library(Giotto) # 1. set working directory results_folder = 'path/to/result' # 2. set giotto python path # set python path to your preferred python version path # set python path to conda env/bin/ directory if manually installed Giotto python dependencies by conda # python_path = '/path_to_conda/.conda/envs/giotto/bin/python' # set python path to NULL if you want to automatically install (only the 1st time) and use the giotto miniconda environment python_path = null if(is.null(python_path)) { installGiottoEnvironment() }
10X genomics recently launched a new platform to obtain spatial expression data using a Visium Spatial Gene Expression slide.
The Visium brain data to run this tutorial can be found here
Visium technology:
{ width=50% }
High resolution png from original tissue:
{ width=50% }
## provide path to visium folder data_path = '/path/to/Brain_data/' ## directly from visium folder visium_brain = createGiottoVisiumObject(visium_dir = data_path, expr_data = 'raw', png_name = 'tissue_lowres_image.png', gene_column_index = 2, instructions = instrs) ## update and align background image # problem: image is not perfectly aligned spatPlot2D(gobject = visium_brain, cell_color = 'in_tissue', show_image = T, point_alpha = 0.7, save_param = list(save_name = '2_a_spatplot_image'))
{ width=50% }
# check name showGiottoImageNames(visium_brain) # "image" is the default name # adjust parameters to align image (iterative approach) visium_brain = updateGiottoImage(visium_brain, image_name = 'image', xmax_adj = 1300, xmin_adj = 1200, ymax_adj = 1100, ymin_adj = 1000) # now it's aligned spatPlot2D(gobject = visium_brain, cell_color = 'in_tissue', show_image = T, point_alpha = 0.7, save_param = list(save_name = '2_b_spatplot_image_adjusted'))
{ width=50% }
## check metadata pDataDT(visium_brain) ## compare in tissue with provided jpg spatPlot2D(gobject = visium_brain, cell_color = 'in_tissue', point_size = 2, cell_color_code = c('0' = 'lightgrey', '1' = 'blue'), save_param = list(save_name = '2_c_in_tissue'))
{ width=50% }
## subset on spots that were covered by tissue metadata = pDataDT(visium_brain) in_tissue_barcodes = metadata[in_tissue == 1]$cell_ID visium_brain = subsetGiotto(visium_brain, cell_ids = in_tissue_barcodes) ## filter visium_brain <- filterGiotto(gobject = visium_brain, expression_threshold = 1, feat_det_in_min_cells = 50, min_det_feats_per_cell = 1000, expression_values = c('raw'), verbose = T) ## normalize visium_brain <- normalizeGiotto(gobject = visium_brain, scalefactor = 6000, verbose = T) ## add gene & cell statistics visium_brain <- addStatistics(gobject = visium_brain) ## visualize spatPlot2D(gobject = visium_brain, show_image = T, point_alpha = 0.7, save_param = list(save_name = '2_d_spatial_locations'))
{ width=50% }
spatPlot2D(gobject = visium_brain, show_image = T, point_alpha = 0.7, cell_color = 'nr_feats', color_as_factor = F, save_param = list(save_name = '2_e_nr_genes'))
{ width=50% }
## highly variable genes (HVG) visium_brain <- calculateHVF(gobject = visium_brain, save_plot = TRUE, save_param = list(save_name = '3_a_HVGplot'))
{ width=50% }
## run PCA on expression values (default) gene_metadata = fDataDT(visium_brain) featgenes = gene_metadata[hvf == 'yes' & perc_cells > 3 & mean_expr_det > 0.4]$gene_ID visium_brain <- runPCA(gobject = visium_brain, genes_to_use = featgenes, scale_unit = F, center = T, method="factominer") screePlot(visium_brain, ncp = 30, save_param = list(save_name = '3_b_screeplot'))
{ width=50% }
plotPCA(gobject = visium_brain, save_param = list(save_name = '3_c_PCA_reduction'))
{ width=50% }
## run UMAP and tSNE on PCA space (default) visium_brain <- runUMAP(visium_brain, dimensions_to_use = 1:10) plotUMAP(gobject = visium_brain, save_param = list(save_name = '3_d_UMAP_reduction'))
{ width=50% }
