library(Giotto) # 1. set working directory results_folder = 'path/to/result' # 2. set giotto python path # set python path to your preferred python version path # set python path to conda env/bin/ directory if manually installed Giotto python dependencies by conda # python_path = '/path_to_conda/.conda/envs/giotto/bin/python' # set python path to NULL if you want to automatically install (only the 1st time) and use the giotto miniconda environment python_path = NULL if(is.null(python_path)) { installGiottoEnvironment() } # 3. create giotto instructions instrs = createGiottoInstructions(save_dir = results_folder, save_plot = TRUE, show_plot = FALSE, python_path = python_path)
This is a tutorial for Harmony integration of different single cell RNAseq datasets using two prostate cancer patient datasets. Ma et al. Processed 10X Single Cell RNAseq from two prostate cancer patients. The raw dataset can be found here
giotto_P1<-createGiottoObject(expression = get10Xmatrix("path/to/P1_result/outs/filtered_feature_bc_matrix", gene_column_index = 2, remove_zero_rows = TRUE), instructions = instrs) giotto_P2<-createGiottoObject(expression = get10Xmatrix("path/to/P2_result/outs/filtered_feature_bc_matrix", gene_column_index = 2, remove_zero_rows = TRUE), instructions = instrs) giotto_SC_join = joinGiottoObjects(gobject_list = list(giotto_P1, giotto_P2), gobject_names = c('P1', 'P2'), join_method = "z_stack")
giotto_SC_join <- filterGiotto(gobject = giotto_SC_join, expression_threshold = 1, feat_det_in_min_cells = 50, min_det_feats_per_cell = 500, expression_values = c('raw'), verbose = T) ## normalize giotto_SC_join <- normalizeGiotto(gobject = giotto_SC_join, scalefactor = 6000) ## add gene & cell statistics giotto_SC_join <- addStatistics(gobject = giotto_SC_join, expression_values = 'raw')
## PCA ## giotto_SC_join <- calculateHVF(gobject = giotto_SC_join) giotto_SC_join <- runPCA(gobject = giotto_SC_join, center = TRUE, scale_unit = TRUE) # Check screeplot to select number of PCs for clustering # screePlot(giotto_SC_join, ncp = 30, save_param = list(save_name = '3_scree_plot')) ## WITHOUT INTEGRATION ## # --------------------- # ## cluster and run UMAP ## # sNN network (default) showGiottoDimRed(giotto_SC_join) giotto_SC_join <- createNearestNetwork(gobject = giotto_SC_join, dim_reduction_to_use = 'pca', dim_reduction_name = 'pca', dimensions_to_use = 1:10, k = 15) # Leiden clustering giotto_SC_join <- doLeidenCluster(gobject = giotto_SC_join, resolution = 0.2, n_iterations = 1000) # UMAP giotto_SC_join = runUMAP(giotto_SC_join) plotUMAP(gobject = giotto_SC_join, cell_color = 'leiden_clus', show_NN_network = T, point_size = 1.5, save_param = list(save_name = "4_cluster_without_integration"))
{ width=50% }
dimPlot2D(gobject = giotto_SC_join, dim_reduction_name = 'umap', point_shape = 'no_border', cell_color = "leiden_clus", group_by = "list_ID", show_NN_network = F, point_size = 0.5, show_center_label = F, show_legend =F, save_param = list(save_name = "4_list_without_integration"))
{ width=50% }
Harmony is a integration algorithm developed by Korsunsky, I. et al.. It was designed for integration of single cell data but also work well on spatial datasets.
## WITH INTEGRATION ## # --------------------- # ## data integration, cluster and run UMAP ## # harmony #library(devtools) #install_github("immunogenomics/harmony") library(harmony) #pDataDT(giotto_SC_join) giotto_SC_join = runGiottoHarmony(giotto_SC_join, vars_use = 'list_ID', do_pca = F) ## sNN network (default) #showGiottoDimRed(giotto_SC_join) giotto_SC_join <- createNearestNetwork(gobject = giotto_SC_join, dim_reduction_to_use = 'harmony', dim_reduction_name = 'harmony', name = 'NN.harmony', dimensions_to_use = 1:10, k = 15) ## Leiden clustering giotto_SC_join <- doLeidenCluster(gobject = giotto_SC_join, network_name = 'NN.harmony', resolution = 0.2, n_iterations = 1000, name = 'leiden_harmony') # UMAP dimension reduction #showGiottoDimRed(giotto_SC_join) giotto_SC_join = runUMAP(giotto_SC_join, dim_reduction_name = 'harmony', dim_reduction_to_use = 'harmony', name = 'umap_harmony') plotUMAP(gobject = giotto_SC_join, dim_reduction_name = 'umap_harmony', cell_color = 'leiden_harmony', show_NN_network = T, point_size = 1.5, save_param = list(save_name = "4_cluster_with_integration"))
{ width=50% }
dimPlot2D(gobject = giotto_SC_join, dim_reduction_name = 'umap_harmony', point_shape = 'no_border', cell_color = "leiden_harmony", group_by = "list_ID", show_NN_network = F, point_size = 0.5, show_center_label = F, show_legend =F , save_param = list(save_name = "4_list_with_integration"))
{ width=50% }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.