#' Template for curatedPCaData clinical fields
#'
#' This data frame contains the clinical fields which were
#' the aim for extraction when gathering metadata for each dataset.
#' Variable types, ranges, and description is reported.
#'
#' @return A data.frame of the PCa template
#'
#' @docType data
#' @examples
#' data(template_prad)
#' head(template_prad)
"template_prad"
#' Abida et al. MAE-object
#'
#' MultiAssayExperiment object containing gene expression (gex), copy
#' number alteration (cna), mutations (mut) and immune cell estimates for Abida
#' et al.
#'
#' @format A MAE object spanning 444 castrate resistant prostate cancer samples.
#' \describe{
#' \item{cna.gistic}{matrix with 20291 rows and 444 columns, from GISTIC
#' discretized copy number alteration calls.}
#' \item{gex.relz}{matrix with 18971 rows and 266 columns, from z-score
#' normalized expression in relative to paired normals.}
#' \item{mut}{RaggedExperiment with 63184 rows and 444 columns, mutation
#' data from cbioportal}
#' \item{cibersort}{matrix with 22 rows and 261 columns, of cibersort based
#' deconvolution data}
#' \item{xcell}{matrix with 39 rows and 261 columns, of xcell based
#' deconvolution data}
#' \item{epic}{matrix with 8 rows and 261 columns, of epic based
#' deconvolution data}
#' \item{quantiseq}{matrix with 11 rows and 261 columns, of quantiseq based
#' deconvolution data}
#' \item{estimate}{data.frame with 4 rows and 261 columns, of cell types
#' based on ESTIMATE method}
#' \item{scores}{matrix with 4 rows and 261 columns, of risk scores and AR
#' scores}
#' \item{mcp}{mmatrix with 11 rows and 261 columns, of mcp-counter based
#' deconvolution data}
#'
#' }
#' @details the clinical data refers to a sample of 444 tumors collected in 429
#' patients. The tissue was collected primarily at metastatic sites rather than
#' from the prostate.
#' @references (\href{https://pubmed.ncbi.nlm.nih.gov/31061129/}{PubMed})
#' @source \url{https://www.cbioportal.org/study/summary?id=prad_su2c_2019}
#' @return A MultiAssayExperiment corresponding to the study and its available
#' omics.
#'
#' @rdname curatedPCaDatasets_abida
#' @examples
#' mae_abida <- getPCa('abida')
#' @name curatedPCaDatasets_abida
#' @keywords datasets
NULL
#' Baca et al. MAE-object
#'
#' MultiAssayExperiment object containing copy number alteration (cna) and
#' mutations for Baca et al.
#'
#' @format A MAE object spanning 56 prostate cancer samples.
#' \describe{
#' \item{cna.gistic}{matrix with 20124 rows and 56 columns, from GISTIC
#' discretized copy number alteration calls.}
#' \item{mut}{RaggedExperiment with 2734 rows and 57 columns, mutation data
#' from cbioportal}
#' }
#' @source \url{https://www.cbioportal.org/study/summary?id=prad_broad_2013}
#' @return A MultiAssayExperiment corresponding to the study and its available
#' omics.
#'
#' @rdname curatedPCaDatasets_baca
#' @docType data
#' @examples
#' mae_baca <- getPCa('baca')
#' @name curatedPCaDatasets_baca
#' @keywords datasets
NULL
#' Barbieri et al. MAE-object
#'
#' MultiAssayExperiment object containing gene expression (gex), copy
#' number alteration (cna), mutations (mut) and immune cell estimates for
#' Barbieri et al.