visium_brain <- runtSNE(visium_brain, dimensions_to_use = 1:10) plotTSNE(gobject = visium_brain, save_param = list(save_name = '3_e_tSNE_reduction'))
{ width=50% }
## sNN network (default) visium_brain <- createNearestNetwork(gobject = visium_brain, dimensions_to_use = 1:10, k = 15) ## Leiden clustering visium_brain <- doLeidenCluster(gobject = visium_brain, resolution = 0.4, n_iterations = 1000) plotUMAP(gobject = visium_brain, cell_color = 'leiden_clus', show_NN_network = T, point_size = 2.5, save_param = list(save_name = '4_a_UMAP_leiden'))
{ width=50% }
# expression and spatial spatDimPlot(gobject = visium_brain, cell_color = 'leiden_clus', dim_point_size = 2, spat_point_size = 2.5, save_param = list(save_name = '5_a_covis_leiden'))
{ width=50% }
spatDimPlot(gobject = visium_brain, cell_color = 'nr_feats', color_as_factor = F, dim_point_size = 2, spat_point_size = 2.5, save_param = list(save_name = '5_b_nr_genes'))
{ width=50% }
DG_subset = subsetGiottoLocs(visium_brain, x_max = 6500, x_min = 3000, y_max = -2500, y_min = -5500, return_gobject = TRUE) spatDimPlot(gobject = DG_subset, cell_color = 'leiden_clus', spat_point_size = 5, save_param = list(save_name = '5_c_DEG_subset'))
{ width=50% }
## ------------------ ## ## Gini markers gini_markers_subclusters = findMarkers_one_vs_all(gobject = visium_brain, method = 'gini', expression_values = 'normalized', cluster_column = 'leiden_clus', min_feats = 20, min_expr_gini_score = 0.5, min_det_gini_score = 0.5) topgenes_gini = gini_markers_subclusters[, head(.SD, 2), by = 'cluster']$feats # violinplot violinPlot(visium_brain, feats = unique(topgenes_gini), cluster_column = 'leiden_clus', strip_text = 8, strip_position = 'right', save_param = list(save_name = '6_a_violinplot_gini', base_width = 5, base_height = 10))
{ width=50% }
# cluster heatmap plotMetaDataHeatmap(visium_brain, selected_feats = unique(topgenes_gini), metadata_cols = c('leiden_clus'), x_text_size = 10, y_text_size = 10, save_param = list(save_name = '6_b_metaheatmap_gini'))
{ width=50% }
# umap plots dimFeatPlot2D(visium_brain, expression_values = 'scaled', feats = gini_markers_subclusters[, head(.SD, 1), by = 'cluster']$feats, cow_n_col = 3, point_size = 1, save_param = list(save_name = '6_c_gini_umap', base_width = 8, base_height = 5))
{ width=50% }
## ------------------ ## # Scran Markers scran_markers_subclusters = findMarkers_one_vs_all(gobject = visium_brain, method = 'scran', expression_values = 'normalized', cluster_column = 'leiden_clus') topgenes_scran = scran_markers_subclusters[, head(.SD, 2), by = 'cluster']$genes # violinplot violinPlot(visium_brain, feats = unique(topgenes_scran), cluster_column = 'leiden_clus', strip_text = 10, strip_position = 'right', save_param = list(save_name = '6_d_violinplot_scran', base_width = 5))
{ width=50% }
# cluster heatmap plotMetaDataHeatmap(visium_brain, selected_feats = topgenes_scran, metadata_cols = c('leiden_clus'), save_param = list(save_name = '6_e_metaheatmap_scran'))
{ width=50% }
# umap plots dimFeatPlot2D(visium_brain, expression_values = 'scaled', feats = scran_markers_subclusters[, head(.SD, 1), by = 'cluster']$genes, cow_n_col = 3, point_size = 1, save_param = list(save_name = '6_f_scran_umap', base_width = 8, base_height = 5))
{ width=50% }
Visium spatial transcriptomics does not provide single-cell resolution, making cell type annotation a harder problem. Giotto provides several ways to calculate enrichment of specific cell-type signature gene list:
- PAGE
- hypergeometric test
- Rank
- DWLS Deconvolution
Corresponded Single cell dataset can be generated from here.
