#' @name betareg_optimize
#' @rdname betareg_optimize
#' @aliases betareg_optimise
#'
#' @title Optimize Beta regression negative log likelihood function
#'
#' @description The function betareg_optimize minimizes the negative log
#' likelihood of the Beta regression model Since it cannot be evaluated
#' analytically, an optimization procedure is used. The
#' \code{\link[stats]{optim}} packages is used for performing optimization.
#'
#' @param x The input object, either a \code{\link[base]{matrix}} or a
#' \code{\link[base]{list}}.
#' @param ... Additional parameters.
#' @param w A vector of parameters (i.e. coefficients of the basis functions)
#' @param disp Dispersion parameter/vector for Beta distribution
#' @param basis A 'basis' object. E.g. see \code{\link{create_rbf_object}}.
#' @param fit_feature Return additional feature on how well the profile fits the
#' methylation data. Either NULL for ignoring this feature or one of the
#' following: 1) "RMSE" for returning the fit of the profile using the RMSE as
#' measure of error or 2) "NLL" for returning the fit of the profile using the
#' Negative Log Likelihood as measure of error.
#' @param cpg_dens_feat Logical, whether to return an additional feature for the
#' CpG density across the promoter region.
#' @param lambda The complexity penalty coefficient for ridge regression.
#' @param opt_method The optimization method to be used. See
#' \code{\link[stats]{optim}} for possible methods. Default is "CG".
#' @param opt_itnmax Optional argument giving the maximum number of iterations
#' for the corresponding method. See \code{\link[stats]{optim}} for details.
#' @param is_parallel Logical, indicating if code should be run in parallel.
#' @param no_cores Number of cores to be used, default is max_no_cores - 2.
#'
#' @return Depending on the input object \code{x}: \itemize{\item{If \code{x} is
#' a \code{\link[base]{list}}:} An object containing the following elements:
#' \itemize{ \item{ \code{W_opt}: An Nx(M+1) matrix with the optimized
#' parameter values. Each row of the matrix corresponds to each element of the
#' list x. The columns are of the same length as the parameter vector w (i.e.
#' number of basis functions). } \item{ \code{Mus}: An N x M matrix with the
#' RBF centers if basis object is \code{\link{create_rbf_object}}, otherwise
#' NULL.} \item{ \code{basis}: The basis object. } \item{ \code{w}: The
#' initial values of the parameters w. } } \item{If \code{x} is a
#' \code{\link[base]{matrix}}:} An object containing the following elements:
#' \itemize{ \item{ \code{w_opt}: Optimized values for the coefficient vector
#' w. The length of the result is the same as the length of the vector w. }
#' \item{ \code{basis}: The basis object. } } \item{If calling
#' \code{bpr_optim_fast} just the optimal weight matrix W_opt.} }
#'
#' @author C.A.Kapourani \email{C.A.Kapourani@@ed.ac.uk}
#'
#' @seealso \code{\link{create_basis}}, \code{\link{eval_functions}}
NULL
#' @rdname betareg_optimize
#'
#' @export
betareg_optim <- function(x, ...){
UseMethod("betareg_optim")
}
# Default function for the generic function 'bpr_optim'
betareg_optim.default <- function(x, ...){
stop("Object x should be either matrix or list!")
}
#' @rdname betareg_optimize
#'
#' @export
betareg_optim.list <- function(x, w = NULL, disp = 1, basis = NULL,
fit_feature = "RMSE",
cpg_dens_feat = TRUE, lambda = 1/2,
opt_method = "CG", opt_itnmax = 100,
is_parallel = TRUE, no_cores = NULL, ...){
# Check that x is a list object
assertthat::assert_that(is.list(x))
# Extract number of observations
N <- length(x)
assertthat::assert_that(N > 0)
# Perform checks for initial parameter values
out <- .do_checks(w = w, basis = basis)
w <- out$w
basis <- out$basis
# Initialize so the CMD check on R passes without NOTES
i <- 0
# If parallel mode is ON
if (is_parallel){
# If number of cores is not given
if (is.null(no_cores)){
no_cores <- parallel::detectCores() - 2
}else{
if (no_cores >= parallel::detectCores()){
no_cores <- parallel::detectCores() - 1
}
}
if (is.na(no_cores)){
no_cores <- 2
}
# Create cluster object
cl <- parallel::makeCluster(no_cores)
doParallel::registerDoParallel(cl)