#'
#' @format A MAE object spanning prostate adenocarcinomas from Barbieri et. al
#' \describe{
#' \item{cna.gistic}{matrix with 20844 rows and 109 columns, from GISTIC
#' discretized copy number alteration calls}
#' \item{gex.relz}{matrix with 17917 rows and 31 columns, from z-score
#' normalized expression in relative to paired normals.}
#' \item{mut}{RaggedExperiment with 5737 rows and 112 columns, mutation
#' data from cbioportal}
#' \item{cibersort}{matrix with 22 rows and 31 columns, of cibersort based
#' deconvolution data}
#' \item{xcell}{matrix with 39 rows and 31 columns, of xcell based
#' deconvolution data}
#' \item{epic}{matrix with 8 rows and 31 columns, of epic based
#' deconvolution data}
#' \item{quantiseq}{matrix with 11 rows and 31 columns, of quantiseq based
#' deconvolution data}
#' \item{estimate}{data.frame with 4 rows and 31 columns, of cell types
#' based on ESTIMATE method}
#' \item{scores}{matrix with 4 rows and 31 columns, of risk scores and AR
#' scores}
#' \item{mcp}{matrix with 11 rows and 31 columns, of mcp-counter based
#' deconvolution data}
#' }
#' @details The data comprises of primary localised prostate tumors from two
#' cohorts, the Weill Cornell Medical College (WCMC; New York, NY), and the
#' Uropath (Perth, Australia), which commercially provides banked urological
#' tissues. None of the samples comes from patients who had received prior
#' treatment for prostate cancer.
#' @references (\href{https://pubmed.ncbi.nlm.nih.gov/22610119/}{PubMed})
#' @source \url{https://www.cbioportal.org/study/summary?id=prad_broad}
#' @return A MultiAssayExperiment corresponding to the study and its available
#' omics.
#'
#' @rdname curatedPCaDatasets_barbieri
#' @examples
#' mae_barbieri <- getPCa('barbieri')
#' @name curatedPCaDatasets_barbieri
#' @keywords datasets
NULL
#' Barwick et al. MAE-object
#'
#' MultiAssayExperiment object containing gene expression (gex) and immune cell
#' estimates for Barwick et al.
#'
#' @format A MAE object spanning 146 prostate cancer samples.
#' \describe{
#' \item{gex.logq}{matrix with 482 rows and 146 columns, for the
#' log-quantile normalized gene expression data}
#' \item{cibersort}{matrix with 22 rows and 139 columns, of cibersort based
#' deconvolution data}
#' \item{quantiseq}{matrix with 11 rows and 139 columns, of quantiseq based
#' deconvolution data}
#' \item{estimate}{data.frame with 4 rows and 139 columns, of cell types
#' based on ESTIMATE method}
#' \item{scores}{matrix with 3 rows and 139 columns, of risk scores and AR
#' scores}
#' \item{mcp}{matrix with 4 rows and 139 columns, of mcp-counter based
#' deconvolution data}
#' }
#' @details Barwick et al. uses an older customized DASL array; therefore its
#' gene coverage is lower, and many downstream methods fail due to lack of gene
#' overlap.
#' @references (\href{https://pubmed.ncbi.nlm.nih.gov/22610119/}{PubMed})
#' @source \url{https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18655}
#' @return A MultiAssayExperiment corresponding to the study and its available
#' omics.
#'
#' @rdname curatedPCaDatasets_barwick
#' @examples
#' mae_barwick <- getPCa('barwick')
#' @name curatedPCaDatasets_barwick
#' @keywords datasets
NULL
#' Chandran et al., Yu et al. MAE-object
#'
#' MultiAssayExperiment object containing gene expression (gex) and immune cell
#' estimates for Chandran et al., Yu et al.
#'
#' @format An MAE object spanning 171 men with prostate cancer
#' \describe{
#' \item{gex.rma}{matrix with 9007 rows and 171 columns, for the gene
#' expression data}
#' \item{cibersort}{matrix with 22 rows and 171 columns, of cibersort based
#' deconvolution data}
#' \item{xcell}{matrix with 39 rows and 171 columns, of xcell based
#' deconvolution data}
#' \item{epic}{matrix with 8 rows and 171 columns, of epic based
#' deconvolution data}
#' \item{quantiseq}{matrix with 11 rows and 171 columns, of quantiseq based
#' deconvolution data}
#' \item{estimate}{data.frame with 4 rows and 171 columns, of cell types
#' based on ESTIMATE method}
#' \item{scores}{matrix with 4 rows and 171 columns, of risk scores and AR
#' scores}
#' \item{mcp}{matrix with 11 rows and 171 columns, of mcp-counter based
#' deconvolution data}
#' }
#' @references (\href{https://pubmed.ncbi.nlm.nih.gov/17430594/}{PubMed})
#' (\href{https://pubmed.ncbi.nlm.nih.gov/15254046/}{PubMed})
#' @source \url{https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6919}
#' @return A MultiAssayExperiment corresponding to the study and its available
#' omics.