Giotto_SC is processed from the downsampled Loom file
# Create PAGE matrix # PAGE matrix should be a binary matrix with each row represent a gene marker and each column represent a cell type # There are several ways to create PAGE matrix # 1.1 create binary matrix of cell signature genes # small example # gran_markers = c("Nr3c2", "Gabra5", "Tubgcp2", "Ahcyl2", "Islr2", "Rasl10a", "Tmem114", "Bhlhe22", "Ntf3", "C1ql2") oligo_markers = c("Efhd1", "H2-Ab1", "Enpp6", "Ninj2", "Bmp4", "Tnr", "Hapln2", "Neu4", "Wfdc18", "Ccp110") di_mesench_markers = c("Cartpt", "Scn1a", "Lypd6b", "Drd5", "Gpr88", "Plcxd2", "Cpne7", "Pou4f1", "Ctxn2", "Wnt4") PAGE_matrix_1 = makeSignMatrixPAGE(sign_names = c('Granule_neurons', 'Oligo_dendrocytes', 'di_mesenchephalon'), sign_list = list(gran_markers, oligo_markers, di_mesench_markers)) # ---- # 1.2 [shortcut] fully pre-prepared matrix for all cell types sign_matrix_path = system.file("extdata", "sig_matrix.txt", package = 'Giotto') brain_sc_markers = data.table::fread(sign_matrix_path) PAGE_matrix_2 = as.matrix(brain_sc_markers[,-1]) rownames(PAGE_matrix_2) = brain_sc_markers$Event # --- # 1.3 make PAGE matrix from single cell dataset markers_scran = findMarkers_one_vs_all(gobject=giotto_SC, method="scran", expression_values="normalized", cluster_column='prostate_labels', min_feats=3) top_markers <- markers_scran[, head(.SD, 10), by="cluster"] celltypes<-levels(factor(markers_scran$cluster)) sign_list<-list() for (i in 1:length(celltypes)){ sign_list[[i]]<-top_markers[which(top_markers$cluster == celltypes[i]),]$gene } PAGE_matrix_3 = makeSignMatrixPAGE(sign_names = celltypes, sign_list = sign_list) # 1.4 enrichment test with PAGE # runSpatialEnrich() can also be used as a wrapper for all currently provided enrichment options visium_brain = runPAGEEnrich(gobject = visium_brain, sign_matrix = PAGE_matrix_2) # 1.5 heatmap of enrichment versus annotation (e.g. clustering result) cell_types_PAGE = colnames(PAGE_matrix_2) plotMetaDataCellsHeatmap(gobject = visium_brain, metadata_cols = 'leiden_clus', value_cols = cell_types_PAGE, spat_enr_names = 'PAGE', x_text_size = 8, y_text_size = 8, save_param = list(save_name="7_a_metaheatmap"))
{ width=50% }
# 1.6 visualizations spatCellPlot2D(gobject = visium_brain, spat_enr_names = 'PAGE', cell_annotation_values = cell_types_PAGE[1:4], cow_n_col = 2,coord_fix_ratio = NULL, point_size = 0.75, show_legend = F, save_param = list(save_name="7_b_spatcellplot_1"))
{ width=50% }
spatDimCellPlot2D(gobject = visium_brain, spat_enr_names = 'PAGE', cell_annotation_values = cell_types_PAGE[1:4], cow_n_col = 1, spat_point_size = 1, plot_alignment = 'horizontal', save_param = list(save_name="7_d_spatDimCellPlot", base_width=7, base_height=10))
{ width=50% }
#Modify the sparse matrix in normalized slot visium_brain@expression$rna$normalized <- as.matrix(visium_brain@expression$rna$normalized) visium_brain = runHyperGeometricEnrich(gobject = visium_brain, expression_values = "normalized", sign_matrix = PAGE_matrix_3) cell_types_HyperGeometric = colnames(PAGE_matrix_3) spatCellPlot(gobject = visium_brain, spat_enr_names = 'hypergeometric', cell_annotation_values = cell_types_HyperGeometric[1:4], cow_n_col = 2,coord_fix_ratio = NULL, point_size = 1.75, save_param = list(save_name = "7.2b_HyperGeometric_plot"))
{ width=50% }
rank_matrix = makeSignMatrixRank(sc_matrix = as.matrix(giotto_SC@expression$rna$normalized), sc_cluster_ids = pDataDT(giotto_SC)$Class) colnames(rank_matrix)<-levels(factor(pDataDT(giotto_SC)$Class)) visium_brain = runRankEnrich(gobject = visium_brain, sign_matrix = rank_matrix,expression_values = "normalized") spatCellPlot2D(gobject = visium_brain, spat_enr_names = 'rank', cell_annotation_values = colnames(rank_matrix)[1:4], cow_n_col = 2,coord_fix_ratio = NULL, point_size = 1, save_param = list(save_name = "7.3a_Rank_plot"))
{ width=50% }
