doHclust | R Documentation |
cluster cells using hierarchical clustering algorithm
doHclust(
gobject,
spat_unit = NULL,
feat_type = NULL,
expression_values = c("normalized", "scaled", "custom"),
genes_to_use = NULL,
dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
dim_reduction_name = "pca",
dimensions_to_use = 1:10,
distance_method = c("pearson", "spearman", "original", "euclidean", "maximum",
"manhattan", "canberra", "binary", "minkowski"),
agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
"mcquitty", "median", "centroid"),
k = 10,
h = NULL,
name = "hclust",
return_gobject = TRUE,
set_seed = TRUE,
seed_number = 1234
)
gobject |
giotto object |
spat_unit |
spatial unit |
feat_type |
feature type |
expression_values |
expression values to use |
genes_to_use |
subset of genes to use |
dim_reduction_to_use |
dimension reduction to use |
dim_reduction_name |
dimensions reduction name |
dimensions_to_use |
dimensions to use |
distance_method |
distance method |
agglomeration_method |
agglomeration method for hclust |
k |
number of final clusters |
h |
cut hierarchical tree at height = h |
name |
name for hierarchical clustering |
return_gobject |
boolean: return giotto object (default = TRUE) |
set_seed |
set seed |
seed_number |
number for seed |
Description on how to use Kmeans clustering method.
giotto object with new clusters appended to cell metadata
hclust
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.