#'
#' @rdname curatedPCaDatasets_chandran
#' @examples
#' mae_chandran <- getPCa('chandran')
#' @name curatedPCaDatasets_chandran
#' @keywords datasets
NULL
#' Friedrich et al. MAE-object
#'
#' MultiAssayExperiment object containing gene expression (gex) and immune cell
#' estimates for Friedrich et al.
#'
#' @format An MAE object spanning 255 men with prostate cancer
#' \describe{
#' \item{gex.logq}{matrix with 23097 rows and 255 columns, for the
#' log-quantile normalized gene expression data}
#' \item{cibersort}{matrix with 22 rows and 255 columns, of cibersort based
#' deconvolution data}
#' \item{xcell}{matrix with 39 rows and 255 columns, of xcell based
#' deconvolution data}
#' \item{epic}{matrix with 8 rows and 255 columns, of epic based
#' deconvolution data}
#' \item{quantiseq}{matrix with 11 rows and 255 columns, of quantiseq based
#' deconvolution data}
#' \item{estimate}{data.frame with 4 rows and 255 columns, of cell types
#' based on ESTIMATE method}
#' \item{scores}{matrix with 4 rows and 255 columns, of risk scores and AR
#' scores}
#' \item{mcp}{matrix with 11 rows and 255 columns, of mcp-counter based
#' deconvolution data}
#' }
#' @details The data comprises of 255 samples, with 164 primary tumors samples,
#' 52 adjacent normal samples, and 39 benign prostate hyperplasia samples.
#' This dataset includes in its totality the 164 samples analysed in Kreutz
#' et al. 2020.
#' @references (\href{https://pubmed.ncbi.nlm.nih.gov/32365858/}{PubMed})
#' (\href{https://pubmed.ncbi.nlm.nih.gov/32631745/}{PubMed})
#' @source \url{https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134051}
#' @return A MultiAssayExperiment corresponding to the study and its available
#' omics.
#'
#' @rdname curatedPCaDatasets_friedrich
#' @examples
#' mae_friedrich <- getPCa('friedrich')
#' @name curatedPCaDatasets_friedrich
#' @keywords datasets
NULL
#' Hieronymus et al. MAE-object
#'
#' MultiAssayExperiment object containing copy number alteration (cna) for
#' Hieronymus et al.
#'
#' @format A MAE object spanning 104 tumor samples
#' \describe{
#' \item{cna.gistic}{matrix with 18026 rows and 104 columns, from GISTIC
#' discretized copy number alteration calls}
#' }
#' @details The data comprises of 104 samples, for which are available clinical
#' data and Copy Number Alteration, but no gene expression data -- thus no
#' deconvolution results are available.
#' @references (\href{https://pubmed.ncbi.nlm.nih.gov/25024180/}{PubMed})
#' @source \url{https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54691}
#' @return A MultiAssayExperiment corresponding to the study and its available
#' omics.
#'
#' @rdname curatedPCaDatasets_hieronymus
#' @examples
#' mae_hieronymus <- getPCa('hieronymus')
#' @name curatedPCaDatasets_hieronymus
#' @keywords datasets
NULL
#' ICGC CA MAE-object
#'
#' MultiAssayExperiment object containing gene expression (gex) and immune cell
#' estimates for the ICGC CA (Canadian) cohort.
