| clusterCells | R Documentation | 
cluster cells using a variety of different methods
clusterCells(
  gobject,
  cluster_method = c("leiden", "louvain_community", "louvain_multinet", "randomwalk",
    "sNNclust", "kmeans", "hierarchical"),
  name = "cluster_name",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  pyth_leid_resolution = 1,
  pyth_leid_weight_col = "weight",
  pyth_leid_part_type = c("RBConfigurationVertexPartition", "ModularityVertexPartition"),
  pyth_leid_init_memb = NULL,
  pyth_leid_iterations = 1000,
  pyth_louv_resolution = 1,
  pyth_louv_weight_col = NULL,
  python_louv_random = F,
  python_path = NULL,
  louvain_gamma = 1,
  louvain_omega = 1,
  walk_steps = 4,
  walk_clusters = 10,
  walk_weights = NA,
  sNNclust_k = 20,
  sNNclust_eps = 4,
  sNNclust_minPts = 16,
  borderPoints = TRUE,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
    "manhattan", "canberra", "binary", "minkowski"),
  km_centers = 10,
  km_iter_max = 100,
  km_nstart = 1000,
  km_algorithm = "Hartigan-Wong",
  hc_agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
    "mcquitty", "median", "centroid"),
  hc_k = 10,
  hc_h = NULL,
  return_gobject = TRUE,
  set_seed = TRUE,
  seed_number = 1234
)
| gobject | giotto object | 
| cluster_method | community cluster method to use | 
| name | name for new clustering result | 
| nn_network_to_use | type of NN network to use (kNN vs sNN) | 
| network_name | name of NN network to use | 
| pyth_leid_resolution | resolution for leiden | 
| pyth_leid_weight_col | column to use for weights | 
| pyth_leid_part_type | partition type to use | 
| pyth_leid_init_memb | initial membership | 
| pyth_leid_iterations | number of iterations | 
| pyth_louv_resolution | resolution for louvain | 
| pyth_louv_weight_col | python louvain param: weight column | 
| python_louv_random | python louvain param: random | 
| python_path | specify specific path to python if required | 
| louvain_gamma | louvain param: gamma or resolution | 
| louvain_omega | louvain param: omega | 
| walk_steps | randomwalk: number of steps | 
| walk_clusters | randomwalk: number of clusters | 
| walk_weights | randomwalk: weight column | 
| sNNclust_k | SNNclust: k neighbors to use | 
| sNNclust_eps | SNNclust: epsilon | 
| sNNclust_minPts | SNNclust: min points | 
| borderPoints | SNNclust: border points | 
| expression_values | expression values to use | 
| genes_to_use | = NULL, | 
| dim_reduction_to_use | dimension reduction to use | 
| dim_reduction_name | name of reduction 'pca', | 
| dimensions_to_use | dimensions to use | 
| distance_method | distance method | 
| km_centers | kmeans centers | 
| km_iter_max | kmeans iterations | 
| km_nstart | kmeans random starting points | 
| km_algorithm | kmeans algorithm | 
| hc_agglomeration_method | hierarchical clustering method | 
| hc_k | hierachical number of clusters | 
| hc_h | hierarchical tree cutoff | 
| return_gobject | boolean: return giotto object (default = TRUE) | 
| set_seed | set seed | 
| seed_number | number for seed | 
Wrapper for the different clustering methods.
giotto object with new clusters appended to cell metadata
doLeidenCluster, doLouvainCluster_community, doLouvainCluster_multinet,
doLouvainCluster, doRandomWalkCluster, doSNNCluster,
doKmeans, doHclust
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.