_lm_minus, 
                    half_life_exp_lm_plus, SD_for_test, sep = "\t", 
                    file = output_file, append = T)
                  predicted2$exp <- exp(as.vector(as.matrix(pred_conf[, 
                    1])))
                  predicted2_ribbon$exp_minus <- exp(as.vector(as.matrix(pred_conf[, 
                    2])))
                  predicted2_ribbon$exp_plus <- exp(as.vector(as.matrix(pred_conf[, 
                    3])))
                  p.fitting <- p.fitting + layer(data = predicted2, 
                    mapping = (aes(x = hour, y = exp)), geom = "line", 
                    size = 1.2, colour = fig_color)
                  p.fitting <- p.fitting + layer(data = predicted2_ribbon, 
                    mapping = aes(x = hour, ymin = exp_minus, 
                      ymax = exp_plus), geom = "ribbon", alpha = 0.1, 
                    fill = fig_color)
                  p.fitting <- p.fitting + ggtitle(gene_name)
                  p.fitting <- p.fitting + xlab("Time")
                  p.fitting <- p.fitting + ylab("Relative RPKM (Time0 = 1)")
                  p.fitting <- p.fitting + xlim(0, 12)
                  ybreaks <- seq(0, 10, 0.1)[2:101]
                  p.fitting <- p.fitting + scale_y_log10(breaks = ybreaks, 
                    labels = ybreaks)
                  plot(p.fitting)
                }
                else {
                  cat("few_data", "NA", "NA", "NA", "NA", "NA", 
                    "NA", "NA", "NA", "NA", "NA", "NA", sep = "\t", 
                    file = output_file, append = T)
                  flg_for_p <- 1
                }
            }
            else {
                cat("low_expresion", "NA", "NA", "NA", "NA", 
                  "NA", "NA", "NA", "NA", "NA", "NA", "NA", sep = "\t", 
                  file = output_file, append = T)
                flg_for_p <- 1
            }
            flg = 1
        }
        t_test <- "NA"
        p_value <- "NA"
        if (flg_for_p != 1) {
            t_test <- tsum.test(mean.x = X_for_p[1], s.x = SD_for_p[1], 
                n.x = N_for_p[1], mean.y = X_for_p[2], s.y = SD_for_p[2], 
                n.y = N_for_p[2])
            p_value <- t_test$p.value
        }
        cat("\t", sep = "\t", file = output_file, append = T)
        cat(p_value, "\n", sep = "\t", file = output_file, append = T)
        dev.off()
        plot.new()
    }
  }

Naoto-Imamachi/BridgeR documentation built on May 7, 2019, 6:05 p.m.