#'
#' @format An MAE object spanning 213 men with prostate cancer
#' \describe{
#' \item{gex.rma}{matrix with 17208 rows and 213 columns, of gene expression
#' data}
#' \item{cibersort}{matrix with 22 rows and 213 columns, of cibersort based
#' deconvolution data}
#' \item{xcell}{matrix with 39 rows and 213 columns, of xcell based
#' deconvolution data}
#' \item{epic}{matrix with 8 rows and 213 columns, of epic based
#' deconvolution data}
#' \item{quantiseq}{matrix with 11 rows and 213 columns, of quantiseq based
#' deconvolution data}
#' \item{estimate}{data.frame with 4 rows and 213 columns, of cell types
#' based on ESTIMATE method}
#' \item{scores}{matrix with 4 rows and 213 columns, of risk scores and AR
#' scores}
#' \item{mcp}{matrix with 11 rows and 213 columns, of mcp-counter based
#' deconvolution data}
#' }
#' @details The data refers to samples from the ICGC Canadian Prostate Cancer
#' Genome Network (ICGC-PRAD-CA)
#' @references (\href{https://pubmed.ncbi.nlm.nih.gov/28068672/}{PubMed})
#' @source \url{https://dcc.icgc.org/projects/PRAD-CA}
#' @return A MultiAssayExperiment corresponding to the study and its available
#' omics.
#'
#' @rdname curatedPCaDatasets_icgcca
#' @examples
#' mae_icgcca <- getPCa('icgcca')
#' @name curatedPCaDatasets_icgcca
#' @keywords datasets
NULL
#' International Genomics Consortium (IGC) MAE-object
#'
#' MultiAssayExperiment object containing gene expression (gex) and immune cell
#' estimates from IGC's Expression Project for Oncology (expO) with a subset for
#' prostate cancer
#'
#' @format An MAE object spanning 83 men with prostate cancer
#' \describe{
#' \item{gex.rma}{matrix with 12798 rows and 83 columns, of gene expression
#' data}
#' \item{cibersort}{matrix with 22 rows and 83 columns, of cibersort based
#' deconvolution data}
#' \item{xcell}{matrix with 39 rows and 83 columns, of xcell based
#' deconvolution data}
#' \item{epic}{matrix with 8 rows and 83 columns, of epic based
#' deconvolution data}
#' \item{quantiseq}{matrix with 11 rows and 83 columns, of quantiseq based
#' deconvolution data}
#' \item{estimate}{data.frame with 4 rows and 83 columns, of cell types
#' based on ESTIMATE method}
#' \item{scores}{matrix with 4 rows and 83 columns, of risk scores and AR
#' scores}
#' \item{mcp}{matrix with 11 rows and 83 columns, of mcp-counter based
#' deconvolution data}
#' }
#'
#' @source \url{https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse2109}
#' @return A MultiAssayExperiment corresponding to the study and its available
#' omics.
#'
#' @rdname curatedPCaDatasets_igc
#' @examples
#' mae_igc <- getPCa('igc')
#' @name curatedPCaDatasets_igc
#' @keywords datasets
NULL
#' Kim et al. MAE-object
#'
#' MultiAssayExperiment object containing gene expression (gex) and immune cell
#' estimates from Kim et al.
#'
#' @format An MAE object spanning 266 men with prostate cancer
#' \describe{
#' \item{gex.rma}{matrix with 17638 rows and 266 columns, of gene expression
#' data}
#' \item{cibersort}{matrix with 22 rows and 266 columns, of cibersort based
#' deconvolution data}
#' \item{xcell}{matrix with 39 rows and 266 columns, of xcell based
#' deconvolution data}
#' \item{epic}{matrix with 8 rows and 266 columns, of epic based
#' deconvolution data}
#' \item{quantiseq}{matrix with 11 rows and 266 columns, of quantiseq based
#' deconvolution data}
#' \item{estimate}{data.frame with 4 rows and 266 columns, of cell types
#' based on ESTIMATE method}
#' \item{scores}{matrix with 2 rows and 266 columns, of risk scores and AR
#' scores}
#' \item{mcp}{matrix with 11 rows and 266 columns, of mcp-counter based
#' deconvolution data}
#' }
#' @details The dataset consists of 266 NCCN very low/low or
#' favorable-intermediate risk PCa patients
#' @references (\href{https://pubmed.ncbi.nlm.nih.gov/30542054/}{PubMed})
#' @source \url{https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119616}
#' @return A MultiAssayExperiment corresponding to the study and its available
#* omics.
