merge_ctd | R Documentation |
Import CellTypeDataset (CTD) references from a remote repository, standardize each, and then merge into one CTD. Optionally, can return these as a merged SingleCellExperiment.
merge_ctd(
CTD_list,
save_dir = tempdir(),
standardise_CTD = FALSE,
as_SCE = FALSE,
gene_union = TRUE,
merge_levels = seq(1, 5),
save_split_SCE = FALSE,
save_split_CTD = FALSE,
save_merged_SCE = TRUE,
force_new_quantiles = FALSE,
numberOfBins = 40,
as_sparse = TRUE,
as_DelayedArray = FALSE,
verbose = TRUE,
...
)
CTD_list |
(Named) list of |
save_dir |
The directory to save merged files in. |
standardise_CTD |
Whether to run |
as_SCE |
If |
gene_union |
Whether to take the gene union or intersection when merging matrices (mean_exp,specificity, etc.). |
merge_levels |
Which CTD levels you want to merge.
Can be a single value (e.g. |
save_split_SCE |
Whether to save individual SCE files in the subdirectory standardized_CTD_SCE. |
save_split_CTD |
Whether to save individual CTD files in the subdirectory standardized_CTD. |
save_merged_SCE |
Save the final merged SCE object, or simply to return it. |
force_new_quantiles |
If specificity quantiles matrix already exists, create a new one. |
numberOfBins |
Number of bins to compute specificity quantiles with. |
as_sparse |
Convert matrices to sparse matrix. |
as_DelayedArray |
Convert matrices to |
verbose |
Print messages. |
... |
Additional arguments to be passed to |
List of CellTypeDatasets or SingleCellExperiments.
## Let's pretend these are different CTD datasets
ctd1 <- ewceData::ctd()
ctd2 <- ctd1
CTD_list <- list(ctd1, ctd2)
CTD_merged <- EWCE::merge_ctd(CTD_list = CTD_list)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.