#markers_scran = findMarkers_one_vs_all(gobject=giotto_SC, method="scran", # expression_values="normalized", cluster_column='prostate_labels', #min_feats=3) #top_markers <- markers_scran[, head(.SD, 10), by="cluster"] DWLS_matrix<-makeSignMatrixDWLSfromMatrix(matrix = as.matrix(giotto_SC@expression$rna$normalized), cell_type = pDataDT(giotto_SC)$brain_label, sign_gene = top_markers$gene) visium_brain = runDWLSDeconv(gobject = visium_brain, sign_matrix = DWLS_matrix) spatCellPlot2D(gobject = visium_brain, spat_enr_names = 'DWLS', cell_annotation_values = colnames(DWLS_matrix)[1:4], cow_n_col = 2,coord_fix_ratio = NULL, point_size = 1, save_param = list(save_name = "7.4_DWLS_plot"))
{ width=50% }
visium_brain <- createSpatialGrid(gobject = visium_brain, sdimx_stepsize = 400, sdimy_stepsize = 400, minimum_padding = 0) spatPlot2D(visium_brain, cell_color = 'leiden_clus', show_grid = T, grid_color = 'red', spatial_grid_name = 'spatial_grid', save_param = list(save_name = '8_grid'))
{ width=50% }
visium_brain <- createSpatialNetwork(gobject = visium_brain, method = 'kNN', k = 5, maximum_distance_knn = 400, name = 'spatial_network') showGiottoSpatNetworks(visium_brain) spatPlot2D(gobject = visium_brain, show_network= T, network_color = 'blue', spatial_network_name = 'spatial_network', save_param = list(save_name = '9_a_knn_network'))
{ width=50% }
## kmeans binarization kmtest = binSpect(visium_brain, calc_hub = T, hub_min_int = 5, spatial_network_name = 'spatial_network') spatFeatPlot2D(visium_brain, expression_values = 'scaled', feats = kmtest$feats[1:6], cow_n_col = 2, point_size = 1.5, save_param = list(save_name = '10_a_spatial_genes_km'))
{ width=50% }
## rank binarization ranktest = binSpect(visium_brain, bin_method = 'rank', calc_hub = T, hub_min_int = 5, spatial_network_name = 'spatial_network') spatFeatPlot2D(visium_brain, expression_values = 'scaled', feats = ranktest$feats[1:6], cow_n_col = 2, point_size = 1.5, save_param = list(save_name = '10_b_spatial_genes_rank'))
{ width=50% }
# cluster the top 1500 spatial genes into 20 clusters ext_spatial_genes = ranktest[1:1500,]$feats # here we use existing detectSpatialCorGenes function to calculate pairwise distances between genes (but set network_smoothing=0 to use default clustering) spat_cor_netw_DT = detectSpatialCorFeats(visium_brain, method = 'network', spatial_network_name = 'spatial_network', subset_feats = ext_spatial_genes) # cluster spatial genes spat_cor_netw_DT = clusterSpatialCorFeats(spat_cor_netw_DT, name = 'spat_netw_clus', k = 20) # visualize clusters heatmSpatialCorFeats(visium_brain, spatCorObject = spat_cor_netw_DT, use_clus_name = 'spat_netw_clus', heatmap_legend_param = list(title = NULL), save_param = list(save_name="10_c_heatmap", base_height = 6, base_width = 8, units = 'cm'))
{ width=50% }
table(spat_cor_netw_DT$cor_clusters$spat_netw_clus) coexpr_dt = data.table::data.table(genes = names(spat_cor_netw_DT$cor_clusters$spat_netw_clus), cluster = spat_cor_netw_DT$cor_clusters$spat_netw_clus) data.table::setorder(coexpr_dt, cluster) top30_coexpr_dt = coexpr_dt[, head(.SD, 30) , by = cluster] # do HMRF with different betas on 500 spatial genes my_spatial_genes <- top30_coexpr_dt$genes hmrf_folder = paste0(results_folder,'/','11_HMRF/') if(!file.exists(hmrf_folder)) dir.create(hmrf_folder, recursive = T) HMRF_spatial_genes = doHMRF(gobject = visium_brain, expression_values = 'scaled', spatial_genes = my_spatial_genes, k = 20, spatial_network_name="spatial_network", betas = c(0, 10, 5), output_folder = paste0(hmrf_folder, '/', 'Spatial_genes/SG_topgenes_k20_scaled')) visium_brain = addHMRF(gobject = visium_brain, HMRFoutput = HMRF_spatial_genes, k = 20, betas_to_add = c(0, 10, 20, 30, 40), hmrf_name = 'HMRF') spatPlot2D(gobject = visium_brain, cell_color = 'HMRF_k20_b.40', point_size = 2, save_param=c(save_name="10_d_spatPlot2D_HMRF"))
{ width=50% }
# check which annotations are available combineMetadata(visium_brain, spat_enr_names = 'PAGE') # select annotations, reductions and expression values to view in Giotto Viewer viewer_folder = paste0(results_folder, '/', 'mouse_Visium_brain_viewer') exportGiottoViewer(gobject = visium_brain, output_directory = viewer_folder, spat_enr_names = 'PAGE', factor_annotations = c('in_tissue', 'leiden_clus', 'HMRF_k20_b.40'), numeric_annotations = c('nr_feats', 'clus_25'), dim_reductions = c('tsne', 'umap'), dim_reduction_names = c('tsne', 'umap'), expression_values = 'scaled', expression_rounding = 2, overwrite_dir = T)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.