#'
#' @rdname curatedPCaDatasets_kim
#' @examples
#' mae_kim <- getPCa('kim')
#' @name curatedPCaDatasets_kim
#' @keywords datasets
NULL
#' Kunderfranco et al. MAE-object
#'
#' MultiAssayExperiment object containing gene expression (gex) and immune cell
#' estimates from Kunderfranco et al.
#'
#' @format An MAE object spanning 67 samples of normal prostate samples and
#' prostate cancer samples
#' \describe{
#' \item{gex.logr}{matrix with 16546 rows and 67 columns, of gene expression
#' data}
#' \item{cibersort}{matrix with 22 rows and 67 columns, of cibersort based
#' deconvolution data}
#' \item{xcell}{matrix with 39 rows and 67 columns, of xcell based
#' deconvolution data}
#' \item{epic}{matrix with 8 rows and 67 columns, of epic based
#' deconvolution data}
#' \item{quantiseq}{matrix with 11 rows and 67 columns, of quantiseq based
#' deconvolution data}
#' \item{estimate}{data.frame with 4 rows and 67 columns, of cell types
#' based on ESTIMATE method}
#' \item{scores}{matrix with 2 rows and 67 columns, of risk scores and AR
#' scores}
#' \item{mcp}{matrix with 11 rows and 67 columns, of mcp-counter based
#' deconvolution data}
#' }
#' @details The data contains 14 disease free benign prostate hyperplasia
#' samples and 53 prostate cancer samples.
#' @references (\href{https://pubmed.ncbi.nlm.nih.gov/20479932/}{PubMed})
#' @source \url{https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14206}
#' @return A MultiAssayExperiment corresponding to the study and its available
#' omics.
#'
#' @rdname curatedPCaDatasets_kunderfranco
#' @examples
#' mae_kunderfranco <- getPCa('kunderfranco')
#' @name curatedPCaDatasets_kunderfranco
#' @keywords datasets
NULL
#' Ren et al. MAE-object
#'
#' MultiAssayExperiment object containing gene expression (gex), mutations and
#' immune cell estimates from Ren et al.
#'
#' @format An MAE object spanning 65 men with prostate cancer
#' \describe{
#' \item{gex.relz}{matrix with 21046 rows and 65 columns, of gene expression
#' data}
#' \item{mut}{RaggedExperiment with 50625 rows and 65 columns, of mutation
#' data from cbioportal}
#' \item{cibersort}{matrix with 22 rows and 65 columns, of cibersort based
#' deconvolution data}
#' \item{xcell}{matrix with 39 rows and 65 columns, of xcell based
#' deconvolution data}
#' \item{epic}{matrix with 8 rows and 65 columns, of epic based
#' deconvolution data}
#' \item{quantiseq}{matrix with 11 rows and 65 columns, of quantiseq based
#' deconvolution data}
#' \item{estimate}{data.frame with 4 rows and 65 columns, of cell types
#' based on ESTIMATE method}
#' \item{scores}{matrix with 4 rows and 65 columns, of risk scores and AR
#' scores}
#' \item{mcp}{matrix with 11 rows and 65 columns, of mcp-counter based
#' deconvolution data}
#' }
#' @details The data contains 14 disease free benign prostate hyperplasia
#' samples and 53 prostate cancer samples.
#' @references (\href{https://pubmed.ncbi.nlm.nih.gov/28927585/}{PubMed})
#' @source \url{https://www.cbioportal.org/study/summary?id=prad_eururol_2017}
#' @return A MultiAssayExperiment corresponding to the study and its available
#' omics.
