library(Giotto) # 1. set working directory results_folder = 'path/to/result' # 2. set giotto python path # set python path to your preferred python version path # set python path to conda env/bin/ directory if manually installed Giotto python dependencies by conda # python_path = '/path_to_conda/.conda/envs/giotto/bin/python' # set python path to NULL if you want to automatically install (only the 1st time) and use the giotto miniconda environment python_path = NULL if(is.null(python_path)) { installGiottoEnvironment() }
The CODEX data to run this tutorial can be found here Alternatively you can use the getSpatialDataset to automatically download this dataset like we do in this example.
Goltsev et al. created a multiplexed datasets of normal and lupus (MRL/lpr) murine spleens using CODEX technique. The dataset consists of 30 protein markers from 734,101 single cells. In this tutorial, 83,787 cells from sample "BALBc-3" were selected for the analysis.
# download data to working directory # use method = 'wget' if wget is available. This should be much faster. # if you run into authentication issues with wget, then add " extra = '--no-check-certificate' " getSpatialDataset(dataset = 'codex_spleen', directory = results_folder, method = 'wget')
# 1. (optional) set Giotto instructions instrs = createGiottoInstructions(show_plot = FALSE, save_plot = TRUE, save_dir = results_folder, python_path = python_path) # 2. create giotto object from provided paths #### expr_path = paste0(results_folder, "codex_BALBc_3_expression.txt.gz") loc_path = paste0(results_folder, "codex_BALBc_3_coord.txt") meta_path = paste0(results_folder, "codex_BALBc_3_annotation.txt")
# read in data information # expression info codex_expression = readExprMatrix(expr_path, transpose = F) # cell coordinate info codex_locations = data.table::fread(loc_path) # metadata codex_metadata = data.table::fread(meta_path) ## stitch x.y tile coordinates to global coordinates xtilespan = 1344; ytilespan = 1008; # TODO: expand the documentation and input format of stitchTileCoordinates. Probably not enough information for new users. stitch_file = stitchTileCoordinates(location_file = codex_metadata, Xtilespan = xtilespan, Ytilespan = ytilespan) codex_locations = stitch_file[,.(Xcoord, Ycoord)] # create Giotto object codex_test <- createGiottoObject(expression = codex_expression, spatial_locs = codex_locations, instructions = instrs) codex_metadata$cell_ID<- as.character(codex_metadata$cellID) codex_test<-addCellMetadata(codex_test, new_metadata = codex_metadata, by_column = T, column_cell_ID = "cell_ID") # subset Giotto object cell_meta = pDataDT(codex_test) cell_IDs_to_keep = cell_meta[Imaging_phenotype_cell_type != "dirt" & Imaging_phenotype_cell_type != "noid" & Imaging_phenotype_cell_type != "capsule",]$cell_ID codex_test = subsetGiotto(codex_test, cell_ids = cell_IDs_to_keep) ## filter codex_test <- filterGiotto(gobject = codex_test, expression_threshold = 1, feat_det_in_min_cells = 10, min_det_feats_per_cell = 2, expression_values = c('raw'), verbose = T) codex_test <- normalizeGiotto(gobject = codex_test, scalefactor = 6000, verbose = T, log_norm = FALSE, library_size_norm = FALSE, scale_feats = FALSE, scale_cells = TRUE) ## add gene & cell statistics codex_test <- addStatistics(gobject = codex_test,expression_values = "normalized") ## adjust expression matrix for technical or known variables codex_test <- adjustGiottoMatrix(gobject = codex_test, expression_values = c('normalized'), batch_columns = 'sample_Xtile_Ytile', covariate_columns = NULL, return_gobject = TRUE, update_slot = c('custom')) ## visualize spatPlot(gobject = codex_test,point_size = 0.1, coord_fix_ratio = NULL,point_shape = 'no_border', save_param = list(save_name = '2_a_spatPlot'))
{ width=50% }
