#' VCF to Indels Classification
#'
#' Convert a VCF file containing Indels into a data frame where each indel is classified as repet-mediated, Microhomology-mediated or other. A summary of the count of indels (deletions and insertions) and their proportion with respect to the total is also provided.
#'
#' @param indelsVCF.file path to input VCF (file must be tabix indexed). This file should have been already filtered for the final indels sets to be used in the analysis.
#' @param sampleID name of the sample
#' @param genome.v version of the genome to be used to look up the context of the indel, either "hg19", "hg38", "mm10" or "canFam3"
#' @return the function returns a list with elements "indels_classified", which is a table with the indels and their classification, and "count_proportion", which is a summary of the count of indels and their proportion
#' @export
#' @examples
#' res <- vcfToIndelsClassification("test.indel.vcf.gz","testSample","hg19")
vcfToIndelsClassification <- function(indelsVCF.file,
sampleID,
genome.v="hg19"){
if(genome.v=="hg19"){
expected_chroms <- paste0(c(seq(1:22),"X","Y"))
genomeSeq <- BSgenome.Hsapiens.1000genomes.hs37d5::BSgenome.Hsapiens.1000genomes.hs37d5
}else if(genome.v=="hg38"){
expected_chroms <- paste0("chr",c(seq(1:22),"X","Y"))
genomeSeq <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
}else if(genome.v=="mm10"){
expected_chroms <- paste0("chr",c(seq(1:19),"X","Y"))
genomeSeq <- BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10
}else if(genome.v=="canFam3"){
expected_chroms <- paste0("chr",c(seq(1:38),"X"))
genomeSeq <- BSgenome.Cfamiliaris.UCSC.canFam3::BSgenome.Cfamiliaris.UCSC.canFam3
}
# read only chr seqnames from VCF, not contigs
gr <- GenomicRanges::GRanges(GenomeInfoDb::seqinfo(genomeSeq))
vcf_seqnames <- Rsamtools::headerTabix(indelsVCF.file)$seqnames
if (genome.v=="hg38" || genome.v=="mm10") {
if(length(intersect(vcf_seqnames,expected_chroms))==0) vcf_seqnames <- paste0("chr",vcf_seqnames)
}
gr <- GenomeInfoDb::keepSeqlevels(gr,intersect(vcf_seqnames,expected_chroms),pruning.mode = "coarse")
vcf_seqnames <- Rsamtools::headerTabix(indelsVCF.file)$seqnames
if (genome.v=="hg38" || genome.v=="mm10") {
if(length(intersect(vcf_seqnames,expected_chroms))==0) GenomeInfoDb::seqlevels(gr) <- sub("chr", "", GenomeInfoDb::seqlevels(gr))
}
# load the indel VCF file
indel.data <- VariantAnnotation::readVcf(indelsVCF.file, genome.v, gr)
if(nrow(indel.data)==0){
message("[warning vcfToIndelsClassification] no indels founds, nothing to process.")
return(NULL)
}
indel.data <- VariantAnnotation::expand(indel.data)
# convert formats, and find context of the indels
indel.df <- prepare.indel.df(indel.data,genomeSeq,genome.v,expected_chroms)
indels_classified <- mh(indel.df)
# let's add another column to clarify the class of each indel
indels_classified$indel.class <- "-"
indels_classified$indel.class[indels_classified$classification=="Microhomology-mediated"] <- "del.mhomology"
indels_classified$indel.class[indels_classified$classification=="Repeat-mediated"] <- "del.repeatmediated"
indels_classified$indel.class[indels_classified$classification=="None"] <- "del.other"
indels_classified$indel.class[indels_classified$indel.type=="I"] <- "insertion"
indels_classified$indel.class[indels_classified$indel.type=="DI"] <- "indel.complex"
# save and return
res <- list()
res$indels_classified <- indels_classified
res$count_proportion <- indelsToCountAndProportion(res$indels_classified,sampleID)
return(res)
}
###########################################################
prepare.indel.df <- function(indel.data,genomeSeq,genome.v,expected_chroms) {
if (nrow(indel.data)>0) {
ref.length <- Biostrings::width(SummarizedExperiment::rowRanges(indel.data)$REF)
alt.length <- Biostrings::width(SummarizedExperiment::rowRanges(indel.data)$ALT)
indel.length <- abs(ref.length - alt.length)
indel.type <- rep(NA, nrow(indel.data))
indel.type[ref.length==1 & alt.length>1] <- 'I'
indel.type[ref.length>1 & alt.length==1] <- 'D'
indel.type[ref.length>1 & alt.length>1] <- 'DI'
indel.type[ref.length==1 & alt.length==1] <- 'DI'
# sequence of change
change <- vector()
change[indel.type=='DI'] <- substr( as.character(SummarizedExperiment::rowRanges(indel.data)$REF)[indel.type=='DI'],2,1e5)
change[indel.type=='I'] <- substr( as.character(SummarizedExperiment::rowRanges(indel.data)$ALT)[indel.type=='I'], 2, 1e5)
change[indel.type=='D'] <- substr( as.character(SummarizedExperiment::rowRanges(indel.data)$REF), 2, 1e5)[indel.type=='D']
min.position <- BiocGenerics::start(indel.data)
max.position <- BiocGenerics::start(indel.data) + indel.length
indel.chr <- as.character(GenomeInfoDb::seqnames(indel.data))
if (genome.v=="hg38" || genome.v=="mm10") {