#'
#' @rdname curatedPCaDatasets_ren
#' @examples
#' mae_ren <- getPCa('ren')
#' @name curatedPCaDatasets_ren
#' @keywords datasets
NULL
#' Sun et al. MAE-object
#'
#' MultiAssayExperiment object containing gene expression (gex) and immune cell
#' estimates from Sun et al.
#'
#' @format An MAE object spanning 79 men with prostate cancer
#' \describe{
#' \item{gex.rma}{matrix with 12798 rows and 79 columns, of gene expression
#' data}
#' \item{cibersort}{matrix with 22 rows and 79 columns, of cibersort based
#' deconvolution data}
#' \item{xcell}{matrix with 39 rows and 79 columns, of xcell based
#' deconvolution data}
#' \item{epic}{matrix with 8 rows and 79 columns, of epic based
#' deconvolution data}
#' \item{quantiseq}{matrix with 11 rows and 79 columns, of quantiseq based
#' deconvolution data}
#' \item{estimate}{data.frame with 4 rows and 79 columns, of cell types
#' based on ESTIMATE method}
#' \item{scores}{matrix with 4 rows and 79 columns, of risk scores and AR
#' scores}
#' \item{mcp}{matrix with 11 rows and 79 columns, of mcp-counter based
#' deconvolution data}
#' }
#'
#' @references (\href{https://pubmed.ncbi.nlm.nih.gov/19343730/}{PubMed})
#' @source \url{https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25136}
#' @return A MultiAssayExperiment corresponding to the study and its available
#' omics.
#'
#' @rdname curatedPCaDatasets_sun
#' @examples
#' mae_sun <- getPCa('sun')
#' @name curatedPCaDatasets_sun
#' @keywords datasets
NULL
#' Taylor et al. MAE-object
#'
#' MultiAssayExperiment object containing gene expression (gex), copy
#' number alteration (cna), mutations and immune cell estimates from Taylor et
#' al.
#'
#' @format An MAE object spanning 218 men with prostate cancer
#' \describe{
#' \item{cna.gistic}{matrix with 17832 rows and 194 columns, of gistic
#' values for copy number alteration data}
#' \item{cna.logr}{matrix with 18062 rows and 218 columns, of log-ratios for
#' copy number alteration data}
#' \item{gex.rma}{matrix with 17410 rows and 179 columns, of gene expression
#' data}
#' \item{mut}{RaggedExperiment with 90 rows and 43 columns, of mutation
#' data}
#' \item{cibersort}{matrix with 22 rows and 179 columns, of cibersort based
#' deconvolution data}
#' \item{xcell}{matrix with 39 rows and 179 columns, of xcell based
#' deconvolution data}
#' \item{epic}{matrix with 8 rows and 179 columns, of epic based
#' deconvolution data}
#' \item{quantiseq}{matrix with 11 rows and 179 columns, of quantiseq based
#' deconvolution data}
#' \item{estimate}{data.frame with 4 rows and 179 columns, of cell types
#' based on ESTIMATE method}
#' \item{scores}{matrix with 4 rows and 179 columns, of risk scores and AR
#' scores}
#' \item{mcp}{matrix with 11 rows and 179 columns, of mcp-counter based
#' deconvolution data}
#' }
#'
#' @details Note that there is lack of overlap between the omics provided for
#' each sample.
#' @references (\href{https://pubmed.ncbi.nlm.nih.gov/20579941/}{PubMed})
#' @source \url{https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21035}
#' @return A MultiAssayExperiment corresponding to the study and its available
#' omics.
#'
#' @rdname curatedPCaDatasets_taylor
#' @examples
#' mae_taylor <- getPCa('taylor')
#' @name curatedPCaDatasets_taylor
#' @keywords datasets
NULL
#' TCGA MAE-object
#'
#' MultiAssayExperiment object containing gene expression (gex), copy
#' number alteration (cna), mutations and immune cell estimates from GDC TCGA.