Show different regions of the dataset
spatPlot(gobject = codex_test, point_size = 0.2, coord_fix_ratio = 1, cell_color = 'sample_Xtile_Ytile', legend_symbol_size = 3, legend_text = 5, save_param = list(save_name = '2_b_spatPlot'))
{ width=50% }
# use all Abs # PCA codex_test <- runPCA(gobject = codex_test, expression_values = 'normalized', scale_unit = T, method = "factominer") signPCA(codex_test, scale_unit = T, scree_ylim = c(0, 3), save_param = list(save_name = '3_a_spatPlot'))
{ width=50% }
plotPCA(gobject = codex_test, point_shape = 'no_border', point_size = 0.2, save_param = list(save_name = '3_b_PCA'))
{ width=50% }
# UMAP codex_test <- runUMAP(codex_test, dimensions_to_use = 1:14, n_components = 2, n_threads = 12) plotUMAP(gobject = codex_test, point_shape = 'no_border', point_size = 0.2, save_param = list(save_name = '3_c_UMAP'))
{ width=50% }
## sNN network (default) codex_test <- createNearestNetwork(gobject = codex_test, dimensions_to_use = 1:14, k = 20) ## 0.1 resolution codex_test <- doLeidenCluster(gobject = codex_test, resolution = 0.5, n_iterations = 100, name = 'leiden') codex_metadata = pDataDT(codex_test) leiden_colors = Giotto:::getDistinctColors(length(unique(codex_metadata$leiden))) names(leiden_colors) = unique(codex_metadata$leiden) plotUMAP(gobject = codex_test, cell_color = 'leiden', point_shape = 'no_border', point_size = 0.2, cell_color_code = leiden_colors, save_param = list(save_name = '4_a_UMAP'))
{ width=50% }
spatPlot(gobject = codex_test, cell_color = 'leiden', point_shape = 'no_border', point_size = 0.2, cell_color_code = leiden_colors, coord_fix_ratio = 1, label_size =2, legend_text = 5, legend_symbol_size = 2, save_param = list(save_name = '4_b_spatplot'))
{ width=50% }
spatDimPlot2D(gobject = codex_test, cell_color = 'leiden', spat_point_shape = 'no_border', spat_point_size = 0.2, dim_point_shape = 'no_border', dim_point_size = 0.2, cell_color_code = leiden_colors, plot_alignment = c("horizontal"), save_param = list(save_name = '5_a_spatdimplot'))
{ width=50% }
cluster_column = 'leiden' markers_scran = findMarkers_one_vs_all(gobject=codex_test, method="scran", expression_values="normalized", cluster_column=cluster_column, min_feats=3) markergenes_scran = unique(markers_scran[, head(.SD, 5), by="cluster"][["feats"]]) plotMetaDataHeatmap(codex_test, expression_values = "normalized", metadata_cols = c(cluster_column), selected_feats = markergenes_scran, y_text_size = 8, show_values = 'zscores_rescaled', save_param = list(save_name = '6_a_metaheatmap'))
{ width=50% }
topgenes_scran = markers_scran[, head(.SD, 1), by = 'cluster']$feats violinPlot(codex_test, feats = unique(topgenes_scran)[1:8], cluster_column = cluster_column, strip_text = 8, strip_position = 'right', save_param = list(save_name = '6_b_violinplot'))
{ width=50% }
# gini markers_gini = findMarkers_one_vs_all(gobject = codex_test, method = "gini", expression_values = "normalized", cluster_column = cluster_column, min_feats=5) markergenes_gini = unique(markers_gini[, head(.SD, 5), by = "cluster"][["feats"]]) plotMetaDataHeatmap(codex_test, expression_values = "normalized", metadata_cols = c(cluster_column), selected_feats = markergenes_gini, show_values = 'zscores_rescaled', save_param = list(save_name = '6_c_metaheatmap'))
{ width=50% }
