R/runVAM.R

Defines functions runVAM

Documented in runVAM

#' @title Run VAM to score gene sets in single cell data
#' @description Wrapper for the Variance-adjusted Mahalanobis (VAM), which is a
#' fast and accurate method for cell-specific gene set scoring of single cell
#' data. This algorithm computes distance statistics and one-sided p-values for
#' all cells in the specified single cell gene expression matrix. Gene sets
#' should already be imported and stored in the meta data using functions such
#' as \link{importGeneSetsFromList} or \link{importGeneSetsFromMSigDB}
#' @param inSCE Input \linkS4class{SingleCellExperiment} object.
#' @param geneSetCollectionName Character. The name of the gene set collection
#' to use. Default \code{"H"}.
#' @param useAssay Character. The name of the assay to use. This assay should
#' contain log normalized counts. Default \code{"logcounts"}.
#' @param resultNamePrefix  Character. Prefix to the name the VAM results which
#' will be stored in the reducedDim slot of \code{inSCE}. The names of the
#' output matrices will be \code{resultNamePrefix_Distance} and
#' \code{resultNamePrefix_CDF}. If this parameter is set to \code{NULL}, then
#' \code{"VAM_geneSetCollectionName_"} will be used. Default \code{NULL}.
#' @param center Boolean. If \code{TRUE}, values will be mean centered when
#' computing the Mahalanobis statistic. Default \code{FALSE}.
#' @param gamma Boolean. If \code{TRUE}, a gamma distribution will be fit to
#' the non-zero squared Mahalanobis distances computed from a row-permuted
#' version of the gene expression matrix. The estimated gamma distribution will
#' be used to compute a one-sided p-value for each cell. If \code{FALSE}, the
#' p-value will be computed using the standard chi-square approximation for the
#' squared Mahalanobis distance (or non-central if \code{center = FALSE}).
#' Default \code{TRUE}.
#' @importFrom methods slot
#' @return A \linkS4class{SingleCellExperiment} object with VAM metrics stored
#' in \code{reducedDim} as \code{VAM_NameOfTheGeneset_Distance} and
#' \code{VAM_NameOfTheGeneset_CDF}.
#' @seealso \link{importGeneSetsFromList}, \link{importGeneSetsFromMSigDB},
#' \link{importGeneSetsFromGMT}, \link{importGeneSetsFromCollection} for
#' importing gene sets. \link{sctkListGeneSetCollections},
#' \link{getPathwayResultNames} and \link{getGenesetNamesFromCollection} for
#' available related information in \code{inSCE}.
#' @author Nida Pervaiz
#' @export
#' @examples
#' data(scExample, package = "singleCellTK")
#' sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'")
#' sce <- scaterlogNormCounts(sce, assayName = "logcounts")
#' gs1 <- rownames(sce)[seq(10)]
#' gs2 <- rownames(sce)[seq(11,20)]
#' gs <- list("geneset1" = gs1, "geneset2" = gs2)
#' sce <- importGeneSetsFromList(inSCE = sce,geneSetList = gs,
#'                               by = "rownames")
#' sce <- runVAM(inSCE = sce,
#'               geneSetCollectionName = "GeneSetCollection",
#'               useAssay = "logcounts")
runVAM <- function(inSCE, geneSetCollectionName = "H", useAssay = "logcounts",
                   resultNamePrefix = NULL, center = FALSE, gamma = TRUE) {
  ###################################################
  ###  create gene set collection
  ###################################################
  if (!inherits(inSCE, "SingleCellExperiment")) {
    stop("inSCE has to inherit from SingleCellExperiment object.")
  }
  gene.Set <- .getGeneSetCollection(inSCE, geneSetCollectionName)

  num.Genes <- length(gene.Set)
  gene.Set.Rows <- list()
  gene.Set.Collection <- list()

  for (i in seq(num.Genes)){

    gene.Set.Rows[i] <- slot(gene.Set[[i]], "setName")
    gene.Set.Ids <- slot(gene.Set[[i]], "geneIds")
    gene.Set.Collection[[i]] <- gene.Set.Ids

  }
  names(gene.Set.Collection) <- gene.Set.Rows
  message(date(), " ... Running VAM")
  gene.Set.Collection <- VAM::createGeneSetCollection(gene.ids = rownames(inSCE),
                                                      gene.set.collection = gene.Set.Collection)

  ###################################################
  ### execute vam
  ###################################################
  mat <- expData(inSCE, useAssay)
  resultsexp <- VAM::vamForCollection(gene.expr = t(mat),
                                      gene.set.collection = gene.Set.Collection,
                                      center = center, gamma = gamma)

  ###################################################
  #### store results in metadata
  ###################################################
  if(is.null(resultNamePrefix)) {
    resultNamePrefix <- paste0("VAM_", geneSetCollectionName, "_")
  }
  SingleCellExperiment::reducedDim(inSCE, paste0(resultNamePrefix, "Distance")) <- resultsexp$distance.sq
  SingleCellExperiment::reducedDim(inSCE, paste0(resultNamePrefix, "CDF")) <- resultsexp$cdf.value
  if ("pathwayAnalysisResultNames" %in% names(S4Vectors::metadata(inSCE))) {
    S4Vectors::metadata(inSCE)[["pathwayAnalysisResultNames"]] <-
      c(S4Vectors::metadata(inSCE)[["pathwayAnalysisResultNames"]],
        paste0(resultNamePrefix, "Distance"),
        paste0(resultNamePrefix, "CDF"))
  } else {
    S4Vectors::metadata(inSCE)[["pathwayAnalysisResultNames"]] <-
      c(paste0(resultNamePrefix, "Distance"),
        paste0(resultNamePrefix, "CDF"))
  }
  S4Vectors::metadata(inSCE)[["pathwayAnalysisResultNames"]] <-
    unique(S4Vectors::metadata(inSCE)[["pathwayAnalysisResultNames"]])

  return (inSCE)
}
compbiomed/singleCellTK documentation built on Oct. 27, 2024, 3:26 a.m.