#'
#' @format An MAE object spanning 369 men with prostate cancer
#' \describe{
#' \item{cna.gistic}{matrix with 23151 rows and 492 columns, from GISTIC
#' discretized copy number alteration calls}
#' \item{gex.rsem.log}{matrix with 19658 rows and 461 columns, of gene
#' expression data}
#' \item{mut}{RaggedExperiment with 30897 rows and 495 columns, of mutation
#' data}
#' \item{cibersort}{matrix with 22 rows and 550 columns, of cibersort based
#' deconvolution data}
#' \item{xcell}{matrix with 39 rows and 461 columns, of xcell based
#' deconvolution data}
#' \item{epic}{matrix with 8 rows and 461 columns, of epic based
#' deconvolution data}
#' \item{quantiseq}{matrix with 11 rows and 461 columns, of quantiseq based
#' deconvolution data}
#' \item{mcp}{matrix with 11 rows and 461 columns, of mcp-counter based
#' deconvolution data}
#' \item{estimate}{data.frame with 4 rows and 461 columns, of cell types
#' based on ESTIMATE method}
#' \item{scores}{matrix with 4 rows and 416 columns, of risk scores and AR
#' scores}
#' }
#'
#' @details TCGA data was obtained from the latest GDC's XenaBrowser release.
#' @references (\href{https://pubmed.ncbi.nlm.nih.gov/26544944/}{PubMed})
#' @source \url{https://xenabrowser.net/datapages/?cohort=GDC\%20TCGA\%20Prostate\%20Cancer\%20(PRAD)}
#' @return A MultiAssayExperiment corresponding to the study and its available
#' omics.
#'
#' @rdname curatedPCaDatasets_tcga
#' @examples
#' mae_tcga <- getPCa('tcga')
#' @name curatedPCaDatasets_tcga
#' @keywords datasets
NULL
#' True et al. MAE-object
#'
#' MultiAssayExperiment object containing gene expression (gex) and immune cell
#' estimates from True et al.
#' @format An MAE object spanning 32 men with prostate cancer
#' \describe{
#' \item{gex.logr}{matrix with 3615 rows and 32 columns, of gene expression
#' data}
#' \item{cibersort}{matrix with 22 rows and 32 columns, of cibersort based
#' deconvolution data}
#' \item{epic}{matrix with 8 rows and 32 columns, of epic based
#' deconvolution data}
#' \item{quantiseq}{matrix with 11 rows and 32 columns, of quantiseq based
#' deconvolution data}
#' \item{mcp}{matrix with 7 rows and 32 columns, of mcp-counter based
#' deconvolution data}
#' \item{scores}{matrix with 2 rows and 32 columns, of risk scores and AR
#' scores}
#' \item{estimate}{data.frame with 4 rows and 32 columns, of cell types
#' based on ESTIMATE method}
#' }
#' @details The expression data for this dataset was produced by an older two
#' colour chip that provides the relative expression levels for between tumor
#' and normal. Due to the chip type, there was a lack of gene overlap with
#' some of the downstream methods, thus some downstream methods are missing.
# @references (\href{https://pubmed.ncbi.nlm.nih.gov/16829574/}{PubMed})
#' @source \url{https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5132}
#' @return A MultiAssayExperiment corresponding to the study and its available
#' omics.
#'
#' @rdname curatedPCaDatasets_true
#' @examples
#' mae_true <- getPCa('true')
#' @name curatedPCaDatasets_true
#' @keywords datasets
NULL
#' Wallace et al. MAE-object
#'
#' MultiAssayExperiment object containing gene expression (gex) and immune cell
#' estimates from Wallace et al.
#' @format An MAE object spanning 83 men with prostate cancer
#' \describe{
#' \item{gex.rma}{matrix with 12783 rows and 89 columns, of gene expression
#' data}
#' \item{cibersort}{matrix with 22 rows and 83 columns, of cibersort based
#' deconvolution data}
#' \item{xcell}{matrix with 39 rows and 89 columns, of xcell based
#' deconvolution data}
#' \item{epic}{matrix with 8 rows and 89 columns, of epic based
#' deconvolution data}
#' \item{quantiseq}{matrix with 11 rows and 89 columns, of quantiseq based
#' deconvolution data}
#' \item{estimate}{data.frame with 4 rows and 89 columns, of cell types
#' based on ESTIMATE method}
#' \item{scores}{matrix with 4 rows and 89 columns, of risk scores and AR
#' scores}
#' \item{mcp}{matrix with 11 rows and 89 columns, of mcp-counter based
#' deconvolution data}
#' }
#'
#' @references (\href{https://pubmed.ncbi.nlm.nih.gov/18245496/}{PubMed})
#'
#' @source \url{https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6956}
#' @return A MultiAssayExperiment corresponding to the study and its available
#' omics.