if(length(intersect(indel.chr,expected_chroms))==0) indel.chr <- paste0("chr",indel.chr)
}
extend5 = min.position-indel.length-25;
extend3 = max.position + indel.length+25;
slice5 <- as.character(BSgenome::getSeq(genomeSeq, indel.chr, extend5, min.position))
#
slice3 <- as.character(BSgenome::getSeq(genomeSeq, indel.chr, max.position+1, extend3))
indel.df <- data.frame(
chr=as.character(GenomeInfoDb::seqnames(indel.data)),
pos=BiocGenerics::start(IRanges::ranges(indel.data)),
ref=as.character(SummarizedExperiment::rowRanges(indel.data)$REF),
alt=as.character(SummarizedExperiment::rowRanges(indel.data)$ALT),
indel.type=indel.type,
change=change,
slice3=slice3,
slice5=slice5,
indel.length=indel.length
) } else {
indel.df <- data.frame()
}
indel.df
}
##############################################
indelsToCountAndProportion <- function(all.indels.table, sampleIDs) {
if(nrow(all.indels.table)>0){
if (length(sampleIDs)==1) {
all.indels.table$sample <- sampleIDs
}
all.deletions.table.mh <- subset(all.indels.table, indel.type=='D' & classification=='Microhomology-mediated')
if (nrow(all.deletions.table.mh)>0) {
deletions.mh.samples <- as.data.frame(table(all.deletions.table.mh$sample))
colnames(deletions.mh.samples) <- c('sample', 'del.mh')
rownames(deletions.mh.samples) <- deletions.mh.samples$sample
} else {
deletions.mh.samples <- data.frame(sample=sampleIDs, del.mh=0)
rownames(deletions.mh.samples) <- sampleIDs
}
deletions.table.repeat <- subset(all.indels.table, indel.type=='D' & classification=='Repeat-mediated')
if (nrow(deletions.table.repeat)>0) {
deletions.repeat.samples <- as.data.frame(table(deletions.table.repeat$sample))
colnames(deletions.repeat.samples) <- c('sample', 'del.rep')
rownames(deletions.repeat.samples) <- deletions.repeat.samples$sample
} else {
deletions.repeat.samples <- data.frame(sample=sampleIDs, del.rep=0)
rownames(deletions.repeat.samples) <- sampleIDs
}
all.deletions.table.other <- subset(all.indels.table, indel.type=='D' & classification=='None')
if (nrow(all.deletions.table.other)) {
deletions.other.samples <- as.data.frame(table(all.deletions.table.other$sample))
colnames(deletions.other.samples ) <- c('sample', 'del.other')
rownames(deletions.other.samples) <- deletions.other.samples$sample
} else {
deletions.other.samples <- data.frame(sample=sampleIDs, del.other=0)
rownames(deletions.other.samples) <- sampleIDs
}
all.insertions.table <- subset(all.indels.table, indel.type=='I')
if (nrow(all.insertions.table) >0) {
insertions.samples <- as.data.frame(table(all.insertions.table$sample))
colnames(insertions.samples ) <- c('sample', 'ins')
rownames(insertions.samples) <- insertions.samples$sample
} else {
insertions.samples <- data.frame(sample=sampleIDs, ins=0)
rownames(insertions.samples) <- sampleIDs
}
all.complex.table <- subset(all.indels.table, indel.type=='DI')
if (nrow(all.complex.table) >0) {
complex.samples <- as.data.frame(table(all.complex.table$sample))
colnames(complex.samples ) <- c('sample', 'complex')
rownames(complex.samples) <- complex.samples$sample
} else {
complex.samples <- data.frame(sample=sampleIDs, complex=0)
rownames(complex.samples) <- sampleIDs
}
indel.table <- data.frame(sample=sampleIDs,
del.mh=deletions.mh.samples[as.character(sampleIDs), 'del.mh'],
del.rep=deletions.repeat.samples[as.character(sampleIDs), 'del.rep'],
del.none=deletions.other.samples[as.character(sampleIDs), 'del.other'],
ins=insertions.samples[as.character(sampleIDs), 'ins'],
complex=complex.samples[as.character(sampleIDs), 'complex']
)
indel.table$all.del <- indel.table$del.mh+indel.table$del.rep+indel.table$del.none
indel.table$all.indels <- indel.table$all.del+indel.table$ins+indel.table$complex
# del.mh.prop del.rep.prop del.none.prop
indel.table$del.mh.prop <- indel.table$del.mh/indel.table$all.del
indel.table$del.rep.prop <- indel.table$del.rep/indel.table$all.del
indel.table$del.none.prop <- indel.table$del.none/indel.table$all.del
indel.table$del.mh.count <- indel.table$del.mh
indel.table$del.rep.count <- indel.table$del.rep
indel.table$del.none.count <- indel.table$del.none
}else{
indel.table <- data.frame(sample=sampleIDs,
del.mh=rep(0,length(sampleIDs)),
del.rep=rep(0,length(sampleIDs)),
del.none=rep(0,length(sampleIDs)),
ins=rep(0,length(sampleIDs)),
complex=rep(0,length(sampleIDs)))
indel.table$all.del <- 0
indel.table$all.indels <- 0
# del.mh.prop del.rep.prop del.none.prop
indel.table$del.mh.prop <- indel.table$del.mh
indel.table$del.rep.prop <- indel.table$del.rep
indel.table$del.none.prop <- indel.table$del.none
indel.table$del.mh.count <- indel.table$del.mh
indel.table$del.rep.count <- indel.table$del.rep
indel.table$del.none.count <- indel.table$del.none
}
return(indel.table)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.