# Parallel optimization for each element of x, i.e. for each region i.
res <- foreach::"%dopar%"(obj = foreach::foreach(i = 1:N),
ex = {
out_opt <- betareg_optim.matrix(x = x[[i]],
w = w,
disp = disp,
basis = basis,
fit_feature = fit_feature,
cpg_dens_feat = cpg_dens_feat,
lambda = lambda,
opt_method = opt_method,
opt_itnmax = opt_itnmax)
})
# Stop parallel execution
parallel::stopCluster(cl)
doParallel::stopImplicitCluster()
}else{
# Sequential optimization for each element of x, i.e. for each region i.
res <- foreach::"%do%"(obj = foreach::foreach(i = 1:N),
ex = {
out_opt <- betareg_optim.matrix(x = x[[i]],
w = w,
disp = disp,
basis = basis,
fit_feature = fit_feature,
cpg_dens_feat = cpg_dens_feat,
lambda = lambda,
opt_method = opt_method,
opt_itnmax = opt_itnmax)
})
}
# Matrix for storing optimized coefficients
W_opt <- sapply(res, function(x) x$w_opt)
if (is.matrix(W_opt)){
W_opt <- t(W_opt)
}else{
W_opt <- as.matrix(W_opt)
}
colnames(W_opt) <- paste("w", seq(1, NCOL(W_opt)), sep = "")
# Matrix for storing the centers of RBFs if object class is 'rbf'
Mus <- NULL
if (methods::is(basis, "rbf")){
if (is.null(basis$mus)){
Mus <- sapply(lapply(res, function(x) x$basis), function(y) y$mus)
if (is.matrix(Mus)){
Mus <- t(Mus)
}else{
Mus <- as.matrix(Mus)
}
colnames(Mus) <- paste("mu", seq(1, NCOL(Mus)), sep = "")
}
}
return(list(W_opt = W_opt,
Mus = Mus,
basis = basis,
w = w))
}
#' @rdname betareg_optimize
#'
#' @importFrom stats optim
#'
#' @export
betareg_optim.matrix <- function(x, w = NULL, disp = 1, basis = NULL,
fit_feature="RMSE",
cpg_dens_feat = TRUE, lambda = 1/2,
opt_method = "CG", opt_itnmax = 100, ...){
# Concatenate the dispersion parameter
if (length(disp) == 1){ # If we have the same value for dispersion parameter
x <- cbind(x, rep(disp, NROW(x)))
}else{ # If we have a different dispersion value for each point
x <- cbind(x, disp)
}
# Vector for storing CpG locations relative to TSS
obs <- as.vector(x[, 1])
# Perform checks for initial parameter values
out <- .do_checks(w = w, basis = basis)
w <- out$w
basis <- out$basis
# Create design matrix H
des_mat <- design_matrix(x = basis, obs = obs)
H <- des_mat$H
basis <- des_mat$basis
# Call optim function to perform minimization of the NLL of BPR function
w_opt <- optim(par = w,
fn = betareg_likelihood,
gr = betareg_gradient,
method = opt_method,
control = list(maxit = opt_itnmax),
H = H,
data = x,
lambda = lambda,
is_NLL = TRUE)$par
if (basis$M != 0){
# If we need to add the goodness of fit to the data as feature
if (!is.null(fit_feature)){
if (identical(fit_feature, "NLL")){
fit <- betareg_likelihood(w = w_opt,
H = H,
data = x,
lambda = lambda,
is_NLL = TRUE)
}else if (identical(fit_feature, "RMSE")){
# Predictions of the target variables
f_pred <- as.vector(pnorm(H %*% w_opt))
f_true <- x[, 2]
fit <- sqrt(mean( (f_pred - f_true) ^ 2) )
}
w_opt <- c(w_opt, fit)
}
# Add as feature the CpG density in the promoter region
if (cpg_dens_feat){
w_opt <- c(w_opt, length(obs))
}
}
return(list(w_opt = w_opt,
basis = basis))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.