#'
#' @rdname curatedPCaDatasets_wallace
#' @examples
#' mae_wallace <- getPCa('wallace')
#' @name curatedPCaDatasets_wallace
#' @keywords datasets
NULL
#' Wang et al. MAE-object
#'
#' MultiAssayExperiment object containing gene expression (gex) and immune cell
#' estimates from Wang et al.
#' @format An MAE object spanning 148 men with prostate cancer
#' \describe{
#' \item{gex.rma}{matrix with 12798 rows and 148 columns, of gene expression
#' data}
#' \item{cibersort}{matrix with 22 rows and 148 columns, of cibersort based
#' deconvolution data}
#' \item{xcell}{matrix with 39 rows and 148 columns, of xcell based
#' deconvolution data}
#' \item{epic}{matrix with 8 rows and 148 columns, of epic based
#' deconvolution data}
#' \item{quantiseq}{matrix with 11 rows and 148 columns, of quantiseq based
#' deconvolution data}
#' \item{estimate}{data.frame with 4 rows and 148 columns, of cell types
#' based on ESTIMATE method}
#' \item{scores}{matrix with 4 rows and 148 columns, of risk scores and AR
#' scores}
#' \item{mcp}{matrix with 11 rows and 148 columns, of mcp-counter based
#' deconvolution data}
#' }
#' @details 148 prostate samples, with various amounts of tumor, stroma, BPH and
#' atrophic gland, were used for this study.
#' @references (\href{https://pubmed.ncbi.nlm.nih.gov/20663908/}{PubMed})
#'
#' @source \url{https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8218}
#' @return A MultiAssayExperiment corresponding to the study and its available
#' omics.
#'
#' @rdname curatedPCaDatasets_wang
#' @examples
#' mae_wang <- getPCa('wang')
#' @name curatedPCaDatasets_wang
#' @keywords datasets
NULL
#' Weiner et al. MAE-object
#'
#' A MultiAssayExperiment object containing gene expression (gex) and immune
#' cell estimates for Weiner et al.
#' @format An MAE spanning 838 prostate cancer samples of two cohorts
#' \describe{
#' \item{gex.rma}{matrix of 17410 rows and 838 columns of gene expression
#' data}
#' \item{cibersort}{matrix with 22 rows and 838 columns, of cibersort based
#' deconvolution data}
#' \item{xcell}{matrix with 39 rows and 838 columns, the xcell deconvolution
#' of the expression data}
#' \item{epic}{matrix with 8 rows and 838 columns, the epic deconvolution of
#' the expression data}
#' \item{quantiseq}{matrix with 11 rows and 838 columns, the quantiseq
#' deconvolution of the expression data}
#' \item{estimate}{data.frame with 4 rows and 838 columns, of cell types
#' based on ESTIMATE method}
#' \item{scores}{matrix with 4 rows and 838 columns, of risk scores and AR
#' scores}
#' \item{mcp}{matrix with 11 rows and 838 columns, the mcp-counter
#' deconvolution of the expression data}
#' }
#'
#' @references (\href{https://pubmed.ncbi.nlm.nih.gov/33568675/}{PubMed})
#' @source \url{https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE157548}
#' @return A MultiAssayExperiment corresponding to the study and its available
#' omics.
#'
#' @rdname curatedPCaDatasets_weiner
#' @examples
#' mae_weiner <- getPCa('weiner')
#' @name curatedPCaDatasets_weiner
#' @keywords datasets
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.