topgenes_gini = markers_gini[, head(.SD, 1), by = 'cluster']$feats violinPlot(codex_test, feats = unique(topgenes_gini), cluster_column = cluster_column, strip_text = 8, strip_position = 'right', save_param = list(save_name = '6_d_violinplot'))
{ width=50% }
clusters_cell_types<-c("naive B cells","B cells","B cells","naive B cells","B cells", "macrophages","erythroblasts","erythroblasts","erythroblasts","CD8 + T cells", "Naive T cells","CD4+ T cells","Naive T cells", "CD4+ T cells","Dendritic cells", "NK cells","Dendritic cells","Plasma cells","endothelial cells","monocytes") names(clusters_cell_types) = c(2,15,13,5,8,9,19,1,10,3,12,14,4,6,7,16,17,18,11,20) codex_test = annotateGiotto(gobject = codex_test, annotation_vector = clusters_cell_types, cluster_column = 'leiden', name = 'cell_types') plotUMAP(gobject = codex_test, cell_color = 'cell_types', point_shape = 'no_border', point_size = 0.2, show_center_label = F, label_size = 2, legend_text = 5, legend_symbol_size = 2, save_param = list(save_name = '7_a_umap_celltypes'))
{ width=50% }
Or, this dataset comes with the imaging phenotype annotation
plotUMAP(gobject = codex_test, cell_color = 'Imaging_phenotype_cell_type', point_shape = 'no_border', point_size = 0.2, show_center_label = F, label_size = 2, legend_text = 5, legend_symbol_size = 2, save_param = list(save_name = '7_b_umap'))
{ width=50% }
spatPlot(gobject = codex_test, cell_color = 'Imaging_phenotype_cell_type', point_shape = 'no_border', point_size = 0.2, coord_fix_ratio = 1, label_size = 2, legend_text = 5, legend_symbol_size = 2, save_param = list(save_name = '7_c_spatplot'))
{ width=50% }
cell_metadata = pDataDT(codex_test) subset_cell_ids = cell_metadata[sample_Xtile_Ytile=="BALBc-3_X04_Y08"]$cell_ID codex_test_zone1 = subsetGiotto(codex_test, cell_ids = subset_cell_ids) plotUMAP(gobject = codex_test_zone1, cell_color = 'Imaging_phenotype_cell_type', point_shape = 'no_border', point_size = 1, show_center_label = F, label_size = 2, legend_text = 5, legend_symbol_size = 2, save_param = list(save_name = '8_a_umap'))
{ width=50% }
spatPlot(gobject = codex_test_zone1, cell_color = 'Imaging_phenotype_cell_type', point_shape = 'no_border', point_size = 1, coord_fix_ratio = 1, label_size = 2, legend_text = 5, legend_symbol_size = 2, save_param = list(save_name = '8_b_spatplot'))
{ width=50% }
spatDimFeatPlot2D(codex_test_zone1, expression_values = 'scaled', feats = c("CD8a","CD19"), spat_point_shape = 'no_border', dim_point_shape = 'no_border', cell_color_gradient = c("darkblue", "white", "red"), save_param = list(save_name = '8_c_spatdimplot'))
{ width=50% }
Test on another region:
cell_metadata = pDataDT(codex_test) subset_cell_ids = cell_metadata[sample_Xtile_Ytile=="BALBc-3_X04_Y03"]$cell_ID codex_test_zone2 = subsetGiotto(codex_test, cell_ids = subset_cell_ids) plotUMAP(gobject = codex_test_zone2, cell_color = 'Imaging_phenotype_cell_type', point_shape = 'no_border', point_size = 1, show_center_label = F, label_size = 2, legend_text = 5, legend_symbol_size = 2, save_param = list(save_name = '8_d_umap'))
{ width=50% }
spatPlot(gobject = codex_test_zone2, cell_color = 'Imaging_phenotype_cell_type', point_shape = 'no_border', point_size = 1, coord_fix_ratio = 1, label_size = 2, legend_text = 5, legend_symbol_size = 2, save_param = list(save_name = '8_e_spatPlot'))
{ width=50% }
spatDimFeatPlot2D(codex_test_zone2, expression_values = 'scaled', feats = c("CD4", "CD106"), spat_point_shape = 'no_border', dim_point_shape = 'no_border', cell_color_gradient = c("darkblue", "white", "red"), save_param = list(save_name = '8_f_spatdimgeneplot'))
{ width=50% }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.